图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: INA827AIDGKR
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

INA827AIDGKR产品简介:

ICGOO电子元器件商城为您提供INA827AIDGKR由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 INA827AIDGKR价格参考。Texas InstrumentsINA827AIDGKR封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 仪表 放大器 1 电路 满摆幅 8-VSSOP。您可以下载INA827AIDGKR参考资料、Datasheet数据手册功能说明书,资料中有INA827AIDGKR 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

600kHz

产品目录

集成电路 (IC)

描述

IC OPAMP INSTR 600KHZ RRO 8VSSOP

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps

品牌

Texas Instruments

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

INA827AIDGKR

PCN设计/规格

点击此处下载产品Datasheet点击此处下载产品Datasheet

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

供应商器件封装

8-VSSOP

其它名称

296-30588-1

包装

剪切带 (CT)

压摆率

1.5 V/µs

增益带宽积

-

安装类型

表面贴装

封装/外壳

8-TSSOP,8-MSOP(0.118",3.00mm 宽)

工作温度

-40°C ~ 125°C

放大器类型

仪表

标准包装

1

电压-电源,单/双 (±)

2.7 V ~ 36 V, ±1.35 V ~ 18 V

电压-输入失调

40µV

电流-电源

200µA

电流-输入偏置

35nA

电流-输出/通道

16mA

电路数

1

输出类型

满摆幅

推荐商品

型号:MAX4351ESA+

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:LT6232CGN#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LM2902MT

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AD8052ARMZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:LMV118MF

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:THS4012CDR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:ADA4096-2ARMZ-RL

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:ADA4610-2ACPZ-RL

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
INA827AIDGKR 相关产品

LT1206CT7#PBF

品牌:Linear Technology/Analog Devices

价格:

MCP6023-E/ST

品牌:Microchip Technology

价格:

ADA4895-1ARZ

品牌:Analog Devices Inc.

价格:¥18.40-¥32.26

LT1354CS8#TR

品牌:Linear Technology/Analog Devices

价格:

OPA2342EA/2K5

品牌:Texas Instruments

价格:¥4.51-¥10.16

CA3420E

品牌:Renesas Electronics America Inc.

价格:

MAX9911EXT-T

品牌:Maxim Integrated

价格:

ADA4051-1AKSZ-R7

品牌:Analog Devices Inc.

价格:

PDF Datasheet 数据手册内容提取

Product Order Technical Tools & Support & Folder Now Documents Software Community INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 INA827 Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier With a Minimum Gain of 5 1 Features 3 Description • EliminatesErrorsfromExternalResistorsatGain The INA827 is a low-cost instrumentation amplifier 1 (INA) that offers extremely low power consumption of5 and operates over a very wide single- or dual-supply • Common-ModeRangeGoesBelow range. The device is optimized for the lowest possible NegativeSupply gain drift of only 1 ppm per degree Celsius in G = 5, • InputProtection:Upto ±40V which requires no external resistor. However, a single externalresistorsetsanygainfrom5to1000. • Rail-to-RailOutput • OutstandingPrecision: The INA827 is optimized to provide excellent common-mode rejection ratio (CMRR) of over 88 dB – Common-ModeRejection:88dB,minimum (G = 5) over frequencies up to 5 kHz. In G = 5, – LowOffsetVoltage:150 µV,maximum CMRR exceeds 88 dB across the full input common- – LowDrift:2.5 µV/°C,maximum mode range from the negative supply all the way up to 1 V of the positive supply. Using a rail-to-rail – LowGainDrift:1ppm/°C,max(G=5V/V) output, the INA827 is well-suited for low-voltage – Power-SupplyRejection: operation from a 3-V singlesupply as well as dual 100dB,min(G=5) supplies up to ±18 V. Additional circuitry protects the – Noise:17nV/√Hz,G=1000V/V inputs against overvoltage of up to ±40 V beyond the powersuppliesbylimitingtheinputcurrentstoasave • HighBandwidth: level. – G=5:600kHz The INA827 is available in a small VSSOP-8 package – G=100:150kHz and is specified for the –40°C to +125°C temperature • SupplyCurrent:200µA,typical range. For a similar instrumentation amplifier with a • SupplyRange: gainrangeof1V/Vto1000V/V,seetheINA826. – SingleSupply:3Vto36V DeviceInformation(1) – DualSupply: ±1.5Vto ±18V PARTNUMBER PACKAGE BODYSIZE(NOM) • SpecifiedTemperatureRange: INA827 VSSOP(8) 3.00mm×3.00mm –40°Cto+125°C (1) For all available packages, see the orderable addendum at • Package:8-pinVSSOP theendofthedatasheet. 2 Applications SimplifiedSchematic • IndustrialProcessControls V+ • MultichannelSystems 0.1mF • PowerAutomation 8 • WeighScales 1 • MedicalInstrumentation -IN 10 kW 50 kW A • DataAcquisition 1 VO= G´(VIN+-VIN-) 2 8 kW G = 5 + 80 kW RG RG 8 kW A3 7 + 3 Load VO - 10 kW 50 kW A 6 4 2 REF +IN TI Device 5 0.1mF V- Copyright © 2016,Texas Instruments Incorporated 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com Table of Contents 1 Features.................................................................. 1 7.4 DeviceFunctionalModes........................................23 2 Applications........................................................... 1 8 ApplicationandImplementation........................ 24 3 Description............................................................. 1 8.1 ApplicationInformation............................................24 4 RevisionHistory..................................................... 2 8.2 TypicalApplication..................................................25 5 PinConfigurationandFunctions......................... 3 9 PowerSupplyRecommendations...................... 27 6 Specifications......................................................... 4 10 Layout................................................................... 27 6.1 AbsoluteMaximumRatings......................................4 10.1 LayoutGuidelines.................................................27 6.2 ESDRatings..............................................................4 10.2 LayoutExample....................................................27 6.3 RecommendedOperatingConditions.......................4 11 DeviceandDocumentationSupport................. 28 6.4 ThermalInformation..................................................4 11.1 DocumentationSupport........................................28 6.5 ElectricalCharacteristics...........................................5 11.2 ReceivingNotificationofDocumentationUpdates28 6.6 TypicalCharacteristics..............................................7 11.3 CommunityResources..........................................28 7 DetailedDescription............................................ 16 11.4 Trademarks...........................................................28 7.1 Overview.................................................................16 11.5 ElectrostaticDischargeCaution............................28 7.2 FunctionalBlockDiagram.......................................16 11.6 Glossary................................................................28 7.3 FeatureDescription.................................................17 12 Mechanical,Packaging,andOrderable Information........................................................... 28 4 Revision History ChangesfromRevisionA(July2013)toRevisionB Page • AddedDeviceInformationtable,ESDRatingstable,RecommendedOperatingConditionstable,Overviewsection, FunctionalBlockDiagramsection,FeatureDescriptionsection,DeviceFunctionalModessection,Applicationand Implementationsection,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentation Supportsection,andMechanical,Packaging,andOrderableInformationsection ............................................................... 1 • Deleteddevicegraphicfromtopofpage1............................................................................................................................ 1 • ChangedFeaturessection:changedsub-bulletsofSupplyRangebullet............................................................................. 1 • ChangedMSOPtoVSSOPthroughoutdocument ................................................................................................................ 1 • ChangedsinglesupplyvalueinfirstparagraphofDescriptionsection ................................................................................. 1 • AddedSimplifiedSchematictitle............................................................................................................................................ 1 • DeletedPackageandOrderingInformationtable.................................................................................................................. 3 • ChangedPinConfigurationandFunctionssection:changedsectiontitle,changedPinFunctionstitle,addedI/Ocolumn..3 • ChangedtestconditionsofInput,PSRRandV parametersinElectricalCharacteristicstable ........................................ 5 CM • ChangedminimumspecificationsofPowerSupply,V parameterinElectricalCharacteristicstable.................................. 6 S • ChangedTypicalCharacteristicssection:movedconditionsfromtitletoconditionslineundercurve.................................. 7 • ChangedconditionsofFigure7andFigure8........................................................................................................................ 8 • ChangedconditionsofFigure37andFigure38.................................................................................................................. 13 • Changedpower-supplyrangeinOperatingVoltagesection ............................................................................................... 22 • ChangedpowersupplylowlevelinLow-VoltageOperationsection................................................................................... 22 • AddedDesignRequirements,DetailedDesignProcedure,andApplicationCurvestotheTypicalApplicationsection.....25 ChangesfromOriginal(June2012)toRevisionA Page • Changedfront-pagegraphic................................................................................................................................................... 1 • UpdatedFigure15.................................................................................................................................................................. 8 • UpdatedFigure16.................................................................................................................................................................. 8 • UpdatedFigure61................................................................................................................................................................ 24 2 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

INA827 www.ti.com SBOS631B–JUNE2012–REVISEDNOVEMBER2017 5 Pin Configuration and Functions DGKPackage 8-PinVSSOP TopView -IN 1 8 +VS RG 2 7 VOUT RG 3 6 REF +IN 4 5 -VS PinFunctions NAME NO. I/O DESCRIPTION –IN 1 I Negativeinput +IN 4 I Positiveinput REF 6 I Referenceinput.Thispinmustbedrivenbylowimpedance. R 2,3 — Gainsettingpin.Placeagainresistorbetweenpin2andpin3. G V 7 O Output OUT –V 5 — Negativesupply S +V 8 — Positivesupply S Copyright©2012–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLinks:INA827

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings(1) MIN MAX UNIT Supply –20 20 Voltage V Input –40 40 REFinput –20 20 V Outputshort-circuit(2) Continuous Operating,T –55 150 A Temperaturerange Junction,T 175 °C J Storage,T –65 150 stg (1) StressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratings only,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommended OperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability. (2) Short-circuittoV /2. S 6.2 ESD Ratings VALUE UNIT Human-bodymodel(HBM),perANSI/ESDA/JEDECJS-001(1) ±2000 V Electrostaticdischarge V (ESD) Charged-devicemodel(CDM),perJEDECspecificationJESD22-C101(2) ±750 (1) JEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolprocess. (2) JEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolprocess. 6.3 Recommended Operating Conditions overoperatingfree-airtemperaturerange(unlessotherwisenoted) MIN NOM MAX UNIT Singlesupply 3 36 Supplyvoltage V Dualsupply ±1.5 ±18 Specifiedtemperature –40 125 °C Operatingtemperature –50 150 °C 6.4 Thermal Information INA827 THERMALMETRIC(1) DGK(VSSOP) UNIT 8PINS R Junction-to-ambientthermalresistance 215.4 °C/W θJA R Junction-to-case(top)thermalresistance 66.3 °C/W θJC(top) R Junction-to-boardthermalresistance 97.8 °C/W θJB ψ Junction-to-topcharacterizationparameter 10.5 °C/W JT ψ Junction-to-boardcharacterizationparameter 96.1 °C/W JB R Junction-to-case(bottom)thermalresistance N/A °C/W θJC(bot) (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplication report. 4 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

INA827 www.ti.com SBOS631B–JUNE2012–REVISEDNOVEMBER2017 6.5 Electrical Characteristics atT =+25°C,V =±15V,R =10kΩ,V =0V,andG=5(unlessotherwisenoted) A S L REF PARAMETER TESTCONDITIONS MIN TYP MAX UNIT INPUT RTI,VOS=VOSI+(VOSO/G) 40 150 µV VOSI Inputstage Offsetvoltage(1) TA=–40°Cto+125°C 0.5 2.5 µV/°C RTI,VOS=VOSI+(VOSO/G) 500 2000 µV VOSO Outputstage TA=–40°Cto+125°C 5 30 µV/°C G=5,VS=±1.5Vto±18V 100 120 PSRR Power-supplyrejectionratio G=10,VS=±1.5Vto±18V 106 126 dB G>100,VS=±1.5Vto±18V 120 140 Differential 2||1 ZIN Impedance GΩ||pF Common-mode 10||5 RFIfilter,–3-dBfrequency 25 MHz VS=±1.5Vto±18V,VO=0V (V–)–0.2 (V+)–0.9 VCM Operatinginputrange(2) VS=±1.5Vto±18V,VO=0V,TA=+125°C (V–)–0.05 (V+)–0.8 V VS=±1.5Vto±18V,VO=0V,TA=–40°C (V–)–0.3 (V+)–0.95 Inputovervoltagerange TA=–40°Cto+125°C (V+)–40 (V–)+40 V G=5,VCM=V–to(V+)–1V 88 100 DCto60Hz G=10,VCM=V–to(V+)–1V 94 106 G>100,VCM=V–to(V+)–1V 110 126 CMRR Common-moderejectionratio dB G=5,VCM=V–to(V+)–1V 88 At5kHz G=10,VCM=V–to(V+)–1V 94 G>100,VCM=V–to(V+)–1V 104 BIASCURRENT 35 50 IB Inputbiascurrent nA TA=–40°Cto+125°C 95 –5 0.7 5 IOS Inputoffsetcurrent nA TA=–40°Cto+125°C 10 NOISEVOLTAGE(3) eNI Input f=1kHz,G=1000,RS=0Ω 17 18 Voltagenoise nV/√Hz eNO Output f=1kHz,G=5,RS=0Ω 250 285 G=5,fB=0.1Hzto10Hz,RS=0Ω 1.4 RTI Referred-to-input µVPP G=1000,fB=0.1Hzto10Hz,RS=0Ω 0.5 f=1kHz 120 fA/√Hz iN Noisecurrent fB=0.1Hzto10Hz 5 pAPP GAIN 80 kW G Gainequation 5 + V/V R G G Rangeofgain 5 1000 V/V G=5,VO=±10V ±0.005% ±0.035% GE Gainerror G=10to1000,VO=±10V ±0.1% ±0.4% Gainversustemperature(4) G=5,TA=–40°Cto+125°C ±0.1 ±1 ppm/°C G>5,TA=–40°Cto+125°C 8 25 G=5to100,VO=–10Vto+10V,RL=10kΩ 2 5 Gainnonlinearity ppm G=1000,VO=–10Vto+10V,RL=10kΩ 20 50 (1) Totaloffset,referred-to-input(RTI):V =V +(V /G). OS OSI OSO (2) InputvoltagerangeoftheINA827inputstage.Theinputrangedependsonthecommon-modevoltage,differentialvoltage,gain,and referencevoltage.SeetheTypicalCharacteristicssectionformoreinformation. (3) e 2 (e )2+ NO NI G TotalRTIvoltagenoise= . (4) ThevaluesspecifiedforG>5donotincludetheeffectsoftheexternalgain-settingresistor,R . G Copyright©2012–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLinks:INA827

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com Electrical Characteristics (continued) atT =+25°C,V =±15V,R =10kΩ,V =0V,andG=5(unlessotherwisenoted) A S L REF PARAMETER TESTCONDITIONS MIN TYP MAX UNIT OUTPUT Voltageswing RL=10kΩ (V–)+0.1 (V+)–0.15 V Loadcapacitancestability 1000 pF Short-circuitcurrent Continuoustocommon ±16 mA FREQUENCYRESPONSE G=5 600 G=10 530 BW Bandwidth,–3dB kHz G=100 150 G=1000 15 G=5,VO=±14.5V 1.5 SR Slewrate V/µs G=100,VO=±14.5V 1.5 G=5,VSTEP=10V 10 To0.01% G=100,VSTEP=10V 12 G=1000,VSTEP=10V 95 tS Settlingtime µs G=1,VSTEP=10V 11 To0.001% G=100,VSTEP=10V 18 G=1000,VSTEP=10V 118 REFERENCEINPUT RIN Inputimpedance 60 kΩ Voltagerange V– V+ V Gaintooutput 1 V/V Referencegainerror 0.01 % POWERSUPPLY Single 3.0 36 VS Power-supplyvoltage V Dual ±1.5 ±18 VIN=0V 200 250 IQ Quiescentcurrent µA TA=–40°Cto+125°C 250 320 TEMPERATURERANGE Specified –40 125 °C Operating –50 150 °C θJA Thermalresistance 215 °C/W 6 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

INA827 www.ti.com SBOS631B–JUNE2012–REVISEDNOVEMBER2017 6.6 Typical Characteristics atT =+25°C,V =±15V,R =10kΩ,V =0V,andG=5(unlessotherwisenoted) A S L REF 250 30 SD: 40.1 m V SD: 0.51 m V/°C MEAN: −7.6 m V MEAN: 0.08 m V/°C 25 200 20 150 s s nit nit 15 U U 100 10 50 5 0 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 33 22 11 00 11 22 33 55 33 11 99 77 55 33 11 11 33 55 77 99 11 33 55 −− −− −− 11 11 11 −− −− −− −− −− 11 11 11 −− −− −− VOSI (m V) G001 VOSI Drift (m V/°C ) G002 Figure1.TypicalDistributionofInputOffsetVoltage Figure2.TypicalDistributionofInputOffsetVoltageDrift 200 16 SD: 5.3 m V/°C MEAN: −7.7 m V/°C 160 12 120 s s nit nit 8 U U 80 4 40 0 0 000000000000000000000000000000000000000000 55 00 55 00 55 00 55 00 55 00 55 00000000000000000000 00000000000000000000 22 22 11 11 −− 11 11 22 22 00886644220088664422 22446688002244668800 −− −− −− −− 221111111111−−−−−−−− 111111111122 −−−−−−−−−−−− VOSO (m V) G002 VOSO Drift (m V/°C ) G004 Figure3.TypicalDistributionofOutputOffsetVoltage Figure4.TypicalDistributionofOutputOffsetVoltageDrift 700 500 SD: 0.59 nA 600 MEAN: 0.01 nA 400 500 300 400 s s nit nit U 300 U 200 200 100 100 0 0 00 22 44 66 88 00 22 44 66 88 00 22 44 66 88 00 44 55 33 55 22 55 1 55 00 55 11 55 22 55 33 55 44 22 22 22 22 22 33 33 33 33 33 44 44 44 44 44 55 −− 3.3. −− 2.2. −− 1.1. − 0.0. 0.0. 1.1. 2.2. 3.3. −− −− −− −− IB (nA) G005 IOS (nA) G006 Figure5.TypicalDistributionofInputBiasCurrent Figure6.TypicalDistributionofInputOffsetCurrent Copyright©2012–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLinks:INA827

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com Typical Characteristics (continued) atT =+25°C,V =±15V,R =10kΩ,V =0V,andG=5(unlessotherwisenoted) A S L REF Singlesupply,V =+3V,G=5 Singlesupply,V =+3V,G=100 S S Figure7.InputCommon-ModeVoltagevsOutputVoltage Figure8.InputCommon-ModeVoltagevsOutputVoltage 4.5 4.5 V) 3.5 V) 3.5 e ( e ( g g a a Volt 2.5 Volt 2.5 e Vref = 0V e Vref = 0V od Vref = 2.5V od Vref = 2.5V M M − 1.5 − 1.5 n n o o m m m m o 0.5 o 0.5 C C −0.5 −0.5 −0.5 0.5 1.5 2.5 3.5 4.5 5.5 −0.5 0.5 1.5 2.5 3.5 4.5 5.5 Output Voltage (V) Output Voltage (V) G009 G009 Singlesupply,V =+5V,G=5 Singlesupply,V =+5V,G=100 S S Figure9.InputCommon-ModeVoltagevsOutputVoltage Figure10.InputCommon-ModeVoltagevsOutputVoltage 6 16 12 V) 4 V) e ( e ( 8 g g Vs = +/− 12V a 2 a olt Gain = 5 olt 4 Vs = +/− 15V V Gain = 100 V e e d 0 d 0 o o M M on− −2 on− −4 m m m m −8 o o C −4 C −12 −6 −16 −6 −4 −2 0 2 4 6 −16 −12 −8 −4 0 4 8 12 16 Output Voltage (V) Output Voltage (V) G011 G012 Dualsupply,V =±5V Dualsupply,V =±15V,±12V,G=5 S S Figure11.InputCommon-ModeVoltagevsOutputVoltage Figure12.InputCommon-ModeVoltagevsOutputVoltage 8 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

INA827 www.ti.com SBOS631B–JUNE2012–REVISEDNOVEMBER2017 Typical Characteristics (continued) atT =+25°C,V =±15V,R =10kΩ,V =0V,andG=5(unlessotherwisenoted) A S L REF 16 8 16 12 6 12 V) ge ( 8 Vs = +/− 12V A) 4 8 V) Volta 4 Vs = +/− 15V nt (m 2 4 age ( mmon−Mode −−840 Input Curre −−420 IVINOUT −−084 Output Volt o C −6 −12 −12 −8 −16 −16 −30 −20 −10 0 10 20 30 −16 −12 −8 −4 0 4 8 12 16 Input Voltage (V) Output Voltage (V) G014 G013 G=1,V =±15V Dualsupply,V =±15V,±12V,G=100 S S Figure14.InputOvervoltagevsInputCurrent Figure13.InputCommon-ModeVoltagevsOutputVoltage 160 140 B) B) o (d140 o (d120 ati120 ati R R100 n n o100 o cti cti 80 e e ej 80 ej R R e e 60 d 60 d o o M M G = 5 on- 40 G = 5 on- 40 G = 10 m G = 10 m om 20 G = 100 om 20 G = 100 C G = 1000 C G = 1000 0 0 10 100 1k 10k 100k 10 100 1k 10k 100k Frequency (Hz) C015 Frequency (Hz) C016 1-kΩsourceimbalance Figure15.CMRRvsFrequency(RTI) Figure16.CMRRvsFrequency(RTI) 180 180 160 160 140 140 120 120 B) B) d 100 d 100 R ( R ( R 80 R 80 S S P P 60 60 G = 5 G = 5 40 G = 10 40 G = 10 20 G = 100 20 G = 100 G = 1000 G = 1000 0 0 10 100 1k 10k 100k 10 100 1k 10k 100k Frequency (Hz) Frequency (Hz) G018 G019 Figure17.PositivePSRRvsFrequency(RTI) Figure18.NegativePSRRvsFrequency(RTI) Copyright©2012–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLinks:INA827

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com Typical Characteristics (continued) atT =+25°C,V =±15V,R =10kΩ,V =0V,andG=5(unlessotherwisenoted) A S L REF 70 10k G = 5 G = 5 60 G = 10 G = 10 50 G = 100 G = 100 40 G = 1000 Hz) 1k G = 1000 V/ n (dB) 2300 sity (n 100 Gai 10 Den e 0 s oi 10 N −10 −20 −30 1 100 1k 10k 100k 1M 10M 100m 1 10 100 1k 10k 100k Frequency (Hz) Frequency (Hz) G022 G023 Figure19.GainvsFrequency Figure20.VoltageNoiseSpectralDensityvsFrequency (RTI) 500 z) H 400 A/ sity (f 300 V/div) n m De 1 Noise 200 Noise ( nt e urr 100 C 0 1 10 100 1k 10k Time (1 s/div) Frequency (Hz) G024 G025 Figure21.CurrentNoiseSpectralDensityvsFrequency Figure22. 0.1-Hzto10-HzRTIVoltageNoise(G=5) (RTI) nV/div) A/div) 00 2 p e (5 se ( ois Noi N Time (1 s/div) Time (1 s/div) G026 G027 Figure23.0.1-Hzto10-HzRTIVoltageNoise(G=1000) Figure24.0.1-Hzto10-HzRTICurrentNoise 10 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

INA827 www.ti.com SBOS631B–JUNE2012–REVISEDNOVEMBER2017 Typical Characteristics (continued) atT =+25°C,V =±15V,R =10kΩ,V =0V,andG=5(unlessotherwisenoted) A S L REF 100 140 −45°C −45°C 90 25°C 25°C 120 85°C 80 85°C A) 125°C A) 125°C n n 70 ent ( 100 ent ( 60 urr 80 urr C C 50 s s Bia 60 Bia 40 ut ut 30 p 40 p n n I I 20 20 10 0 0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 −18 −14 −10 −6 −2 2 6 10 14 18 Common−Mode Voltage (V) Common−Mode Voltage (V) G028 G029 V =+2.7V V =±15V S S Figure25.InputBiasCurrentvsCommon-ModeVoltage Figure26. InputBiasCurrentvsCommon-ModeVoltage 100 2.5 Unit 1 Unit 1 Unit 2 2 Unit 2 Input Bias Current (nA) 24680000 Unit 3 Input Offset Current (nA) 01..0515 −0.5 0 −1 −50 −25 0 25 50 75 100 125 150 −50 −25 0 25 50 75 100 125 150 Temperature (°C) Temperature (°C) G030 G031 Figure27.InputBiasCurrentvsTemperature Figure28.InputOffsetCurrentvsTemperature 50 300 Unit 1 Unit 1 40 Unit 2 Unit 2 30 Unit 3 Unit 3 A) 250 ppm) 1200 ment ( Gain Error ( −−21000 Quiescent Curr 125000 −30 −40 −50 100 −50 −25 0 25 50 75 100 125 150 −50 −25 0 25 50 75 100 125 150 Temperature (°C) Temperature (°C) G032 G034 Figure29.GainErrorvsTemperature(G=5) Figure30.SupplyCurrentvsTemperature Copyright©2012–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLinks:INA827

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com Typical Characteristics (continued) atT =+25°C,V =±15V,R =10kΩ,V =0V,andG=5(unlessotherwisenoted) A S L REF 10 10 8 8 6 6 m) 4 m) 4 p p p p y ( 2 y ( 2 arit 0 arit 0 e e n n Li −2 Li −2 − − n n o −4 o −4 N N −6 −6 −8 −8 −10 −10 −10 −8 −6 −4 −2 0 2 4 6 8 10 −10 −8 −6 −4 −2 0 2 4 6 8 10 Output Voltage (V) Output Voltage (V) G035 G036 Figure31.GainNonlinearity(G=5) Figure32.GainNonlinearity(G=10) 10 50 8 40 6 30 m) 4 m) 20 p p p p y ( 2 y ( 10 arit 0 arit 0 e e n n Li −2 Li −10 − − n n o −4 o −20 N N −6 −30 −8 −40 −10 −50 −10 −8 −6 −4 −2 0 2 4 6 8 10 −10 −8 −6 −4 −2 0 2 4 6 8 10 Output Voltage (V) Output Voltage (V) G037 G038 Figure33.GainNonlinearity(G=100) Figure34.GainNonlinearity(G=1000) 80 100 VS = ±15 V −45°C 80 VS = ±15 V −45°C 60 25°C 25°C 85°C 60 85°C V) 40 125°C V) 40 125°C me ( 20 me ( 20 g g a a olt 0 olt 0 V V et −20 et −20 s s Off Off −40 −40 −60 −60 −80 −80 −100 −15.5 −15 −14.5 13.5 14 14.5 Common−Mode Voltage (V) Common−Mode Voltage (V) G057 G058 V =±15V V =±15V S S Figure35.OffsetVoltagevs Figure36.OffsetVoltagevs NegativeCommon-ModeVoltage PositiveCommon-ModeVoltage 12 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

INA827 www.ti.com SBOS631B–JUNE2012–REVISEDNOVEMBER2017 Typical Characteristics (continued) atT =+25°C,V =±15V,R =10kΩ,V =0V,andG=5(unlessotherwisenoted) A S L REF V =+3V V =+3V S S Figure37.OffsetVoltagevs Figure38.OffsetVoltagevs NegativeCommon-ModeVoltage PositiveCommon-ModeVoltage 15 −14 −45°C −45°C 14.9 −14.1 25°C 25°C 14.8 85°C −14.2 85°C 125°C 125°C V) 14.7 V)−14.3 ge ( 14.6 ge (−14.4 a a olt 14.5 olt−14.5 V V ut 14.4 ut −14.6 p p Out 14.3 Out−14.7 14.2 −14.8 14.1 −14.9 14 −15 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 Output Current (mA) Output Current (mA) G039 G040 V =±15V V =±15V S S Figure39.PositiveOutputVoltageSwingvs Figure40.NegativeOutputVoltageSwingvs OutputCurrent OutputCurrent 35 20 Vs = ±15V Settle to 0.01% 18 30 Vs = ±2.5V Settle to 0.001% 16 Vpp) 25 s) 14 ge ( 20 mme ( 12 utput Volta 1105 Settling Ti 1680 O 4 5 2 0 0 1k 10k 100k 1M 2 4 6 8 10 12 14 16 18 20 Frequency (Hz) Step Size (V) G043 G044 V =±15V S Figure41.Large-SignalFrequencyResponse Figure42.SettlingTimevsStepSize Copyright©2012–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLinks:INA827

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com Typical Characteristics (continued) atT =+25°C,V =±15V,R =10kΩ,V =0V,andG=5(unlessotherwisenoted) A S L REF 0.2 v) V) 0.1 CL= 0 pF mV/di ge ( CL= 100 pF 10 Volta 0 CCLL== 252000 ppFF age ( Output CCLL== 12 2n0F nF put Volt −0.1 ut O −0.2 Time (5 ms/div) Time (5 ms/div) G045 G046 G=5,R =1kΩ,C =100pF L L Figure43.Small-SignalResponseOverCapacitiveLoads Figure44.Small-SignalResponse (G=5) v) v) di di V/ V/ m m 0 0 1 1 e ( e ( g g a a olt olt V V ut ut p p ut ut O O Time (5 ms/div) Time (20 ms/div) G052 G053 G=10,R =10kΩ,C =100pF G=100,R =10kΩ,C =100pF L L L L Figure45.Small-SignalResponse Figure46.Small-SignalResponse Output Voltage Output Settling mV/div) V/div) 2%/div) Output Voltage (10 Output Voltage (5 Output Settling (0.00 Time (100 ms/div) Time (50 ms/div) G054 G061 G=1000,R =10kΩ,C =100pF G=5,R =10kΩ,C =100pF L L L L Figure47.Small-SignalResponse Figure48.Large-SignalResponseandSettlingTime 14 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

INA827 www.ti.com SBOS631B–JUNE2012–REVISEDNOVEMBER2017 Typical Characteristics (continued) atT =+25°C,V =±15V,R =10kΩ,V =0V,andG=5(unlessotherwisenoted) A S L REF Output Voltage Output Voltage Output Settling Output Settling v) v) div) %/di div) %/di V/ 2 V/ 2 5 00 5 00 utput Voltage ( put Settling (0. utput Voltage ( put Settling (0. O ut O ut O O Time (50 ms/div) Time (50 ms/div) G062 G063 G=10,R =10kΩ,C =100pF G=100,R =10kΩ,C =100pF L L L L Figure49.Large-SignalResponseandSettlingTime Figure50.Large-SignalResponseandSettlingTime 10M Output Voltage Output Settling v) div) %/di 1M e (5 V/ 0.002 We ()100k ut Voltag Settling ( mpedanc 10k Outp utput I 1k O 100 1m 10m100m 1 10 100 1k 10k 100k 1M 10M Time (100 ms/div) Frequency (Hz) G064 G055 G=1000,R =10kΩ,C =100pF L L Figure51.Large-SignalResponseandSettlingTime Figure52.Open-LoopOutputImpedance 5 4 3 V) 2 me ( 1 g a olt 0 V et −1 s Off −2 −3 −4 −5 0 40 80 120 160 200 Time (s) G056 Figure53.ChangeInInputOffsetVoltagevsWarm-UpTime Copyright©2012–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLinks:INA827

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com 7 Detailed Description 7.1 Overview The INA827 is a monolithic instrumentation amplifier (INA) based on a 36-V and a current feedback input architecture. The INA827 also integrates laser-trimmed resistors to ensure excellent common mode rejection and low gain error. The combination of the current feedback input and the precision resistors allows this device to achieve outstanding dc precision as well as frequency response and high frequency common mode rejection(TBDthisismorelikeaLayouttext.Overviewisgenerallyanoverviewofthedevice.) The Overview section provides a top-level description of what the device is and what it does. Detailed descriptions of the features and functions appear in subsequent subsections. Guidelines ● Include a summary of standards met by the device (if any). ● List modes and states of operation (from the user's perspective) and key features within each functional mode for quick reference. Use the following sections to provide detail on these modesandfeatures. 7.2 Functional Block Diagram V+ 0.1mF 8 1 -IN 10 kW 50 kW A 1 V = G´(V -V ) O IN+ IN- 2 80 kW 8 kW G = 5 + R G 7 R A G 3 8 kW + 3 Load VO - 10 kW 50 kW 6 A 2 4 REF +IN TI Device 5 0.1mF V- Copyright © 2016,Texas Instruments Incorporated Figure54. INA827BlockDiagram Figure55. SimplifiedBlockDiagram(TBDonlysimplifiedopampgoesherebutthisisaPNGandIcan't editit) 16 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

INA827 www.ti.com SBOS631B–JUNE2012–REVISEDNOVEMBER2017 7.3 Feature Description 7.3.1 SettingtheGain Device gain is set by a single external resistor (R ), connected between pins 2 and 3. The value of R is G G selectedaccordingtoEquation1: 80 kW 5 + R G (1) Table 1 lists several commonly-used gains and resistor values. The on-chip resistors are laser-trimmed to accurate absolute values. The accuracy and temperature coefficients of these resistors are included in the gain accuracyanddriftspecificationsoftheINA827. Table1.Commonly-UsedGainsandResistorValues DESIREDGAIN(V/V) R (Ω) NEAREST1%R (Ω) G G 5 — — 10 16.00k 15.8k 20 5.333k 5.36k 50 1.778k 1.78k 100 842.1 845 200 410.3 412 500 161.6 162 1000 80.40 80.6 7.3.1.1 GainDrift The stability and temperature drift of the external gain setting resistor (R ) also affects gain. The R contribution G G togainaccuracyanddriftcanbedirectlyinferredfromthegainofEquation1. The best gain drift of 1 ppm per degree Celsius can be achieved when the INA827 uses G = 5 without R G connected. In this case, the gain drift is limited only by the slight temperature coefficient mismatch of the integrated 50-kΩ resistors in the differential amplifier (A ). At gains greater than 5, the gain drift increases as a 3 result of the individual drift of the resistors in the feedback of A and A , relative to the drift of the external gain 1 2 resistor R . Process improvements to the temperature coefficient of the feedback resistors now enable a G maximum gain drift of the feedback resistors to be specified at 35 ppm per degree Celsius, thus significantly improvingtheoveralltemperaturestabilityofapplicationsusinggainsgreaterthan5. Low resistor values required for high gains can make wiring resistance important. Sockets add to wiring resistance and contribute additional gain error (such as possible unstable gain errors) at gains of approximately 100 or greater. To ensure stability, avoid parasitic capacitances greater than a few picofarads at R connections. G Careful matching of any parasitics on both R pins maintains optimal CMRR over frequency; see the Typical G Characteristicssection. Copyright©2012–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLinks:INA827

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com 7.3.2 OffsetTrimming Most applications require no external offset adjustment; however, if necessary, adjustments can be made by applying a voltage to the REF pin. Figure 56 shows an optional circuit for trimming the output offset voltage. The voltage applied to the REF pin is summed at the output. The op amp buffer provides low impedance at the REF pintopreservegoodcommon-moderejection. V IN- V+ RG INA827 VO 100mA 1/2 REF200 REF V IN+ OPA333 100W ±10 mV 10 kW Adjustment Range 100W 100mA 1/2 REF200 V- Copyright © 2016,Texas Instruments Incorporated Figure56. OptionalTrimmingofOutputOffsetVoltage 7.3.3 InputCommon-ModeRange The linear input voltage range of the INA827 input circuitry extends from the negative supply voltage to 1 V below the positive supply, and maintains 88-dB (minimum) common-mode rejection throughout this range. The common-mode range for most common operating conditions is described in Figure 14 and Figure 35 through Figure 38. The INA827 can operate over a wide range of power supplies and V configurations, thus making a REF comprehensiveguidetocommon-moderangelimitsforallpossibleconditionsimpracticaltoprovide. The most commonly overlooked overload condition occurs when a circuit exceeds the output swing of A and A , 1 2 which are internal circuit nodes that cannot be measured. Calculating the expected voltages at the output of A 1 and A (see Figure 57) provides a check for the most common overload conditions. The A and A designs are 2 1 2 identicalandtheoutputscanswingtowithinapproximately100mVofthepower-supplyrails.Forexample,when the A output is saturated, A can continue to be in linear operation and responding to changes in the 2 1 noninverting input voltage. This difference can give the appearance of linear operation but the output voltage is invalid. A single-supply instrumentation amplifier has special design considerations. To achieve a common-mode range that extends to single-supply ground, the INA827 employs a current-feedback topology with PNP input transistors; see Figure 57. The matched PNP transistors (Q and Q ) shift the input voltages of both inputs up by 1 2 a diode drop and (through the feedback network) shift the output of A and A by approximately +0.8 V. With 1 2 both inputs and V at single-supply ground (negative power supply), the output of A and A is well within the REF 1 2 linear range, allowing differential measurements to be made at the GND level. As a result of this input level- shifting, the voltages at pins 2 and 3 are not equal to the respective input pin voltages (pins 1 and 4). For most applications,thisinequalityisnotimportantbecauseonlythegain-settingresistorconnectstothesepins. 18 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

INA827 www.ti.com SBOS631B–JUNE2012–REVISEDNOVEMBER2017 7.3.4 InsidetheINA827 See Figure 61 for a simplified representation of the INA827. A more detailed diagram (shown in Figure 57) providesadditionalinsightintotheINA827operation. Each input is protected by two field-effect transistors (FETs) that provide a low series resistance under normal signalconditionsandpreserveexcellentnoiseperformance.Whenexcessivevoltageisapplied,thesetransistors limitinputcurrenttoapproximately8mA. The differential input voltage is buffered by Q and Q and is applied across R , causing a signal current to flow 1 2 G through R , R , and R . The output difference amplifier (A ) removes the common-mode component of the input G 1 2 3 signalandreferstheoutputsignaltotheREFpin. The equations shown in Figure 57 describe the output voltages of A and A . The V and voltage drop across 1 2 BE R andR produceoutputvoltagesonA andA thatareapproximately0.8Vhigherthantheinputvoltages. 1 2 1 2 V+ V+ R G (External) 50 kW R R AA12OOuutt == VVCCMM++ VVBBEE++ 00..112255 VV +- VVDD//22´´GG 8 kW1 V- V- 8 2kW 10 kW V+ Output Swing RangeA,A, (V+)-0.1 V to (V-) + 0.1 V 1 2 10 kW A3 VOUT V+ VO= G´(VIN+-VIN-) + VREF V- Linear Input RangeA = (V+)-0.9 V to (V-) + 0.1 V 50 kW 3 REF V- V+ V+ -IN Q Q 1 2 VD/2 Overvoltage V- C1 A1 A2 C2 V- Overvoltage Protection Protection R V R V B B B CM V /2 D V- +IN Figure57. INA827SimplifiedCircuitDiagram 7.3.5 InputProtection The INA827 inputs are individually protected for voltages up to ±40 V. For example, a condition of –40 V on one input and +40 V on the other input does not cause damage. However, if the input voltage exceeds [(V–) – 2 V] and the signal source current drive capability exceeds 3.5 mA, the output voltage switches to the opposite polarity; see Figure 14. This polarity reversal can easily be avoided by adding a 10-kΩ resistance in series with bothinputs. Internal circuitry on each input provides low series impedance under normal signal conditions. If the input is overloaded, the protection circuitry limits the input current to a safe value of approximately 8 mA. Figure 14 illustrates this input current limit behavior. The inputs are protected even if the power supplies are disconnected orturnedoff. Copyright©2012–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLinks:INA827

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com 7.3.6 InputBiasCurrentReturnPath The INA827 input impedance is extremely high—approximately 20 GΩ. However, a path must be provided for the input bias current of both inputs. This input bias current is typically 35 nA. High input impedance means that thisinputbiascurrentchangesverylittlewithvaryinginputvoltage. Input circuitry must provide a path for this input bias current for proper operation. Figure 58 shows various provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the INA827 common-mode range, and the input amplifiers saturate. If the differential source resistance is low, thebiascurrentreturnpathcanbeconnectedtooneinput(asshowninthethermocoupleexampleinFigure58). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lowerinputoffsetvoltageasaresultofbiascurrentandbetterhigh-frequencycommon-moderejection. Microphone, hydrophone, TI Device and so forth. 47 kW 47 kW Thermocouple TI Device 10 kW TI Device Center tap provides bias current return. Copyright © 2016,Texas Instruments Incorporated Figure58. ProvidinganInputCommon-ModeCurrentPath 20 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

INA827 www.ti.com SBOS631B–JUNE2012–REVISEDNOVEMBER2017 7.3.7 ReferencePin The INA827 output voltage is developed with respect to the voltage on the reference pin. Often, in dual-supply operation, the reference pin (pin 6) is connected to the low-impedance system ground. Offsetting the output signal to a precise mid-supply level (for example, 2.5 V in a 5-V supply environment) can be useful in single- supply operation. The signal can be shifted by applying a voltage to the device REF pin, which can be useful whendrivingasingle-supplyADC. For best performance, keep any source impedance to the REF pin below 5 Ω. Referring to Figure 61, the reference resistor is at one end of a 50-kΩ resistor. Additional impedance at the REF pin adds to this 50-kΩ resistor.Theimbalanceinresistorratiosresultsindegradedcommon-moderejectionratio(CMRR). Figure 59 shows two different methods of driving the reference pin with low impedance. The OPA330 is a low- power, chopper-stabilized amplifier and therefore offers excellent stability over temperature. The OPA330 is available in the space-saving SC70 and even smaller chip-scale package. The REF3225 is a precision reference inasmallSOT23-6package. +5 V VIN- +5 V RG INA827 VOUT VIN- REF VIN+ RG INA827 VOUT +5 V +5 V REF V IN+ OPA330 +2.5 V REF3225 +5 V a) Level shifting using the OPA330 as a low-impedance buffer b) Level shifting using the low-impedance output of the REF3225 Copyright © 2016,Texas Instruments Incorporated Figure59. OptionsforLow-ImpedanceLevelShifting 7.3.8 DynamicPerformance Figure 19 illustrates that, despite having low quiescent current of only 200 µA, the INA827 achieves much wider bandwidth than other instrumentation amplifiers (INAs) in its class. This achievement is a result of using TI’s proprietary high-speed precision bipolar process technology. The current-feedback topology provides the INA827 with wide bandwidth even at high gains. Settling time also remains excellent at high gain because of a 1.5-V/µs highslewrate. Copyright©2012–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLinks:INA827

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com 7.3.9 OperatingVoltage TheINA827operatesoverapower-supplyrangeof+3Vto+36V(±1.5Vto ±18V).Supplyvoltageshigherthan 40 V (±20 V) can permanently damage the device. Parameters that vary over supply voltage or temperature are shownintheTypicalCharacteristicssection. 7.3.9.1 Low-VoltageOperation The INA827 can operate on power supplies as low as ±1.5 V. Most parameters vary only slightly throughout this supply voltage range; see the Typical Characteristics section. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within the linear range. Voltage swing requirements of the internal nodes limit the input common-mode range with low power-supply voltage. Figure 7 to Figure 13 and Figure 35 to Figure 38 describe the linear operation range for various supply voltages, reference connections, andgains. 7.3.10 ErrorSources Most modern signal-conditioning systems calibrate errors at room temperature. However, calibration of errors that result from a change in temperature is normally difficult and costly. Therefore, these errors must be minimized by choosing high-precision components such as the INA827 that have improved specifications in criticalareasthateffectoverallsystemprecision.Figure60showsanexampleapplication. +15 V R = 10 kW S+ VDIFF= 1 V 16 kW TI Device VOUT REF V = 10 V RS-= 9.9 kW CM Signal Bandwidth: 5 kHz -15 V Copyright © 2016,Texas Instruments Incorporated Figure60. ExampleApplicationWithG=10V/Vand1-VDifferentialVoltage 22 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

INA827 www.ti.com SBOS631B–JUNE2012–REVISEDNOVEMBER2017 Resistor-adjustable INAs such as the INA827 yield the lowest gain error at G = 5 because of the inherently well- matcheddriftoftheinternalresistorsofthedifferentialamplifier.Atgainsgreaterthan5(forinstance,G=10V/V or G = 100 V/V) gain error becomes a significant error source because of the resistor drift contribution of the feedback resistors in conjunction with the external gain resistor. Except for very high gain applications, gain drift is by far the largest error contributor compared to other drift errors (such as offset drift). The INA827 offers the lowest gain error over temperature in the marketplace for both G > 5 and G = 5 (no external gain resistor). Table 2 summarizes the major error sources in common INA applications and compares the two cases of G = 5 (no external resistor) and G = 10 (with a 16-kΩ external resistor). As shown in Table 2, although the static errors (absolute accuracy errors) in G = 5 are almost twice as great as compared to G = 10, there is a great reduction in drift errors because of the significantly lower gain error drift. In most applications, these static errors can readily be removed during calibration in production. All calculations refer the error to the input for easy comparisonandsystemevaluation. Table2.ErrorCalculation INA827 G=10ERROR G=1ERROR SPECIFICATION ERRORSOURCE ERRORCALCULATION (ppm) (ppm) ABSOLUTEACCURACYAT+25°C Inputoffsetvoltage(µV) VOSI/VDIFF 150 150 150 Outputoffsetvoltage(µV) VOSO/(G×VDIFF) 2000 200 400 Inputoffsetcurrent(nA) IOS×maximum(RS+,RS–)/VDIFF 5 50 50 94(G=10), CMRR(dB) VCM/(10CMRR/20×VDIFF) 88(G=5) 200 398 Totalabsoluteaccuracyerror(ppm) 600 998 DRIFTTO+105°C 25(G=10), Gaindrift(ppm/°C) GTC×(TA–25) 1(G=5) 2000 80 Inputoffsetvoltagedrift(μV/°C) (VOSI_TC/VDIFF)×(TA–25) 5 200 200 Outputoffsetvoltagedrift(μV/°C) [VOSO_TC/(G×VDIFF)]×(TA–25) 30 240 240 Totaldrifterror(ppm) 2440 760 RESOLUTION Gainnonlinearity(ppmofFS) 5 5 5 2 Voltagenoise(1kHz) BW ´ (eNI2+ eGNO ´ VD6IFF eeNNOI==21570 6 6 Totalresolutionerror(ppm) 11 11 TOTALERROR Totalerror Totalerror=sumofallerrorsources 3051 1769 7.4 Device Functional Modes The INA827 has a single functional mode and is operational when the power-supply voltage is greater than 3 V (±1.5V).Themaximumpower-supplyvoltagefortheINA827is36V(±18V). Copyright©2012–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLinks:INA827

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validateandtesttheirdesignimplementationtoconfirmsystemfunctionality. 8.1 Application Information Figure61showsthebasicconnectionsrequiredfordeviceoperation.Goodlayoutpracticemandatesthatbypass capacitorsareplacedasclosetothedevicepinsaspossible. The INA827 output is referred to the output reference (REF) pin, which is normally grounded. This connection must be low-impedance to assure good common-mode rejection. Although 5 Ω or less of stray resistance can be tolerated when maintaining specified CMRR, small stray resistances of tens of ohms in series with the REF pin cancausenoticeabledegradationinCMRR. V+ 0.1mF 8 R (1) S 1 -IN 10 kW 50 kW A 1 V = G´(V -V ) O IN+ IN- 2 80 kW 8 kW G = 5 + R G 7 R A G 3 8 kW + 3 Load VO - 10 kW 50 kW R (1) A 6 S 2 4 REF +IN TI Device 5 0.1mF V- Copyright © 2016,Texas Instruments Incorporated (1) Thisresistorisoptionaliftheinputvoltageremainsabove[(V–)–2V]orifthesignalsourcecurrentdrivecapabilityislimitedtolessthan 3.5mA.SeetheInputProtectionsectionformoredetails. Figure61. BasicConnections 24 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

INA827 www.ti.com SBOS631B–JUNE2012–REVISEDNOVEMBER2017 8.2 Typical Application Anexampleprogrammablelogiccontroller(PLC)inputapplicationusinganINA827isshowninFigure62. Figure62. ±10-V,4-mAto20-mAPLCInput 8.2.1 DesignRequirements Thisdesignhastheserequirements: • Supplyvoltage:±15V,5V • Inputs: ±10V,±20mA • Output:2.5V, ±2.3V 8.2.2 DetailedDesignProcedure There are two modes of operation for the circuit shown in Figure 62: current input and voltage input. This design requiresR >>R >>R .Giventhisrelationship,thecurrentinputmodetransferfunctionisgivenbyEquation2. 1 2 3 V = V ´G + V =-(I ´R )´G + V OUT-I D REF IN 3 REF where • Grepresentsthegainoftheinstrumentationamplifier (2) ThetransferfunctionforthevoltageinputmodeisshownbyEquation3. R V = V ´G + V =- V ´ 2 ´G + V OUT-V D REF IN R + R REF 1 2 (3) R sets the input impedance of the voltage input mode. The minimum typical input impedance is 100 kΩ. 100 kΩ 1 is selected for R because increasing the R value also increases noise. The value of R must be extremely 1 1 3 small compared to R and R . 20 Ω for R is selected because that resistance value is much smaller than R and 1 2 3 1 yieldsaninputvoltageof±400mVwhenoperatedincurrentmode(±20mA). Equation4canbeusedtocalculateR givenV =±400mV,V = ±10V,andR =100kΩ. 2 D IN 1 R R ´V V = V ´ 2 ®R = 1 D = 4.167 kW D IN R + R 2 V -V 1 2 IN D (4) The value obtained from Equation 4 is not a standard 0.1% value, so 4.12 kΩ is selected. R and R also use 1 2 0.1%toleranceresistorstominimizeerror. TheidealgainoftheinstrumentationamplifieriscalculatedwithEquation5. V -V 4.8 V-2.5 V V G = OUT REF= = 5.75 V 400 mV V D (5) Copyright©2012–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLinks:INA827

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com Typical Application (continued) UsingtheINA827gainequation,thegain-settingresistorvalueiscalculatedasshownbyEquation6. (6) 107kΩ isastandard0.1%resistorvaluethatcanbeusedinthisdesign.Finally,theoutputRCfiltercomponents areselectedtohavea–3-dBcutofffrequencyof1MHz. 8.2.3 ApplicationCurves Figure63.PLCOutputVoltagevsInputVoltage Figure64.PLCOutputVoltagevsInputCurrent 26 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

INA827 www.ti.com SBOS631B–JUNE2012–REVISEDNOVEMBER2017 9 Power Supply Recommendations The nominal performance of the INA827 is specified with a supply voltage of ±15 V and a mid-supply reference voltage. The device can also be operated using power supplies from ±1.5 V (3 V) to ±18 V (36 V) and non mid- supply reference voltages with excellent performance. Parameters that can vary significantly with operating voltageandreferencevoltageareillustratedintheTypicalCharacteristicssection. 10 Layout 10.1 Layout Guidelines Attention to good layout practices is always recommended. Keep traces short and, when possible, use a printed circuit board (PCB) ground plane with surface-mount components placed as close to the device pins as possible. Place 0.1-μF bypass capacitors close to the supply pins. Apply these guidelines throughout the analog circuit to improveperformanceandprovidebenefitssuchasreducingtheelectromagnetic-interference(EMI)susceptibility. 10.1.1 CMRRvsFrequency The INA827 pinout is optimized for achieving maximum CMRR performance over a wide range of frequencies. However, care must be taken to ensure that both input paths are well-matched for source impedance and capacitance to avoid converting common-mode signals into differential signals. In addition, parasitic capacitance at the gain-setting pins can also affect CMRR over frequency. For example, in applications that implement gain switching using switches or PhotoMOS® relays to change the value of R , choose the component so that the G switchcapacitanceisassmallaspossible. 10.2 Layout Example Figure65. INA827ExampleLayout Copyright©2012–2017,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLinks:INA827

INA827 SBOS631B–JUNE2012–REVISEDNOVEMBER2017 www.ti.com 11 Device and Documentation Support 11.1 Documentation Support 11.1.1 RelatedDocumentation Forrelateddocumentationseethefollowing: • INA826 Precision, 200-μA Supply Current, 3-V to 36-V Supply Instrumentation Amplifier with Rail-to-Rail Output (SBOS562) • OPAx33050-μVVOS,0.25-μV/°C,35-μACMOSOperationalAmplifiersZero-DriftSeries (SBOS432) • REF32xx4ppm/°C,100μA,SOT23-6SeriesVoltageReference (SBVS058) • TBDlistanythingelse? 11.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed.Forchangedetails,reviewtherevisionhistoryincludedinanyreviseddocument. 11.3 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TIE2E™OnlineCommunity TI'sEngineer-to-Engineer(E2E)Community.Createdtofostercollaboration amongengineers.Ate2e.ti.com,youcanaskquestions,shareknowledge,exploreideasandhelp solveproblemswithfellowengineers. DesignSupport TI'sDesignSupport QuicklyfindhelpfulE2Eforumsalongwithdesignsupporttoolsand contactinformationfortechnicalsupport. 11.4 Trademarks E2EisatrademarkofTexasInstruments. PhotoMOSisaregisteredtrademarkofPanasonicElectricWorksEuropeAG. Allothertrademarksarethepropertyoftheirrespectiveowners. 11.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriateprecautions.Failuretoobserveproperhandlingandinstallationprocedurescancausedamage. ESDdamagecanrangefromsubtleperformancedegradationtocompletedevicefailure.Precisionintegratedcircuitsmaybemore susceptibletodamagebecauseverysmallparametricchangescouldcausethedevicenottomeetitspublishedspecifications. 11.6 Glossary SLYZ022—TIGlossary. Thisglossarylistsandexplainsterms,acronyms,anddefinitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of thisdocument.Forbrowser-basedversionsofthisdatasheet,refertotheleft-handnavigation. 28 SubmitDocumentationFeedback Copyright©2012–2017,TexasInstrumentsIncorporated ProductFolderLinks:INA827

PACKAGE OPTION ADDENDUM www.ti.com 30-Sep-2016 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Device Marking Samples (1) Drawing Qty (2) (6) (3) (4/5) INA827AIDGK ACTIVE VSSOP DGK 8 80 Green (RoHS CU NIPDAUAG Level-2-260C-1 YEAR -40 to 125 IPSI & no Sb/Br) INA827AIDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS CU NIPDAUAG Level-2-260C-1 YEAR -40 to 125 IPSI & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 30-Sep-2016 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 30-Sep-2016 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) INA827AIDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 30-Sep-2016 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) INA827AIDGKR VSSOP DGK 8 2500 366.0 364.0 50.0 PackMaterials-Page2

None

None

IMPORTANTNOTICE TexasInstrumentsIncorporated(TI)reservestherighttomakecorrections,enhancements,improvementsandotherchangestoits semiconductorproductsandservicesperJESD46,latestissue,andtodiscontinueanyproductorserviceperJESD48,latestissue.Buyers shouldobtainthelatestrelevantinformationbeforeplacingordersandshouldverifythatsuchinformationiscurrentandcomplete. TI’spublishedtermsofsaleforsemiconductorproducts(http://www.ti.com/sc/docs/stdterms.htm)applytothesaleofpackagedintegrated circuitproductsthatTIhasqualifiedandreleasedtomarket.AdditionaltermsmayapplytotheuseorsaleofothertypesofTIproductsand services. ReproductionofsignificantportionsofTIinformationinTIdatasheetsispermissibleonlyifreproductioniswithoutalterationandis accompaniedbyallassociatedwarranties,conditions,limitations,andnotices.TIisnotresponsibleorliableforsuchreproduced documentation.Informationofthirdpartiesmaybesubjecttoadditionalrestrictions.ResaleofTIproductsorserviceswithstatements differentfromorbeyondtheparametersstatedbyTIforthatproductorservicevoidsallexpressandanyimpliedwarrantiesforthe associatedTIproductorserviceandisanunfairanddeceptivebusinesspractice.TIisnotresponsibleorliableforanysuchstatements. BuyersandotherswhoaredevelopingsystemsthatincorporateTIproducts(collectively,“Designers”)understandandagreethatDesigners remainresponsibleforusingtheirindependentanalysis,evaluationandjudgmentindesigningtheirapplicationsandthatDesignershave fullandexclusiveresponsibilitytoassurethesafetyofDesigners'applicationsandcomplianceoftheirapplications(andofallTIproducts usedinorforDesigners’applications)withallapplicableregulations,lawsandotherapplicablerequirements.Designerrepresentsthat,with respecttotheirapplications,Designerhasallthenecessaryexpertisetocreateandimplementsafeguardsthat(1)anticipatedangerous consequencesoffailures,(2)monitorfailuresandtheirconsequences,and(3)lessenthelikelihoodoffailuresthatmightcauseharmand takeappropriateactions.DesigneragreesthatpriortousingordistributinganyapplicationsthatincludeTIproducts,Designerwill thoroughlytestsuchapplicationsandthefunctionalityofsuchTIproductsasusedinsuchapplications. TI’sprovisionoftechnical,applicationorotherdesignadvice,qualitycharacterization,reliabilitydataorotherservicesorinformation, including,butnotlimitedto,referencedesignsandmaterialsrelatingtoevaluationmodules,(collectively,“TIResources”)areintendedto assistdesignerswhoaredevelopingapplicationsthatincorporateTIproducts;bydownloading,accessingorusingTIResourcesinany way,Designer(individuallyor,ifDesignerisactingonbehalfofacompany,Designer’scompany)agreestouseanyparticularTIResource solelyforthispurposeandsubjecttothetermsofthisNotice. TI’sprovisionofTIResourcesdoesnotexpandorotherwisealterTI’sapplicablepublishedwarrantiesorwarrantydisclaimersforTI products,andnoadditionalobligationsorliabilitiesarisefromTIprovidingsuchTIResources.TIreservestherighttomakecorrections, enhancements,improvementsandotherchangestoitsTIResources.TIhasnotconductedanytestingotherthanthatspecifically describedinthepublisheddocumentationforaparticularTIResource. Designerisauthorizedtouse,copyandmodifyanyindividualTIResourceonlyinconnectionwiththedevelopmentofapplicationsthat includetheTIproduct(s)identifiedinsuchTIResource.NOOTHERLICENSE,EXPRESSORIMPLIED,BYESTOPPELOROTHERWISE TOANYOTHERTIINTELLECTUALPROPERTYRIGHT,ANDNOLICENSETOANYTECHNOLOGYORINTELLECTUALPROPERTY RIGHTOFTIORANYTHIRDPARTYISGRANTEDHEREIN,includingbutnotlimitedtoanypatentright,copyright,maskworkright,or otherintellectualpropertyrightrelatingtoanycombination,machine,orprocessinwhichTIproductsorservicesareused.Information regardingorreferencingthird-partyproductsorservicesdoesnotconstitutealicensetousesuchproductsorservices,orawarrantyor endorsementthereof.UseofTIResourcesmayrequirealicensefromathirdpartyunderthepatentsorotherintellectualpropertyofthe thirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI. TIRESOURCESAREPROVIDED“ASIS”ANDWITHALLFAULTS.TIDISCLAIMSALLOTHERWARRANTIESOR REPRESENTATIONS,EXPRESSORIMPLIED,REGARDINGRESOURCESORUSETHEREOF,INCLUDINGBUTNOTLIMITEDTO ACCURACYORCOMPLETENESS,TITLE,ANYEPIDEMICFAILUREWARRANTYANDANYIMPLIEDWARRANTIESOF MERCHANTABILITY,FITNESSFORAPARTICULARPURPOSE,ANDNON-INFRINGEMENTOFANYTHIRDPARTYINTELLECTUAL PROPERTYRIGHTS.TISHALLNOTBELIABLEFORANDSHALLNOTDEFENDORINDEMNIFYDESIGNERAGAINSTANYCLAIM, INCLUDINGBUTNOTLIMITEDTOANYINFRINGEMENTCLAIMTHATRELATESTOORISBASEDONANYCOMBINATIONOF PRODUCTSEVENIFDESCRIBEDINTIRESOURCESOROTHERWISE.INNOEVENTSHALLTIBELIABLEFORANYACTUAL, DIRECT,SPECIAL,COLLATERAL,INDIRECT,PUNITIVE,INCIDENTAL,CONSEQUENTIALOREXEMPLARYDAMAGESIN CONNECTIONWITHORARISINGOUTOFTIRESOURCESORUSETHEREOF,ANDREGARDLESSOFWHETHERTIHASBEEN ADVISEDOFTHEPOSSIBILITYOFSUCHDAMAGES. UnlessTIhasexplicitlydesignatedanindividualproductasmeetingtherequirementsofaparticularindustrystandard(e.g.,ISO/TS16949 andISO26262),TIisnotresponsibleforanyfailuretomeetsuchindustrystandardrequirements. WhereTIspecificallypromotesproductsasfacilitatingfunctionalsafetyorascompliantwithindustryfunctionalsafetystandards,such productsareintendedtohelpenablecustomerstodesignandcreatetheirownapplicationsthatmeetapplicablefunctionalsafetystandards andrequirements.Usingproductsinanapplicationdoesnotbyitselfestablishanysafetyfeaturesintheapplication.Designersmust ensurecompliancewithsafety-relatedrequirementsandstandardsapplicabletotheirapplications.DesignermaynotuseanyTIproductsin life-criticalmedicalequipmentunlessauthorizedofficersofthepartieshaveexecutedaspecialcontractspecificallygoverningsuchuse. Life-criticalmedicalequipmentismedicalequipmentwherefailureofsuchequipmentwouldcauseseriousbodilyinjuryordeath(e.g.,life support,pacemakers,defibrillators,heartpumps,neurostimulators,andimplantables).Suchequipmentincludes,withoutlimitation,all medicaldevicesidentifiedbytheU.S.FoodandDrugAdministrationasClassIIIdevicesandequivalentclassificationsoutsidetheU.S. TImayexpresslydesignatecertainproductsascompletingaparticularqualification(e.g.,Q100,MilitaryGrade,orEnhancedProduct). Designersagreethatithasthenecessaryexpertisetoselecttheproductwiththeappropriatequalificationdesignationfortheirapplications andthatproperproductselectionisatDesigners’ownrisk.Designersaresolelyresponsibleforcompliancewithalllegalandregulatory requirementsinconnectionwithsuchselection. DesignerwillfullyindemnifyTIanditsrepresentativesagainstanydamages,costs,losses,and/orliabilitiesarisingoutofDesigner’snon- compliancewiththetermsandprovisionsofthisNotice. MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2017,TexasInstrumentsIncorporated