ICGOO在线商城 > 集成电路(IC) > PMIC - 栅极驱动器 > IR2118SPBF
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
IR2118SPBF产品简介:
ICGOO电子元器件商城为您提供IR2118SPBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IR2118SPBF价格参考¥询价-¥询价。International RectifierIR2118SPBF封装/规格:PMIC - 栅极驱动器, High-Side Gate Driver IC Inverting 8-SOIC。您可以下载IR2118SPBF参考资料、Datasheet数据手册功能说明书,资料中有IR2118SPBF 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC MOSFET DRIVER HIGH SIDE 8SOIC门驱动器 1 HI SIDE DRVR INVERTING INPUT |
产品分类 | PMIC - MOSFET,电桥驱动器 - 外部开关集成电路 - IC |
品牌 | International Rectifier |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 电源管理 IC,门驱动器,International Rectifier IR2118SPBF- |
数据手册 | |
产品型号 | IR2118SPBF |
上升时间 | 130 ns |
下降时间 | 65 ns |
产品 | MOSFET Gate Drivers |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250 |
产品种类 | 门驱动器 |
供应商器件封装 | 8-SOIC N |
包装 | 管件 |
商标 | International Rectifier |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Tube |
封装/外壳 | 8-SOIC(0.154",3.90mm 宽) |
封装/箱体 | SOIC-8 |
工作温度 | -40°C ~ 125°C |
工厂包装数量 | 95 |
延迟时间 | 125ns |
最大关闭延迟时间 | 105 ns |
最大功率耗散 | 625 mW |
最大工作温度 | + 125 C |
最大开启延迟时间 | 125 ns |
最小工作温度 | - 40 C |
标准包装 | 95 |
激励器数量 | 1 Driver |
电压-电源 | 10 V ~ 20 V |
电流-峰值 | 250mA |
电源电压-最大 | 20 V |
电源电压-最小 | 10 V |
电源电流 | 0.34 mA |
类型 | Single Channel Driver |
输入类型 | 反相 |
输出数 | 1 |
输出电流 | 200 mA |
输出端数量 | 1 |
配置 | Inverting |
配置数 | 1 |
高压侧电压-最大值(自举) | 600V |
Data Sheet No. PD60146 Rev O IR2117(S)/IR2118(S) & (PbF) SINGLE CHANNEL DRIVER Features Product Summary • Floating channel designed for bootstrap operation V 600V max. Fully operational to +600V OFFSET Tolerant to negative transient voltage dV/dt immune IO+/- 200 mA / 420 mA • Gate drive supply range from 10 to 20V • Undervoltage lockout VOUT 10 - 20V • CMOS Schmitt-triggered inputs with pull-down • Output in phase with input (IR2117) or out of ton/off (typ.) 125 & 105 ns phase with input (IR2118) • Also available LEAD-FREE Packages Description The IR2117/IR2118(S) is a high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS outputs. The output driver fea- tures a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can 8-Lead PDIP 8-Lead SOIC be used to drive an N-channel power MOSFET or IGBT IR2117/IR2118 IR2117S/IR2118S in the high or low side configuration which operates up to 600 volts. Typical Connection (cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:12)(cid:12)(cid:15)(cid:16)(cid:16)(cid:1) (cid:1)(cid:2)(cid:2) (cid:1)(cid:2)(cid:2) (cid:1)(cid:3) (cid:7)(cid:8) (cid:7)(cid:8) (cid:5)(cid:6) (cid:2)(cid:6)(cid:9) (cid:1) (cid:17)(cid:6) (cid:4) (cid:18)(cid:6)(cid:19)(cid:20) IR2117 (cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:12)(cid:15)(cid:16)(cid:16)(cid:1) (cid:1)(cid:2)(cid:2) (cid:1)(cid:2)(cid:2) (cid:1)(cid:3) (cid:7)(cid:8) (cid:7)(cid:8) (cid:5)(cid:6) (cid:2)(cid:6)(cid:9) (cid:1) (cid:17)(cid:6) (cid:4) IR2118 (cid:18)(cid:6)(cid:19)(cid:20) (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1
IR2117(S)/IR2118(S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param- eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 5 through 8. Symbol Definition Min. Max. Units VB High side floating supply voltage -0.3 625 VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 V VCC Logic supply voltage -0.3 25 VIN Logic input voltage -0.3 VCC + 0.3 dVs/dt Allowable offset supply voltage transient (figure 2) — 50 V/ns PD Package power dissipation @ TA ≤ +25°C (8 lead PDIP) — 1.0 W (8 lead SOIC) — 0.625 RthJA Thermal resistance, junction to ambient (8 lead PDIP) — 125 °C/W (8 lead SOIC) — 200 TJ Junction temperature — 150 TS Storage temperature -55 150 °C TL Lead temperature (soldering, 10 seconds) — 300 Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol Definition Min. Max. Units VB High side floating supply absolute voltage VS + 10 VS + 20 VS High side floating supply offset voltage Note 1 600 VHO High side floating output voltage VS VB V VCC Logic supply voltage 10 20 VIN Logic input voltage 0 VCC TA Ambient temperature -40 125 °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com
IR2117(S)/IR2118(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay — 125 200 VS = 0V toff Turn-off propagation delay — 105 180 VS = 600V ns tr Turn-on rise time — 80 130 tf Turn-off fall time — 40 65 Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH input voltage - logic “1” (IR2117) logic “0” (IR2118) 9.5 — — V VIL Input voltage - logic “0” (IR2117) logic “1” (IR2118) — — 6.0 VOH High level output voltage, VBIAS - VO — — 100 IO = 0A mV VOL Low level output voltage, VO — — 100 IO = 0A ILK Offset supply leakage current — — 50 VB = VS = 600V IQBS Quiescent VBS supply current — 50 240 VIN = 0V or VCC IQCC Quiescent VCC Supply Current — 70 340 VIN = 0V or VCC IIN+ Logic “1” input bias current (IR2117) µA VIN = VCC — 20 40 (IR2118) VIN = 0V IIN- Logic “0” input bias current (IR2117) VIN = 0V — — 1.0 (IR2118) VIN = VCC VBSUV+ VBS supply undervoltage positive going threshold 7.6 8.6 9.6 VBSUV- VBS supply undervoltage negative going threshold 7.2 8.2 9.2 V VCCUV+ VCC supply undervoltage positive going threshold 7.6 8.6 9.6 VCCUV- VCC supply undervoltage negative going threshold 7.2 8.2 9.2 IO+ Output high short circuit pulsed current 200 250 — VO = 0V VIN = Logic “1” PW ≤ 10 µs mA IO- Output low short circuit pulsed current 420 500 — VO = 15V VIN = Logic “0” PW ≤ 10 µs www.irf.com 3
IR2117(S)/IR2118(S) & (PbF) Functional Block Diagram (IR2117) (cid:1)(cid:2)(cid:2) (cid:1)(cid:3) (cid:22)(cid:1) (cid:20)(cid:23)(cid:17)(cid:23)(cid:2)(cid:17) (cid:26) (cid:27) (cid:5)(cid:1) (cid:18)(cid:23)(cid:1)(cid:23)(cid:18) (cid:21)(cid:22)(cid:18)(cid:4)(cid:23) (cid:26) (cid:5)(cid:6) (cid:4)(cid:5)(cid:7)(cid:25)(cid:17) (cid:25)(cid:7)(cid:18)(cid:17)(cid:23)(cid:26) (cid:4) (cid:7)(cid:8) (cid:21)(cid:22)(cid:18)(cid:4)(cid:23) (cid:1) (cid:24)(cid:23)(cid:8) (cid:4) (cid:22)(cid:1) (cid:20)(cid:23)(cid:17)(cid:23)(cid:2)(cid:17) (cid:2)(cid:6)(cid:9) Functional Block Diagram (IR2118) (cid:1)(cid:2)(cid:2) (cid:1)(cid:3) (cid:22)(cid:1) (cid:26) (cid:20)(cid:23)(cid:17)(cid:23)(cid:2)(cid:17) (cid:27) (cid:5)(cid:1) (cid:18)(cid:23)(cid:1)(cid:23)(cid:18) (cid:21)(cid:22)(cid:18)(cid:4)(cid:23) (cid:26) (cid:5)(cid:6) (cid:4)(cid:5)(cid:7)(cid:25)(cid:17) (cid:25)(cid:7)(cid:18)(cid:17)(cid:23)(cid:26) (cid:4) (cid:7)(cid:8) (cid:21)(cid:22)(cid:18)(cid:4)(cid:23) (cid:1) (cid:24)(cid:23)(cid:8) (cid:4) (cid:22)(cid:1) (cid:20)(cid:23)(cid:17)(cid:23)(cid:2)(cid:17) (cid:2)(cid:6)(cid:9) 4 www.irf.com
IR2117(S)/IR2118(S) & (PbF) Lead Definitions Symbol Description VCC Logic and gate drive supply IN Logic input for gate driver output (HO), in phase with HO (IR2117) IN Logic input for gate driver output (HO), out of phase with HO (IR2118) COM Logic ground VB High side floating supply HO High side gate drive output VS High side floating supply return Lead Assignments 1 VCC VB 8 1 VCC VB 8 2 IN HO 7 2 IN HO 7 3 COM VS 6 3 COM VS 6 4 5 4 5 8 Lead PDIP 8 Lead SOIC IR2117 IR2117S 1 VCC VB 8 1 VCC VB 8 2 IN HO 7 2 IN HO 7 3 COM VS 6 3 COM VS 6 4 5 4 5 8 Lead PDIP 8 Lead SOIC IR2118 IR2118S www.irf.com 5
IR2117(S)/IR2118(S) & (PbF) IN (IR2118) IN <50 V/ns IR2117/IR2118 (IR2117) HO Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit IN (IR2118) 50% 50% 50% 50% IN (IR2117) ton tr toff tf IR2117/IR2118 90% 90% HO 10% 10% Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition 6 www.irf.com
IR2117(S)/IR2118(S) & (PbF) 500 500 s) s) e (n 400 e (n 400 m m y Ti 300 y Ti 300 a a el el Max. D 200 D 200 on Max. on Typ. urn- 100 urn- 100 T Typ. T 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) V Supply Voltage (V) BIAS Figure 4A. Turn-On Time Figure 4B. Turn-On Time vs. Temperature vs. Supply Voltage 500 500 s)400 s) 400 n n me (300 me ( 300 Off Ti200 Off Ti 200 Max. urn- Max. urn- Typ. T100 T 100 Typ. 0 0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 V Supply Voltage (V) Temperature (oC) BIAS Figure 5A. Turn-Off Time Figure 5B. Turn-Off Time vs. Temperature vs. Supply Voltage www.irf.com 7
IR2117(S)/IR2118(S) & (PbF) 500 500 s) s) n 400 n 400 e ( e ( m m Ti 300 Ti 300 e e s s Ri Ri n 200 n 200 Max. O O n- Max. n- ur 100 ur 100 T T Typ. Typ. 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) V Supply Voltage (V) BIAS Fiure 6A. Turn-On Rise Time Figure 6B. Turn-On Rise Time vs.Temperature vs. Supply Voltage 250 250 me (ns) 200 me (ns) 200 Off Fall Ti 110500 Off Fall Ti 110500 Max. Turn- 50 Max. Turn- 50 Typ. Typ. 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) V Supply Voltage (V) BIAS Figure 7A. Turn-Off Fall Time Figure 7B. Turn-Off Fall Time vs. Temperature vs. Supply Voltage 8 www.irf.com
IR2117(S)/IR2118(S) & (PbF) 13 18 12 15 V) V) ge ( 11 ge ( 12 a a olt olt Input V 109 Min. Input V 69 Min. 8 3 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) V Supply Voltage (V) cc Figure 8A. Logic "1" (IR2118 "0") Input Voltage FFiigguurree 88BB.. LLooggiicc ""11"" ((IIRR22111188 ""00"")) IInnppuutt VVoollttaaggee vs. Temperature vvss.. SSuuppppllyy VVoollttaaggee 9 15 8 12 V) V) ge ( 7 ge ( 9 a a olt Max. olt ut V 6 ut V 6 Max. p p n n I 5 I 3 4 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperatre (oC) V Supply Voltage (V) cc Figure 9A. Logic "0" (IR2118 "1") Input Voltage FFiigguurree 99BB.. LLooggiicc ""00"" ((IIRR22111188 ""11"")) IInnppuutt VVoollttaaggee vs. Temperature vvss.. SSuuppppllyy VVoollttaaggee www.irf.com 9
IR2117(S)/IR2118(S) & (PbF) V) 0.5 V) 0.5 Voltage ( 0.4 Voltage ( 0.4 Output 00..23 Output 00..23 High Level 0.1 Max. High Level 0.1 Max. 0.0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) V Supply Voltage (V) cc Figure 10A. High Level Output Figure 10B. High Level Output vs. Temperature vs. Supply Voltage 0.5 0.5 V) V) ge ( 0.4 ge ( 0.4 a a olt olt ut V 0.3 ut V 0.3 p p Out 0.2 Out 0.2 el el w Lev 0.1 Max. w Lev 0.1 MAX. Lo 0 Lo 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) V Supply Voltage (V) cc Figure 11A. Low Level Output Figure 11B. Low Level Output vs.Temperature vs. Supply Voltage 10 www.irf.com
IR2117(S)/IR2118(S) & (PbF) A) 500 A) 500 ent ( 400 ent ( 400 urr urr C C e 300 e 300 g g a a ak 200 ak 200 e e L L ply 100 ply 100 up Max. up Max. S S Offset 0-50 -25 0 25 50 75 100 125 Offset 0 0 100 200 300 400 500 600 Temperature (oC) V Boost Voltage (V) B Figure 12A. Offset Supply Leakage Current Figure 12B. Offset Supply Leakage vs. Temperature Current vs. VB Boost Voltage 1000 1000 ) ) 800 800 Current ( 600 Current ( 600 Supply 240000 Max. Supply 240000 Max. V Typ. V Typ. 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) V Supply Voltage (V) BS Figure 13A. V Supply Current Figure 13B. V Supply Current BS BS vs. Temperature vs. Supply Voltage www.irf.com 11
IR2117(S)/IR2118(S) & (PbF) 1000 1000 A) ) 800 800 nt ( nt ( e e urr 600 urr 600 C C pply 400 Max. pply 400 Su Su Max. V cc 200 Typ. V cc 200 Typ. 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) V Supply Voltage (V) cc Figure 14A. V Supply Current Figure 14B. V Supply Current cc cc vs. Temperature vs. Supply Voltage 120 120 ) ) 100 100 nt ( nt ( urre 80 urre 80 C C ut 60 ut 60 p p Max. n n 1" I 40 Max. 1" I 40 ogic " 20 Typ. ogic " 20 Typ. L L 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) V Supply Voltage (V) cc Figure 15A. Logic "1" (2118 "0") Input Current Figure 15B. Logic "1" (2118 "0") Input Current vs. Temperature vs. Supply Voltage 12 www.irf.com
IR2117(S)/IR2118(S) & (PbF) 5 5 ) ) Current ( 34 Current ( 34 Logic "0" Input 12 Max. Logic "0" Input 12 Max. 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) V Supply Voltage (V) cc Figure 16A. Logic "0" (2118"1") Input Current Figure 16B. Logic "0" (2118"1") Input Current vs. Temperature vs. Supply Voltage 16 16 ) ) 14 14 nt ( nt ( e e urr 12 urr 12 C C ply 10 Max. ply 10 Max p p u Typ. u S S Typ. V cc 8 Min. V cc 8 Min. 6 6 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 Temperature (oC) Temperature (oC) Figure 17A. V Undervoltage Threshold (+) Figure 18A. V Undervoltage Threshold (-) cc cc vs. Temperature vs. Temperature www.irf.com 13
IR2117(S)/IR2118(S) & (PbF) 16 16 ) ) 14 14 nt ( nt ( e e urr 12 urr 12 C C ply 10 Max. ply 10 Max. p p Su Typ. Su Typ. S 8 8 B V V Min. Min. 6 6 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 Temperature (oC) Temperature (oC) Figure 19A. V Undervoltage Threshold (+) Figure 20A. V Undervoltage Threshold (-) BS BS vs. Temperature vs. Temperature 500 500 )A )A m m nt ( 400 nt ( 400 e e urr 300 Typ. urr 300 C C e e c c our 200 Min. our 200 Typ. S S ut 100 ut 100 p p ut ut Min. O O 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) V Supply Voltage (V) BIAS Figure 21A. Output Source Current Figure 21B. Output Source Current vs. Temperature vs. Supply Voltage 14 www.irf.com
IR2117(S)/IR2118(S) & (PbF) 1000 1000 ) ) nt ( 800 nt ( 800 urre 600 Typ. urre 600 C C nk 400 Min. nk 400 Typ. Si Si put 200 put 200 Min. ut ut O O 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) V Supply Voltage (V) BIAS Figure 22A. Output Sink Current Figure 22B. Output Sink Current vs.Temperature vs. Supply Voltage 0 V) e ( -2 g a Typ. olt -4 V ply -6 p u S -8 et s Off -10 s v -12 10 12 14 16 18 20 V Floting Supply Voltage (V) BS Figure 23B. Maximum VS Negative Offset vs. Supply Voltage www.irf.com 15
IR2117(S)/IR2118(S) & (PbF) 150 320V 150 320V 140V 140V 125 125 mperature (°C)17050 mperature (°C)17050 10V Junction Te 50 10V Junction Te 50 25 25 0 0 1E+2 1E+3 1E+4 1E+5 1E+6 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Frequency (Hz) Figure 24. IR2117/IR2118 TJ vs. Frequency (IRFBC20) Figure 25. IR2117/IR2118 TJ vs. Frequency (IRFBC30) RGATE = 33ΩΩΩΩΩ, VCC = 15V RGATE = 22ΩΩΩΩΩ, VCC = 15V 150 320V 140V 10V 150 320V140V 10V 125 125 mperature (°C)17050 mperature (°C)17050 Junction Te 50 Junction Te 50 25 25 0 0 1E+2 1E+3 1E+4 1E+5 1E+6 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Frequency (Hz) Figure 26. IR2117/IR2118 TJ vs. Frequency (IRFBC40) Figure 27. IR2117/IR2118 TJ vs. Frequency (IRFPE50) RGATE = 15ΩΩΩΩΩ, VCC = 15V RGATE = 10ΩΩΩΩΩ, VCC = 15V 16 www.irf.com
IR2117(S)/IR2118(S) & (PbF) Case outlines 01-6014 8-Lead PDIP 01-3003 01 (MS-001AB) INCHES MILLIMETERS D B DIM MIN MAX MIN MAX A 5 FOOTPRINT A .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 8X 0.72 [.028] b .013 .020 0.33 0.51 8 7 6 5 c .0075 .0098 0.19 0.25 6 H D .189 .1968 4.80 5.00 E 0.25 [.010] A E .1497 .1574 3.80 4.00 1 2 3 4 6.46 [.255] e .050 BASIC 1.27 BASIC e1 .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 6X e 3X 1.27 [.050] 8X 1.78 [.070] y 0° 8° 0° 8° e1 K x 45° A C y 0.10 [.004] 8X b A1 8X L 8X c 7 0.25 [.010] C A B NOTES: 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 2. CONTROLLING DIMENSION: MILLIMETER 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 8-Lead SOIC www.irf.com 17
IR2117(S)/IR2118(S) & (PbF) LEADFREE PART MARKING INFORMATION IRxxxxxx Part number YWW? Date code IR logo ?XXXX Pin 1 Identifier Lot Code ? MARKING CODE (Prod mode - 4 digit SPN code) P Lead Free Released Non-Lead Free Released Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) Leadfree Part 8-Lead PDIP IR2117 order IR2117 8-Lead PDIP IR2117 order IR2117PbF 8-Lead PDIP IR2118 order IR2118 8-Lead PDIP IR2118 order IR2118PbF 8-Lead SOIC IR2117S order IR2117S 8-Lead SOIC IR2117S order IR2117SPbF 8-Lead SOIC IR2118S order IR2118S 8-Lead SOIC IR2118S order IR2118SPbF IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice. 5/14/2007 18 www.irf.com
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: IR2117PBF IR2117SPBF IR2118PBF IR2118SPBF IR2117STRPBF IR2118STRPBF