图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: IR2110PBF
  • 制造商: International Rectifier
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

IR2110PBF产品简介:

ICGOO电子元器件商城为您提供IR2110PBF由International Rectifier设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 IR2110PBF价格参考。International RectifierIR2110PBF封装/规格:PMIC - 栅极驱动器, Half-Bridge Gate Driver IC Non-Inverting 14-DIP。您可以下载IR2110PBF参考资料、Datasheet数据手册功能说明书,资料中有IR2110PBF 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC DRIVER HIGH/LOW SIDE 14DIP门驱动器 Hi&Lw Sd Drvr All HiVlt Pins 1 Sd

产品分类

PMIC - MOSFET,电桥驱动器 - 外部开关集成电路 - IC

品牌

International Rectifier

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,门驱动器,International Rectifier IR2110PBF-

数据手册

点击此处下载产品Datasheet

产品型号

IR2110PBF

上升时间

35 ns

下降时间

25 ns

产品

Half-Bridge Drivers

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26250

产品目录页面

点击此处下载产品Datasheet

产品种类

门驱动器

供应商器件封装

14-DIP

其它名称

*IR2110PBF

包装

管件

商标

International Rectifier

安装类型

通孔

安装风格

Through Hole

封装

Tube

封装/外壳

14-DIP(0.300",7.62mm)

封装/箱体

PDIP-14

工作温度

-40°C ~ 125°C

工厂包装数量

25

延迟时间

120ns

最大关闭延迟时间

94 ns

最大功率耗散

1.6 W

最大工作温度

+ 125 C

最大开启延迟时间

120 ns

最小工作温度

- 40 C

标准包装

25

激励器数量

2 Driver

电压-电源

3.3 V ~ 20 V

电流-峰值

2A

电源电压-最大

20 V

电源电压-最小

10 V

电源电流

340 uA

类型

High and Low Side

输入类型

非反相

输出数

2

输出电流

2.5 A

输出端数量

2

配置

Non-Inverting

配置数

1

高压侧电压-最大值(自举)

500V

推荐商品

型号:ISL89162FBEAZ-T

品牌:Renesas Electronics America Inc.

产品名称:集成电路(IC)

获取报价

型号:TC4426AVUA713

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:TPIC44H01DAG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LTC4440AMPMS8E-5#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:MAX17601ASA+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:LM5112Q1SD/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:MIC4422CT

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

型号:LM5101CMA

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
IR2110PBF 相关产品

IRS2103SPBF

品牌:Infineon Technologies

价格:

LM5110-1SD/NOPB

品牌:Texas Instruments

价格:¥询价-¥询价

HIP2120FRTAZ-T

品牌:Renesas Electronics America Inc.

价格:

TC4421VMF

品牌:Microchip Technology

价格:

ADP3419JRMZ-REEL

品牌:ON Semiconductor

价格:¥4.59-¥8.66

SN75477D

品牌:Texas Instruments

价格:¥2.40-¥5.94

IR21064SPBF

品牌:Infineon Technologies

价格:¥15.24-¥29.83

NCP5901BDR2G

品牌:ON Semiconductor

价格:

PDF Datasheet 数据手册内容提取

Data Sheet No. PD60147 rev.U IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF HIGH AND LOW SIDE DRIVER Features Product Summary • Floating channel designed for bootstrap operation V (IR2110) 500V max. Fully operational to +500V or +600V OFFSET Tolerant to negative transient voltage (IR2113) 600V max. dV/dt immune • Gate drive supply range from 10 to 20V IO+/- 2A / 2A • Undervoltage lockout for both channels • V 10 - 20V 3.3V logic compatible OUT Separate logic supply range from 3.3V to 20V t (typ.) 120 & 94 ns on/off Logic and power ground ±5V offset • CMOS Schmitt-triggered inputs with pull-down • Delay Matching (IR2110) 10 ns max. Cycle by cycle edge-triggered shutdown logic • (IR2113) 20ns max. Matched propagation delay for both channels • Outputs in phase with inputs Packages Description The IR2110/IR2113 are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output chan- nels. Proprietary HVIC and latch immune CMOS technologies enable 16-Lead SOIC 14-Lead PDIP IR2110S/IR2113S ruggedized monolithic construction. Logic inputs are compatible with IR2110/IR2113 standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 500 or 600 volts. Typical Connection (cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:6)(cid:9)(cid:10)(cid:10)(cid:11)(cid:6)(cid:8)(cid:12)(cid:6)(cid:13)(cid:10)(cid:10)(cid:11) (cid:1)(cid:15) (cid:11) (cid:11) (cid:11) (cid:18)(cid:18) (cid:18)(cid:18) (cid:19) (cid:1)(cid:2)(cid:3) (cid:1)(cid:2)(cid:3) (cid:11) (cid:20) (cid:14)(cid:15) (cid:20)(cid:18) (cid:20)(cid:18) (cid:16)(cid:15)(cid:17)(cid:18) (cid:16)(cid:2)(cid:3) (cid:16)(cid:2)(cid:3) (cid:11) (cid:21)(cid:21) (cid:11) (cid:11) (cid:21)(cid:15)(cid:22) (cid:20)(cid:20) (cid:20)(cid:20) (cid:11) (cid:16)(cid:15) (cid:21)(cid:21) (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param- eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35. Symbol Definition Min. Max. Units VB High side floating supply voltage (IR2110) -0.3 525 (IR2113) -0.3 625 VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side fixed supply voltage -0.3 25 V VLO Low side output voltage -0.3 VCC + 0.3 VDD Logic supply voltage -0.3 VSS + 25 VSS Logic supply offset voltage VCC - 25 VCC + 0.3 VIN Logic input voltage (HIN, LIN & SD) VSS - 0.3 VDD + 0.3 dVs/dt Allowable offset supply voltage transient (figure 2) — 50 V/ns PD Package power dissipation @ TA ≤ +25°C (14 lead DIP) — 1.6 W (16 lead SOIC) — 1.25 RTHJA Thermal resistance, junction to ambient (14 lead DIP) — 75 °C/W (16 lead SOIC) — 100 TJ Junction temperature — 150 TS Storage temperature -55 150 °C TL Lead temperature (soldering, 10 seconds) — 300 Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in figures 36 and 37. Symbol Definition Min. Max. Units VB High side floating supply absolute voltage VS + 10 VS + 20 VS High side floating supply offset voltage (IR2110) Note 1 500 (IR2113) Note 1 600 VHO High side floating output voltage VS VB VCC Low side fixed supply voltage 10 20 V VLO Low side output voltage 0 VCC VDD Logic supply voltage VSS + 3 VSS + 20 VSS Logic supply offset voltage -5 (Note 2) 5 VIN Logic input voltage (HIN, LIN & SD) VSS VDD TA Ambient temperature -40 125 °C Note 1: Logic operational for VS of -4 to +500V. Logic state held for VS of -4V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: When VDD < 5V, the minimum VSS offset is limited to -VDD. 2 www.irf.com

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF Dynamic Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Symbol Definition Figure Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay 7 — 120 150 VS = 0V toff Turn-off propagation delay 8 — 94 125 VS = 500V/600V tsd Shutdown propagation delay 9 — 110 140 VS = 500V/600V ns tr Turn-on rise time 10 — 25 35 tf Turn-off fall time 11 — 17 25 MT Delay matching, HS & LS (IR2110) — — — 10 turn-on/off (IR2113) — — — 20 Static Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Figure Min. Typ. Max. Units Test Conditions VIH Logic “1” input voltage 12 9.5 — — VIL Logic “0” input voltage 13 — — 6.0 V VOH High level output voltage, VBIAS - VO 14 — — 1.2 IO = 0A VOL Low level output voltage, VO 15 — — 0.1 IO = 0A ILK Offset supply leakage current 16 — — 50 VB=VS = 500V/600V IQBS Quiescent VBS supply current 17 — 125 230 VIN = 0V or VDD IQCC Quiescent VCC supply current 18 — 180 340 VIN = 0V or VDD µA IQDD Quiescent VDD supply current 19 — 15 30 VIN = 0V or VDD IIN+ Logic “1” input bias current 20 — 20 40 VIN = VDD IIN- Logic “0” input bias current 21 — — 1.0 VIN = 0V VBSUV+ VBS supply undervoltage positive going 22 7.5 8.6 9.7 threshold VBSUV- VBS supply undervoltage negative going 23 7.0 8.2 9.4 threshold VCCUV+ VCC supply undervoltage positive going 24 7.4 8.5 9.6 threshold V VCCUV- VCC supply undervoltage negative going 25 7.0 8.2 9.4 threshold IO+ Output high short circuit pulsed current 26 2.0 2.5 — VO = 0V, VIN = VDD PW ≤ 10 µs A IO- Output low short circuit pulsed current 27 2.0 2.5 — VO = 15V, VIN = 0V PW ≤ 10 µs www.irf.com 3

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF Functional Block Diagram (cid:11) (cid:19) (cid:24)(cid:11) (cid:11) (cid:18)(cid:25)(cid:14)(cid:25)(cid:21)(cid:14) (cid:18)(cid:18) (cid:27) (cid:28) (cid:1)(cid:11) (cid:27)(cid:20)(cid:28) (cid:11) (cid:31)(cid:11) (cid:16)(cid:20)(cid:25)(cid:1)(cid:11)(cid:2)(cid:30)(cid:25)(cid:14)(cid:16) (cid:30)(cid:23)(cid:2)(cid:24)(cid:16)(cid:14)(cid:16)(cid:20)(cid:25)(cid:25)(cid:27) (cid:27)(cid:20) (cid:1)(cid:15) (cid:18)(cid:18) (cid:21)(cid:21) (cid:1)(cid:2)(cid:3) (cid:16)(cid:25)(cid:11)(cid:25)(cid:16) (cid:20)(cid:1)(cid:2)(cid:30)(cid:14) (cid:23)(cid:24)(cid:16)(cid:20)(cid:25) (cid:11) (cid:20) (cid:26)(cid:25)(cid:3) (cid:20)(cid:18) (cid:11) (cid:21)(cid:21) (cid:24)(cid:11) (cid:18)(cid:25)(cid:14)(cid:25)(cid:21)(cid:14) (cid:11) (cid:31)(cid:11) (cid:18)(cid:18) (cid:21)(cid:21) (cid:16)(cid:2)(cid:3) (cid:16)(cid:25)(cid:11)(cid:25)(cid:16) (cid:16)(cid:15) (cid:20) (cid:20)(cid:1)(cid:2)(cid:30)(cid:14) (cid:27) (cid:28) (cid:18)(cid:25)(cid:16)(cid:17)(cid:29) (cid:11) (cid:21)(cid:15)(cid:22) (cid:20)(cid:20) Lead Definitions Symbol Description VDD Logic supply HIN Logic input for high side gate driver output (HO), in phase SD Logic input for shutdown LIN Logic input for low side gate driver output (LO), in phase VSS Logic ground VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side supply LO Low side gate drive output COM Low side return 4 www.irf.com

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF Lead Assignments 14 Lead PDIP 16 Lead SOIC (Wide Body) IR2110/IR2113 IR2110S/IR2113S 14 Lead PDIP w/o lead 4 14 Lead PDIP w/o leads 4 & 5 IR2110-1/IR2113-1 IR2110-2/IR2113-2 Part Number www.irf.com 5

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF Vc c =15V HV = 10 to 500V/600V 10KF6 1µ0F 0µ.F1 9 3 6 0µ.F1 2µ0H0 10KF6 +100µF 5 10 7 HO 11 1 dVS>50 V/ns 12 OUTPUT 10KF6 dt MONITOR 13 2 IRF820 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit Vc c =15V (cid:1)(cid:2)(cid:3) (cid:9)(cid:10)# (cid:9)(cid:10)# VB 10 0.1 HIN µF µF 109 3 657 CL0µ.F1 1µ0F (0 to1+- 55VV0S0V/600V) (cid:16)(cid:2)(cid:3) (cid:7)(cid:8)! (cid:7)(cid:12) (cid:7)(cid:8)"" (cid:7)" HO SD 11 10 $(cid:10)# $(cid:10)# LIN 12 1 LO µF (cid:1)(cid:15) CL 13 2 (cid:16)(cid:15) %(cid:10)# %(cid:10)# Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition (cid:1)(cid:2)(cid:3) (cid:9)(cid:10)# (cid:9)(cid:10)# (cid:16)(cid:2)(cid:3) (cid:9)(cid:10)# (cid:20)(cid:18) (cid:16)(cid:15) (cid:1)(cid:15) (cid:7)’* %(cid:10)# (cid:1)(cid:15) $(cid:10)# (cid:16)(cid:15) (cid:22)(cid:14) (cid:22)(cid:14) $(cid:10)# (cid:16)(cid:15) (cid:1)(cid:15) Figure 5. Shutdown Waveform Definitions Figure 6. Delay Matching Waveform Definitions 6 www.irf.com

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 250 250 200 200 Max. me (ns)150 me (ns)150 Typ. On Delay Ti100 MTyapx.. On Delay Ti100 Turn- Turn- 50 50 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (°C) VCC/VBS Supply Voltage (V) Figure 7A. Turn-On Time vs. Temperature Figure 7B. Turn-On Time vs. VCC/VBS Supply Voltage 250 250 Max. 200 200 n Delay Time (ns) 110500 Typ. Off Delay Time (ns)110500 Max. Turn-O 50 Turn- 50 Typ. 0 0 0 2 4 6 8 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VDD Supply Voltage (V) Temperature (°C) Figure 7C. Turn-On Time vs. VDD Supply Voltage Figure 8A. Turn-Off Time vs. Temperature 250 250 200 200 Max. me (ns)150 Max. me (ns) 150 Turn-Off Delay Ti10500 Typ. Turn-Off Delay Ti 10500 Typ 0 0 0 2 4 6 8 10 12 14 16 18 20 10 12 14 16 18 20 VCC/VBS Supply Voltage (V) VDD Supply Voltage (V) Figure 8B. Turn-Off Time vs. VCC/VBS Supply Voltage Figure 8C. Turn-Off Time vs. VDD Supply Voltage www.irf.com 7

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 250 250 200 200 Max. Shutdown Delay Time (ns)110500 MTyapx.. Shutdown Delay time (ns)110500 Typ. 50 50 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (°C) VCC/VBS Supply Voltage (V) Figure 9A. Shutdown Time vs. Temperature Figure 9B. Shutdown Time vs. VCC/VBS Supply Voltage 250 100 s) 200 e (n Max. 80 hutdown Delay Tim 11055000 Typ Turn-On Rise Time (ns) 246000 TMyapx.. S 0 0 2 4 6 8 10 12 14 16 18 20 0 -50 -25 0 25 50 75 100 125 VDD Supply Voltage (V) Temperature (°C) Figure 9C. Shutdown Time vs. VDD Supply Voltage Figure 10A. Turn-On Rise Time vs. Temperature 100 50 80 40 me (ns) 60 me (ns)30 Turn-On Rise Ti 40 MTyapx.. Turn-Off Fall Ti20 MTyapx.. 20 10 0 0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VBIAS Supply Voltage (V) Temperature (°C) Figure 10B. Turn-On Rise Time vs. Voltage Figure 11A. Turn-Off Fall Time vs. Temperature 8 www.irf.com

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 50 15.0 40 12.0 Turn-Off Fall Time (ns)123000 MTyapx.. Logic "1" Input Threshold (V) 369...000 MMina.x 0 0.0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VBIAS Supply Voltage (V) Temperature (°C) Figure 11B. Turn-Off Fall Time vs. Voltage Figure 12A. Logic “1” Input Threshold vs. Tempera- ture 15 15.0 Logic " 1" Input Threshold (V) 12369 Max. Logic "0" Input Threshold (V)1692...000 MMainx.. 3.0 0 0.0 0 2 4 6 8 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VDD Logic Supply Voltage (V) Temperature (°C) Figure 12B. Logic “1” Input Threshold vs. Voltage Figure 13A. Logic “0” Input Threshold vs. Tempera- ture 15 5.00 12 4.00 V) V) ogic "0" Input Threshold ( 369 Min. High Level Output Voltage (123...000000 Max. L 0 0.00 0 2 4 6 8 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VDD Logic Supply Voltage (V) Temperature (°C) Figure 13B. Logic “0” Input Threshold vs. Voltage Figure 14A. High Level Output vs. Temperature www.irf.com 9

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 5.00 1.00 4.00 0.80 High Level Output Voltage (V)23..0000 Max. Low Level Output Voltage (V)00..4600 1.00 0.20 Max. 0.00 0.00 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VBIAS Supply Voltage (V) Temperature (°C) Figure 14B. High Level Output vs. Voltage Figure 15A. Low Level Output vs. Temperature 1.00 500 0.80 A)400 w Level Output Voltage (V)00..4600 Supply Leakage Current (µ230000 Lo0.20 Offset 100 Max. Max. 0.00 0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VBIAS Supply Voltage (V) Temperature (°C) Figure 15B. Low Level Output vs. Voltage Figure 16A. Offset Supply Current vs. Temperature 500 500 µA) 400 400 Offset Supply Leakage Current ( 123000000 Max. V Supply Current (µA)BS123000000 TMyapx.. 0 0 0 100 200 300 400 500 600 -50 -25 0 25 50 75 100 125 IR2110 IR2113 VB Boost Voltage (V) Temperature (°C) Figure 16B. Offset Supply Current vs. Voltage Figure 17A. VBS Supply Current vs. Temperature 10 www.irf.com

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 500 625 400 500 V Supply Current (µA)BS230000 Max. V Supply Current (µA)CC235705 Max. Typ. 100 125 Typ. 0 0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VBS Floating Supply Voltage (V) Temperature (°C) Figure 17B. VBS Supply Current vs. Voltage Figure 18A. VCC Supply Current vs. Temperature 625 100 500 80 V Supply Current (µA)CC235705 Max. V Supply Current (µA)DD 4600 Max. 125 20 Typ. Typ. 0 0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VCC Fixed Supply Voltage (V) Temperature (°C) Figure 18B. VCC Supply Current vs. Voltage Figure 19A. VDD Supply Current vs. Temperature 60 100 50 80 A) µA) µV Supply Current (DD 12340000 Logic "1" Input Bias Current ( 246000 Max. Typ. 0 0 0 2 4 6 8 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VDD Logic Supply Voltage (V) Temperature (°C) Figure 19B. VDD Supply Current vs. VDD Voltage Figure 20A. Logic “1” Input Current vs. Temperature www.irf.com 11

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 60 5.00 A) µ 50 Bias Current ( 40 Current (µA)34..0000 Logic “1” Input 123000 Logic "0" Input Bias 12..0000 Max. 0 0 2 4 6 8 10 12 14 16 18 20 0.00 -50 -25 0 25 50 75 100 125 VDD Logic Supply Voltage (V) Temperature (°C) Figure 20B. Logic “1” Input Current vs. VDD Voltage Figure 21A. Logic “0” Input Current vs. Temperature 5 11.0 A) µ ent ( 4 10.0 Logic “0” Input Bias Curr 123 V Undervoltage Lockout + (V)BS 89..00 MTMyainpx... 7.0 0 0 2 4 6 8 10 12 14 16 18 20 6.0 -50 -25 0 25 50 75 100 125 VDD Logic Supply Voltage (V) Temperature (°C) Figure 21B. Logic “0” Input Current vs. VDD Voltage Figure 22. VBS Undervoltage (+) vs. Temperature 11.0 11.0 10.0 10.0 V Undervoltage Lockout - (V)BS 789...000 MMTyianpx... V Undervoltage Lockout + (V)CC 789...000 MTMyainpx... 6.0 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 Temperature (°C) Temperature (°C) Figure 23. VBS Undervoltage (-) vs. Temperature Figure 24. VCC Undervoltage (+) vs. Temperature 12 www.irf.com

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 11.0 5.00 10.0 4.00 V Undervoltage Lockout - (V)CC 89..00 TMyapx.. Output Source Current (A)23..0000 MTyinp.. 7.0 Min. 1.00 6.0 0.00 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 Temperature (°C) Temperature (°C) Figure 25. VCC Undervoltage (-) vs. Temperature Figure 26A. Output Source Current vs. Temperature 5.00 5.00 4.00 4.00 A) Output Source Current (23..0000 Typ. Output Sink Current (A)23..0000 MTyinp.. 1.00 Min. 1.00 0.00 0.00 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 VBIAS Supply Voltage (V) Temperature (°C) Figure 26B. Output Source Current vs. Voltage Figure 27A. Output Sink Current vs. Temperature 5.00 150 320V 125 4.00 Output Sink Current (A)23..0000 Typ. Junction Temperature (°C)1570050 11400VV 1.00 Min. 25 0.00 0 10 12 14 16 18 20 1E+2 1E+3 1E+4 1E+5 1E+6 VBIAS Supply Voltage (V) Frequency (Hz) Figure 27B. Output Sink Current vs. Voltage Figure 28. IR2110/IR2113 TJ vs. Frequency (IRFBC20) RGATE = 33ΩΩΩΩΩ, VCC = 15V www.irf.com 13

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 150 320V 150 320V 140V 125 125 140V Junction Temperature (°C)1057005 10V Junction Temperature (°C)1057005 10V 25 25 0 0 1E+2 1E+3 1E+4 1E+5 1E+6 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Frequency (Hz) Figure 29. IR2110/IT2113 TJ vs. Frequency Figure 30. IR2110/IR2113 TJ vs. Frequency (IRFBC30) RGATE = 22ΩΩΩΩΩ, VCC = 15V (IRFBC40) RGATE = 15ΩΩΩΩΩ, VCC = 15V 150 320V 140V 150 320V 140V 125 125 mperature (°C)10705 10V mperature (°C)10705 10V Junction Te 50 Junction Te 50 25 25 0 0 1E+2 1E+3 1E+4 1E+5 1E+6 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Frequency (Hz) Figure 31. IR2110/IR2113 TJ vs. Frequency Figure 32. IR2110S/IR2113S TJ vs. Frequency (IRFPE50) RGATE = 10ΩΩΩΩΩ, VCC = 15V (IRFBC20) RGATE = 33ΩΩΩΩΩ, VCC = 15V 150 320V 140V 150 320V 140V 125 125 10V C) C) mperature (°10705 10V mperature (°10705 Junction Te 50 Junction Te 50 25 25 0 0 1E+2 1E+3 1E+4 1E+5 1E+6 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Frequency (Hz) Figure 33. IR2110S/IR2113S TJ vs. Frequency Figure 34. IR2110S/IR2113S TJ vs. Frequency (IRFBC30) RGATE = 22ΩΩΩΩΩ, VCC = 15V (IRFBC40) RGATE = 15ΩΩΩΩΩ, VCC = 15V 14 www.irf.com

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 150 320V140V10V 0.0 125 -2.0 Junction Temperature (°C)1057005 V Offset Supply Voltage (V)S --64..00 Typ. -8.0 25 0 -10.0 1E+2 1E+3 1E+4 1E+5 1E+6 10 12 14 16 18 20 Frequency (Hz) VBS Floating Supply Voltage (V) Figure 35. IR2110S/IR2113S TJ vs. Frequency Figure 36. Maximum VS Negative Offset vs. (IRFPE50) RGATE = 10ΩΩΩΩΩ, VCC = 15V VBS Supply Voltage 20.0 V)16.0 Offset Voltage (12.0 V Logic Supply SS 48..00 Typ. 0.0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage www.irf.com 15

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF Case Outlines 01-6010 14-Lead PDIP 01-3002 03 (MS-001AC) 01-6010 14-Lead PDIP w/o Lead 4 01-3008 02 (MS-001AC) 16 www.irf.com

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 16 Lead PDIP w/o Leads 4 & 5 01-6015 01-3010 02 01 6015 16-Lead SOIC (wide body) 01-3014 03 (MS-013AA) www.irf.com 17

IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF LEADFREE PART MARKING INFORMATION IRxxxxxx Part number YWW? Date code IR logo ?XXXX Pin 1 Identifier Lot Code ? MARKING CODE (Prod mode - 4 digit SPN code) P Lead Free Released Non-Lead Free Released Assembly site code ORDER INFORMATION Part only available Lead Free 14-Lead PDIP IR2110 order IR2110PbF 14-Lead PDIP IR2110-1 order IR2110-1PbF 14-Lead PDIP IR2110-2 order IR2110-2PbF 14-Lead PDIP IR2113 order IR2113PbF 14-Lead PDIP IR2113-1 order IR2113-1PbF 14-Lead PDIP IR2113-2 order IR2113-2PbF 16-Lead SOIC IR2110S order IR2110SPbF 16-Lead SOIC IR2113S order IR2113SPbF IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice 3/23/2005 18 www.irf.com

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: I nfineon: IR2110SPBF IR2113SPBF IR2110PBF IR2110STRPBF IR2113PBF IR2113STRPBF