ICGOO在线商城 > 传感器,变送器 > 运动传感器 - 加速计 > H3LIS331DLTR
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
H3LIS331DLTR产品简介:
ICGOO电子元器件商城为您提供H3LIS331DLTR由STMicroelectronics设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 H3LIS331DLTR价格参考。STMicroelectronicsH3LIS331DLTR封装/规格:运动传感器 - 加速计, Accelerometer X, Y, Z Axis ±100g, ±200g, ±400g 25Hz ~ 500Hz 16-TFLGA (3x3)。您可以下载H3LIS331DLTR参考资料、Datasheet数据手册功能说明书,资料中有H3LIS331DLTR 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | MOD ACCELEROMETER 3AXIS 16LLGA加速计 Low Pwr Hi G 3-axis Digital Acceleromtr |
产品分类 | 加速计运动与定位传感器 |
品牌 | STMicroelectronics |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 加速计,STMicroelectronics H3LIS331DLTRMEMS |
数据手册 | |
产品型号 | H3LIS331DLTR |
产品种类 | 加速计 |
传感轴 | X, Y, Z |
供应商器件封装 | 16-LGA(3x3) |
其它名称 | 497-13903-6 |
分辨率 | 16 bit |
加速 | 100 g/200 g/400 g |
加速度范围 | ±100g, ±200g, ±400g |
商标 | STMicroelectronics |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 16-TFLGA |
封装/箱体 | TFLGA-16 |
工厂包装数量 | 4000 |
带宽 | 1kHz |
接口 | I²C, SPI |
数字输出-位数 | 16 bit |
数字输出-总线接口 | I2C, SPI |
最大工作温度 | + 85 C |
最小工作温度 | - 40 C |
标准包装 | 1 |
灵敏度 | 195mg/位数, 98mg/位数, 49mg/位数 |
特色产品 | http://www.digikey.cn/product-highlights/zh/h3lis331dl-lowpower-highg-fullscale-3axis-digital-accelerometer/52914 |
电压-电源 | 2.16 V ~ 3.6 V |
电源电压-最大 | 3.6 V |
电源电压-最小 | 2.16 V |
系列 | H3LIS331DL |
轴 | X,Y,Z |
输出类型 | I²C, SPI |
H3LIS331DL MEMS motion sensor: low-power high-g 3-axis digital accelerometer Datasheet - production data Description The H3LIS331DL is a low-power high- performance 3-axis linear accelerometer belonging to the “nano” family, with digital I2C/SPI serial interface standard output. TFLGA 3x3x1.0 mm3 16L The device features ultra-low power operational modes that allow advanced power saving and smart sleep-to-wakeup functions. Features The H3LIS331DL has dynamically user- selectable full scales of ±100g/±200g/±400g and it Wide supply voltage, 2.16 V to 3.6 V is capable of measuring accelerations with output Low-voltage compatible IOs, 1.8 V data rates from 0.5 Hz to 1 kHz. Ultra-low power consumption down to 10 μA in The H3LIS331DL is available in a small thin low-power mode plastic land grid array package (LGA) and it is ±100g/±200g/±400g dynamically selectable full guaranteed to operate over an extended scales temperature range from -40 °C to +85 °C. I2C/SPI digital output interface 16-bit data output Sleep-to-wakeup function 10000 g high-shock survivability ECOPACK®, RoHS and “Green” compliant Applications Shock detection Impact recognition and logging Concussion detection Table 1. Device summary Order codes Temperature range [C] Package Packaging H3LIS331DL -40 to +85 TFLGA 3x3x1.0 mm3 16L Tray H3LIS331DLTR -40 to +85 TFLGA 3x3x1.0 mm3 16L Tape and reel September 2013 DocID023111 Rev 3 1/38 This is information on a product in full production. www.st.com
Contents H3LIS331DL Contents 1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 2.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 2.5.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 2.5.3 Sleep-to-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 3 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 5.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 6 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2/38 DocID023111 Rev 3
H3LIS331DL Contents 7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.1 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.2 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.3 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.4 CTRL_REG3 [interrupt CTRL register] (22h) . . . . . . . . . . . . . . . . . . . . . . 27 7.5 CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.6 CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.7 HP_FILTER_RESET (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.8 REFERENCE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.9 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.10 OUT_X_L (28h), OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.13 INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.14 INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.15 INT1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.16 INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.17 INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.18 INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.19 INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.20 INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 DocID023111 Rev 3 3/38 38
List of tables H3LIS331DL List of tables Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Table 3. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Table 4. Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Table 5. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Table 6. I2C slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Table 7. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 8. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Table 9. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Table 10. SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Table 11. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Table 12. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Table 13. Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . .19 Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . .19 Table 15. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Table 16. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Table 17. CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Table 18. CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Table 19. Power mode and low-power output data rate configurations . . . . . . . . . . . . . . . . . . . . . . .25 Table 20. Normal mode output data rate configurations and low-pass cutoff frequencies. . . . . . . . .25 Table 21. CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Table 22. CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Table 23. High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Table 24. High-pass filter cutoff frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Table 25. CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Table 26. CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Table 27. Data signal on INT 1 and INT 2 pad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Table 28. CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Table 29. CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 30. CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 31. CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 32. Sleep-to-wake configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 33. REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Table 34. REFERENCE description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Table 35. STATUS_REG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Table 36. STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Table 37. INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Table 38. INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Table 39. Interrupt 1 source configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Table 40. INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Table 41. INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Table 42. INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Table 43. INT1_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Table 44. INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Table 45. INT2_DURATION description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Table 46. INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Table 47. INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Table 48. Interrupt mode configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 4/38 DocID023111 Rev 3
H3LIS331DL List of tables Table 49. INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Table 50. INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Table 51. INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Table 52. INT2_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Table 53. INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Table 54. INT2_DURATION description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Table 55. TFLGA 3x3x1.0 mm3 16L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Table 56. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 DocID023111 Rev 3 5/38 38
List of figures H3LIS331DL List of figures Figure 1. Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Figure 2. Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Figure 3. SPI slave timing diagram (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Figure 4. I2C slave timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Figure 5. H3LIS331DL electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Figure 6. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Figure 7. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Figure 8. Multiple byte SPI read protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Figure 9. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Figure 10. Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Figure 11. SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Figure 12. TFLGA 3x3x1.0 mm3 16L mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 6/38 DocID023111 Rev 3
H3LIS331DL Block diagram and pin description 1 Block diagram and pin description 1.1 Block diagram Figure 1. Block diagram X+ Y+ CHARGE Z+ AMPLIFIER CS a MUX CONVAE/RDT ER CONTROL LOGIC I2C SSCDAL//SSPDCO/SDI Z- SPI SDO/SA0 Y- X- CONTROL LOGIC INT 1 TRIMMING REFERENCE CLOCK & CIRCUITS INTERRUPT GEN. INT 2 AM12624V1 1.2 Pin description Figure 2. Pin connections Z Pin 1 indicator 1 X 13 1 9 5 Y (TOP VIEW) (BOTTOM VIEW) DIRECTION OF THE DETECTABLE ACCELERATIONS AM12625V1 DocID023111 Rev 3 7/38 38
Block diagram and pin description H3LIS331DL Table 2. Pin description Pin# Name Function 1 Vdd_IO Power supply for I/O pins 2 NC Not connected 3 NC Not connected SCL I2C serial clock (SCL) 4 SPC SPI serial port clock (SPC) 5 GND 0 V supply SDA I2C serial data (SDA) 6 SDI SPI serial data input (SDI) SDO 3-wire interface serial data output (SDO) SDO SPI serial data output (SDO) 7 SA0 I2C less significant bit of the device address (SA0) SPI enable 8 CS I2C/SPI mode selection (1: I2C mode; 0: SPI enabled) 9 INT 2 Inertial interrupt 2 10 Reserved Connect to GND 11 INT 1 Inertial interrupt 1 12 GND 0 V supply 13 GND 0 V supply 14 Vdd Power supply 15 Reserved Connect to Vdd 16 GND 0 V supply 8/38 DocID023111 Rev 3
H3LIS331DL Mechanical and electrical specifications 2 Mechanical and electrical specifications 2.1 Mechanical characteristics @ Vdd = 2.5 V, T = 25 °C unless otherwise noted (a). Table 3. Mechanical characteristics Symbol Parameter Test conditions Min. Typ.(1) Max. Unit FS bit set to 00 ±100 FS Measurement range(2) FS bit set to 01 ±200 g FS bit set to 11 ±400 FS bit set to 00 49 12-bit representation FS bit set to 01 So Sensitivity(3) 98 mg/digit 12-bit representation FS bit set to 11 195 12-bit representation Sensitivity change vs. TCSo FS bit set to 00 ±0.01 %/°C temperature Typical zero-g level offset TyOff FS bit set to 00 ±1 g accuracy(4) Zero-g level change vs. TCOff Max. delta from 25 °C ±5 mg/°C temperature An Acceleration noise density FS bit set to 00 15 mg/ Hz FS bit set to 00 NL Non-linearity 2 %FS Range -70g .. +70g Top Operating temperature range -40 +85 °C Wh Product weight 20 mgram 1. Typical specifications are not guaranteed. 2. Verified by wafer level test and measurement of initial offset and sensitivity. 3. Factory calibrated at (cid:115)1 g 4. Offset can be eliminated by enabling the built-in high-pass filter. a. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V. The product calibration is done at (cid:115)1 g. DocID023111 Rev 3 9/38 38
Mechanical and electrical specifications H3LIS331DL 2.2 Electrical characteristics @ Vdd = 2.5 V, T = 25 °C unless otherwise noted (b). Table 4. Electrical characteristics Symbol Parameter Test conditions Min. Typ.(1) Max. Unit Vdd Supply voltage 2.16 2.5 3.6 V Vdd_IO I/O pins supply voltage(2) 1.71 Vdd+0.1 V Current consumption Idd 300 μA in normal mode Current consumption in low- IddLP 10 μA power mode Current consumption in IddPdn 1 μA power-down mode Digital high-level input VIH 0.8*Vdd_IO V voltage VIL Digital low-level input voltage 0.2*Vdd_IO V VOH High-level output voltage 0.9*Vdd_IO V VOL Low-level output voltage 0.1*Vdd_IO V DR bit set to 00 50 Output data rate DR bit set to 01 100 ODR Hz in normal mode DR bit set to 10 400 DR bit set to 11 1000 PM bit set to 010 0.5 PM bit set to 011 1 Output data rate in ODR PM bit set to 100 2 Hz LP low-power mode PM bit set to 101 5 PM bit set to 110 10 BW System bandwidth(3) ODR/2 Hz Ton Turn-on time(4) ODR = 100 Hz 1/ODR+1ms s Top Operating temperature range -40 +85 °C 1. Typical specifications are not guaranteed. 2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses; in this condition the measurement chain is powered off. 3. Refer to Table 20 for filter cutoff frequency. 4. Time to obtain valid data after exiting power-down mode. b. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V. 10/38 DocID023111 Rev 3
H3LIS331DL Mechanical and electrical specifications 2.3 Communication interface characteristics 2.3.1 SPI - serial peripheral interface Subject to general operating conditions for Vdd and Top. Table 5. SPI slave timing values Value (1) Symbol Parameter Unit Min. Max. t SPI clock cycle 100 ns c(SPC) f SPI clock frequency 10 MHz c(SPC) t CS setup time 6 su(CS) t CS hold time 8 h(CS) t SDI input setup time 5 su(SI) t SDI input hold time 15 ns h(SI) t SDO valid output time 50 v(SO) t SDO output hold time 9 h(SO) t SDO output disable time 50 dis(SO) 1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production. Figure 3. SPI slave timing diagram (2) 2. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports. 3. When no communication is ongoing, data on CS, SPC, SDI and SDO are driven by internal pull-up resistors. DocID023111 Rev 3 11/38 38
Mechanical and electrical specifications H3LIS331DL 2.3.2 I2C - inter-IC control interface Subject to general operating conditions for Vdd and Top. Table 6. I2C slave timing values I2C standard mode (1) I2C fast mode (1) Symbol Parameter Unit Min. Max. Min. Max. f SCL clock frequency 0 100 0 400 KHz (SCL) t SCL clock low time 4.7 1.3 w(SCLL) μs t SCL clock high time 4.0 0.6 w(SCLH) t SDA setup time 250 100 ns su(SDA) t SDA data hold time 0.01 3.45 0.01 0.9 μs h(SDA) t t SDA and SCL rise time 1000 20 + 0.1C (2) 300 r(SDA) r(SCL) b ns t t SDA and SCL fall time 300 20 + 0.1C (2) 300 f(SDA) f(SCL) b t START condition hold time 4 0.6 h(ST) Repeated START condition t 4.7 0.6 su(SR) setup time μs t STOP condition setup time 4 0.6 su(SP) Bus free time between STOP t 4.7 1.3 w(SP:SR) and START condition 1. Data based on standard I2C protocol requirement, not tested in production. 2. C = total capacitance of one bus line, in pF. b Figure 4. I2C slave timing diagram REPEATED START START t su(SR) t START SDA w(SP:SR) tf(SDA) tr(SDA) tsu(SDA) th(SDA) t STOP su(SP) SCL t t t t t h(ST) w(SCLL) w(SCLH) r(SCL) f(SCL) Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports. 12/38 DocID023111 Rev 3
H3LIS331DL Mechanical and electrical specifications 2.4 Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 7. Absolute maximum ratings Symbol Ratings Maximum value Unit Vdd Supply voltage -0.3 to 4.8 V Vdd_IO I/O pins supply voltage -0.3 to 4.8 V Input voltage on any control pin Vin -0.3 to Vdd_IO +0.3 V (CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0) 3000 g for 0.5 ms A Acceleration (any axis, powered, Vdd = 2.5 V) POW 10000 g for 0.1 ms 3000 g for 0.5 ms A Acceleration (any axis, unpowered) UNP 10000 g for 0.1 ms T Operating temperature range -40 to +85 °C OP T Storage temperature range -40 to +125 °C STG 4 (HBM) kV ESD Electrostatic discharge protection 1.5 (CDM) kV 200 (MM) V Note: Supply voltage on any pin should never exceed 4.8 V. This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part. This is an electrostatic-sensitive device (ESD), improper handling can cause permanent damage to the part. DocID023111 Rev 3 13/38 38
Mechanical and electrical specifications H3LIS331DL 2.5 Terminology 2.5.1 Sensitivity Sensitivity describes the gain of the sensor and can be determined by applying 1 g acceleration to it. As the sensor can measure DC accelerations this can be done easily by pointing the axis of interest towards the center of the Earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and time. The sensitivity tolerance describes the range of sensitivities of a large population of sensors. 2.5.2 Zero-g level The zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady-state on a horizontal surface measures 0 g for the X-axis and 0 g for the Y-axis whereas the Z-axis measures 1 g. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as two’s complement number). A deviation from the ideal value in this case is called zero-g offset. Offset is, to some extent, a result of stress to the MEMS sensor and therefore can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, refer to “Zero-g level change vs. temperature” (see TCOff in Table 3). The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a population of sensors. 2.5.3 Sleep-to-wakeup The “sleep-to-wakeup” function, in conjunction with low-power mode, allows to further reduce the system power consumption and develop new smart applications. The H3LIS331DL may be set in a low-power operating mode, characterized by lower date rate refreshments. In this way the device, even if sleeping, continues to sense acceleration and generate interrupt requests. When the “sleep-to-wakeup” function is activated, the H3LIS331DL is able to automatically wake up as soon as the interrupt event has been detected, increasing the output data rate and bandwidth. With this feature the system may be efficiently switched from low-power mode to full performance, depending on user-selectable positioning and acceleration events, therefore ensuring power saving and flexibility. 14/38 DocID023111 Rev 3
H3LIS331DL Functionality 3 Functionality The H3LIS331DL is a “nano”, low-power, digital output 3-axis linear accelerometer housed in an LGA package. The complete device includes a sensing element and an IC interface able to take the information from the sensing element and to provide a signal to the external world through an I2C/SPI serial interface. 3.1 Sensing element A proprietary process is used to create a surface micromachined accelerometer. The technology allows processing suspended silicon structures, which are attached to the substrate in a few points called anchors and are free to move in the direction of the sensed acceleration. To be compatible with traditional packaging techniques, a cap is placed on top of the sensing element to avoid blocking the moving parts during the molding phase of the plastic encapsulation. When an acceleration is applied to the sensor, the proof mass displaces from its nominal position, causing an imbalance in the capacitive half bridge. This imbalance is measured using charge integration in response to a voltage pulse applied to the capacitor. At steady-state the nominal value of the capacitors are a few pF and when an acceleration is applied, the maximum variation of the capacitive load is in the fF range. 3.2 IC interface The complete measurement chain is composed of a low-noise capacitive amplifier which converts the capacitive unbalancing of the MEMS sensor into an analog voltage that will be available to the user through an analog-to-digital converter. The acceleration data may be accessed through an I2C/SPI interface, making the device particularly suitable for direct interfacing with a microcontroller. The H3LIS331DL features a data-ready signal (RDY) which indicates when a new set of measured acceleration data is available, therefore simplifying data synchronization in the digital system that uses the device. 3.3 Factory calibration The IC interface is factory calibrated for sensitivity (So) and zero-g level (TyOff). The trim values are stored inside the device in non-volatile memory. Any time the device is turned on, the trim parameters are downloaded into the registers to be used during active operation. This allows the device to be used without further calibration. DocID023111 Rev 3 15/38 38
Application hints H3LIS331DL 4 Application hints Figure 5. H3LIS331DL electrical connections Vdd 16 14 10µF Vdd_IO 1 13 TOP VIEW INT 1 100nF 55 99 6 8 INT 2 O D SCL/SPC SDA/SDI/S SDO/SA0 CS GND Digital signal from/to signal controller. Signal levels are defined by proper selection of Vdd_IO AM12626V1 The device core is supplied through the Vdd line while the I/O pads are supplied through the Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 μF aluminum) should be placed as near as possible to pin 14 of the device (common design practice). All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to Figure 5). It is possible to remove Vdd maintaining Vdd_IO without blocking the communication bus, in this condition the measurement chain is powered off. The functionality of the device and the measured acceleration data are selectable and accessible through the I2C or SPI interfaces. When using the I2C, CS must be tied high. The functions, the threshold and the timing of the two interrupt pins (INT 1 and INT 2) can be completely programmed by the user through the I2C/SPI interface. 4.1 Soldering information The LGA package is compliant with the ECOPACK®, RoHS and “Green” standards. It is qualified for soldering heat resistance according to JEDEC J-STD-020C. Leave “pin 1 indicator” unconnected during soldering. Land pattern and soldering recommendations are available at www.st.com. 16/38 DocID023111 Rev 3
H3LIS331DL Digital interfaces 5 Digital interfaces The registers embedded inside the H3LIS331DL may be accessed through both the I2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The serial interfaces are mapped onto the same pads. To select/exploit the I2C interface, the CS line must be tied high (i.e. connected to Vdd_IO). Table 8. Serial interface pin description Pin name Pin description SPI enable CS I2C/SPI mode selection (1: I2C mode; 0: SPI enabled) SCL I2C serial clock (SCL) SPC SPI serial port clock (SPC) SDA I2C serial data (SDA) SDI SPI serial data input (SDI) SDO 3-wire interface serial data output (SDO) SA0 I2C less significant bit of the device address (SA0) SDO SPI serial data output (SDO) 2 5.1 I C serial interface The H3LIS331DL I2C is a bus slave. The I2C is employed to write data into registers whose content can also be read back. The relevant I2C terminology is given in the table below. Table 9. Serial interface pin description Term Description Transmitter The device which sends data to the bus Receiver The device which receives data from the bus The device which initiates a transfer, generates clock signals and terminates a Master transfer Slave The device addressed by the master There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bi-directional line used for sending and receiving the data to/from the interface. Both the lines are connected to Vdd_IO through a pull-up resistor embedded inside the H3LIS331DL. When the bus is free both lines are high. The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with normal mode. DocID023111 Rev 3 17/38 38
Digital interfaces H3LIS331DL 5.1.1 I2C operation The transaction on the bus is started through a START (ST) signal. A START condition is defined as a high-to-low transition on the data line while the SCL line is held high. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the START condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a START condition with its address. If they match, the device considers itself addressed by the master. The slave address (SAD) associated to the H3LIS331DL is 001100xb. The SDO/SA0 pad can be used to modify the less significant bit of the device address. If the SA0 pad is connected to the voltage supply, LSB is ‘1’ (address 0011001b) or else, if the SA0 pad is connected to ground, the LSB value is ‘0’ (address 0011000b). This solution allows the connection and addressing of two different accelerometers to the same I2C lines. Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line low so that it remains stable low during the high period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received. The I2C embedded inside the H3LIS331DL behaves like a slave device and the following protocol must be adhered to. After the START condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the 7 LSB represent the actual register address while the MSB enables address auto increment. If the MSB of the SUB field is ‘1’, the SUB (register address) is automatically increased to allow multiple data read/write. The slave address is completed with a Read/Write bit. If the bit is ‘1’ (read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write), the master transmits to the slave with the direction unchanged. Table 10 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations. Table 10. SAD+Read/Write patterns Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W Read 001100 0 1 00110001 (31h) Write 001100 0 0 00110000 (30h) Read 001100 1 1 00110011 (33h) Write 001100 1 0 00110010 (32h) Table 11. Transfer when master is writing one byte to slave Master ST SAD + W SUB DATA SP Slave SAK SAK SAK 18/38 DocID023111 Rev 3
H3LIS331DL Digital interfaces Table 12. Transfer when master is writing multiple bytes to slave Master ST SAD + W SUB DATA DATA SP Slave SAK SAK SAK SAK Table 13. Transfer when master is receiving (reading) one byte of data from slave Master ST SAD + W SUB SR SAD + R NMAK SP Slave SAK SAK SAK DATA Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP DAT DAT Slave SAK SAK SAK DATA A A Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit (MSB) first. If a receiver can’t receive another complete byte of data until it has performed some other function, it can hold the clock line SCL low to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left high by the slave. The master can then abort the transfer. A low-to-high transition on the SDA line while the SCL line is high is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition. In order to read multiple bytes, it is necessary to assert the most significant bit of the sub- address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of first register to be read. In the presented communication format MAK is master acknowledge and NMAK is no master acknowledge. 5.2 SPI bus interface The H3LIS331DL SPI is a bus slave. The SPI allows the writing and reading of the device registers. The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO. DocID023111 Rev 3 19/38 38
Digital interfaces H3LIS331DL Figure 6. Read and write protocol CS SPC SDI RW DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 MS AD5 AD4AD3 AD2 AD1 AD0 SDO DO7DO6DO5DO4DO3DO2DO1DO0 CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are respectively the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC. Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in the case of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS. bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In the latter case, the chip drives SDO at the start of bit 8. bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands. When 1, the address is auto-incremented in multiple read/write commands. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSB first). bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSB first). In multiple read/write commands further blocks of 8 clock periods are added. When the MS bit is ‘0’, the address used to read/write data remains the same for every block. When the MS bit is ‘1’ the address used to read/write data is increased at every block. The function and the behavior of SDI and SDO remain unchanged. 5.2.1 SPI read Figure 7. SPI read protocol CS SPC SDI RW MSAD5AD4AD3AD2AD1AD0 SDO DO7DO6DO5DO4DO3DO2DO1DO0 20/38 DocID023111 Rev 3
H3LIS331DL Digital interfaces The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, does not increment the address. When 1, increments the address in multiple reads. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSB first). bit 16-... : data DO(...-8). Further data in multiple byte reads. Figure 8. Multiple byte SPI read protocol (2-byte example) CS SPC SDI RW MS AD5AD4AD3AD2AD1AD0 SDO DO7DO6DO5DO4DO3DO2DO1DO0DO15DO14DO13DO12DO11DO10DO9DO8 5.2.2 SPI write Figure 9. SPI write protocol CS SPC SDI RW DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 MS AD5 AD4AD3 AD2 AD1 AD0 The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: WRITE bit. The value is 0. bit 1: MS bit. When 0, does not increment the address. When 1, increments the address in multiple writes. bit 2 -7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSB first). bit 16-...: data DI(...-8). Further data in multiple byte writes. DocID023111 Rev 3 21/38 38
Digital interfaces H3LIS331DL Figure 10. Multiple byte SPI write protocol (2-byte example) CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15DI14DI13DI12DI11DI10DI9 DI8 RW MSAD5AD4AD3AD2AD1AD0 5.2.3 SPI read in 3-wire mode 3-wire mode is entered by setting bit SIM (SPI serial interface mode selection) to ‘1’ in CTRL_REG4. Figure 11. SPI read protocol in 3-wire mode CS SPC SDI/O RW DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 MS AD5 AD4 AD3 AD2 AD1 AD0 The SPI read command is performed with 16 clock pulses: bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, does not increment the address. When 1, increments the address in multiple reads. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSB first). The multiple read command is also available in 3-wire mode. 22/38 DocID023111 Rev 3
H3LIS331DL Register mapping 6 Register mapping Table 15 provides a listing of the 8-bit registers embedded in the device and the related addresses. Table 15. Register address map Register address Name Type Default Comment Hex Binary Reserved (do not modify) 00 - 0E Reserved WHO_AM_I r 0F 000 1111 00110010 Dummy register Reserved (do not modify) 10 - 1F Reserved CTRL_REG1 rw 20 010 0000 00000111 CTRL_REG2 rw 21 010 0001 00000000 CTRL_REG3 rw 22 010 0010 00000000 CTRL_REG4 rw 23 010 0011 00000000 CTRL_REG5 rw 24 010 0100 00000000 HP_FILTER_RESET r 25 010 0101 Dummy register REFERENCE rw 26 010 0110 00000000 STATUS_REG r 27 010 0111 00000000 OUT_X_L r 28 010 1000 Output OUT_X_H r 29 010 1001 Output OUT_Y_L r 2A 010 1010 Output OUT_Y_H r 2B 010 1011 Output OUT_Z_L r 2C 010 1100 Output OUT_Z_H r 2D 010 1101 Output Reserved (do not modify) 2E - 2F Reserved INT1_CFG rw 30 011 0000 00000000 INT1_SRC r 31 011 0001 00000000 INT1_THS rw 32 011 0010 00000000 INT1_DURATION rw 33 011 0011 00000000 INT2_CFG rw 34 011 0100 00000000 INT2_SRC r 35 011 0101 00000000 INT2_THS rw 36 011 0110 00000000 INT2_DURATION rw 37 011 0111 00000000 Reserved (do not modify) 38 - 3F Reserved Registers marked as Reserved must not be changed as they contain the factory calibration values. Their content is automatically restored when the device is powered up. Writing to those registers may change calibration data and thus lead to improper functioning of the device. DocID023111 Rev 3 23/38 38
Register description H3LIS331DL 7 Register description The device contains a set of registers which are used to control its behavior and to retrieve acceleration data. The register address, consisting of 7 bits, is used to identify them and to write the data through the serial interface. 7.1 WHO_AM_I (0Fh) Table 16. WHO_AM_I register 0 0 1 1 0 0 1 0 Device identification register. This register contains the device identifier that for the H3LIS331DL is set to 32h. 7.2 CTRL_REG1 (20h) Table 17. CTRL_REG1 register PM2 PM1 PM0 DR1 DR0 Zen Yen Xen Table 18. CTRL_REG1 description Power mode selection. Default value: 000 PM2 - PM0 (000: power-down; Others: refer to Table 19) Data rate selection. Default value: 00 DR1, DR0 (00:50 Hz; Others: refer to Table 20) Z-axis enable. Default value: 1 Zen (0: Z-axis disabled; 1: Z-axis enabled) Y-axis enable. Default value: 1 Yen (0: Y-axis disabled; 1: Y-axis enabled) X-axis enable. Default value: 1 Xen (0: X-axis disabled; 1: X-axis enabled) The PM bits allow the user to select between power-down and two operating active modes. The device is in power-down mode when the PD bits are set to “000” (default value after boot). Table 19 shows all the possible power mode configurations and respective output data rates. Output data in the low-power mode are computed with the low-pass filter cutoff frequency defined by the DR1, DR0 bits. The DR bits, in normal mode operation, select the data rate at which acceleration samples are produced. In low-power modes they define the output data resolution. Table 20 shows all the possible configurations for the DR1 and DR0 bits. 24/38 DocID023111 Rev 3
H3LIS331DL Register description Table 19. Power mode and low-power output data rate configurations Output data rate [Hz] PM2 PM1 PM0 Power mode selection ODR LP 0 0 0 Power-down -- 0 0 1 Normal mode ODR 0 1 0 Low power 0.5 0 1 1 Low power 1 1 0 0 Low power 2 1 0 1 Low power 5 1 1 0 Low power 10 Table 20. Normal mode output data rate configurations and low-pass cutoff frequencies Output data rate [Hz] Low-pass filter cutoff DR1 DR0 ODR frequency [Hz] 0 0 50 37 0 1 100 74 1 0 400 292 1 1 1000 780 7.3 CTRL_REG2 (21h) Table 21. CTRL_REG2 register BOOT HPM1 HPM0 FDS HPen2 HPen1 HPCF1 HPCF0 Table 22. CTRL_REG2 description Reboot memory content. Default value: 0 BOOT (0: normal mode; 1: reboot memory content) High-pass filter mode selection. Default value: 00 HPM1, HPM0 (00: normal mode; Others: refer to Table 23) Filtered data selection. Default value: 0 FDS (0: internal filter bypassed; 1: data from internal filter sent to output register) High-pass filter enabled for interrupt 2 source. Default value: 0 HPen2 (0: filter bypassed; 1: filter enabled) DocID023111 Rev 3 25/38 38
Register description H3LIS331DL Table 22. CTRL_REG2 description (continued) High-pass filter enabled for interrupt 1 source. Default value: 0 HPen1 (0: filter bypassed; 1: filter enabled) HPCF1, High-pass filter cutoff frequency configuration. Default value: 00 HPCF0 (00: HPc=8; 01: HPc=16; 10: HPc=32; 11: HPc=64) The BOOT bit is used to refresh the content of the internal registers stored in the Flash memory block. At device power-up, the content of the Flash memory block is transferred to the internal registers related to trimming functions in order to permit correct operation of the device itself. If for any reason the content of the trimming registers is changed, it is sufficient to use this bit to restore the correct values. When the BOOT bit is set to ‘1’, the content of the internal Flash is copied inside the corresponding internal registers and it is used to calibrate the device. These values are factory trimmed and they are different for every accelerometer. They permit correct operation of the device and normally they do not have to be changed. At the end of the boot process the BOOT bit is set again to ‘0’. Table 23. High-pass filter mode configuration HPM1 HPM0 High-pass filter mode 0 0 Normalmode(resetreadingHP_RESET_FILTER) 0 1 Referencesignalforfiltering 1 0 Normalmode(resetreadingHP_RESET_FILTER) HPCF[1:0]. These bits are used to configure the high-pass filter cutoff frequency f which is t given by: f = ln1–-----1------- --f--s-- t HPc 2 The equation can be simplified to the following approximated equation: f f = ----------s--------- t 6HPc Table 24. High-pass filter cutoff frequency configuration f [Hz] f [Hz] f [Hz] f [Hz] t t t t HPcoeff2,1 Data rate = 50 Hz Data rate = 100 Hz Data rate = 400 Hz Data rate = 1000 Hz 00 1 2 8 20 01 0.5 1 4 10 10 0.25 0.5 2 5 11 0.125 0.25 1 2.5 26/38 DocID023111 Rev 3
H3LIS331DL Register description 7.4 CTRL_REG3 [interrupt CTRL register] (22h) Table 25. CTRL_REG3 register IHL PP_OD LIR2 I2_CFG1 I2_CFG0 LIR1 I1_CFG1 I1_CFG0 Table 26. CTRL_REG3 description Interrupt active high, low. Default value: 0 IHL (0: active high; 1: active low) Push-pull/open drain selection on interrupt pad. Default value 0. PP_OD (0: push-pull; 1: open drain) Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by LIR2 reading INT2_SRC itself. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) I2_CFG1, Data signal on INT 2 pad control bits. Default value: 00. I2_CFG0 (see Table 27) Latch interrupt request on the INT1_SRC register, with the INT1_SRC register LIR1 cleared by reading the INT1_SRC register. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) I1_CFG1, Data signal on INT 1 pad control bits. Default value: 00. I1_CFG0 (see Table 27) Table 27. Data signal on INT 1 and INT 2 pad I1(2)_CFG1 I1(2)_CFG0 INT 1(2) Pad 0 0 Interrupt 1 (2) source 0 1 Interrupt 1 source OR interrupt 2 source 1 0 Data ready 1 1 Boot running 7.5 CTRL_REG4 (23h) Table 28. CTRL_REG4 register BDU BLE FS1 FS0 0 0 0 SIM DocID023111 Rev 3 27/38 38
Register description H3LIS331DL Table 29. CTRL_REG4 description Block data update. Default value: 0 BDU (0: continuous update; 1: output registers not updated between MSB and LSB reading) Big/little endian data selection. Default value 0. BLE (0: data LSB @ lower address; 1: data MSB @ lower address) Full scale selection. Default value: 00. FS1, FS0 (00: ±100 g; 01: ±200 g; 11: ±400 g) SPI serial interface mode selection. Default value: 0. SIM (0: 4-wire interface; 1: 3-wire interface) The BDU bit is used to inhibit output register updates between the reading of upper and lower register parts. In default mode (BDU = ‘0’), the lower and upper register parts are updated continuously. When the BDU is activated (BDU = ‘1’), the content of the output registers is not updated until both MSB and LSB are read which avoids reading values related to different sample times. 7.6 CTRL_REG5 (24h) Table 30. CTRL_REG5 register 0 0 0 0 0 0 TurnOn1 TurnOn0 Table 31. CTRL_REG5 description TurnOn1, Turn-on mode selection for sleep-to-wake function. Default value: 00. TurnOn0 Turn-on bits are used for turning on the sleep-to-wake function. Table 32. Sleep-to-wake configuration TurnOn1 TurnOn0 Sleep-to-wake status 0 0 Sleep-to-wake function is disabled Turned on: The device is in low-power mode (ODR is defined in 1 1 CTRL_REG1) Setting TurnOn[1:0] bits to 11, the “sleep-to-wake” function is enabled. When an interrupt event occurs, the device is turned to normal mode, increasing the ODR to the value defined in CTRL_REG1. Although the device is in normal mode, CTRL_REG1 content is not automatically changed to “normal mode” configuration. 28/38 DocID023111 Rev 3
H3LIS331DL Register description 7.7 HP_FILTER_RESET (25h) Dummy register. Reading at this address zeroes instantaneously the content of the internal high-pass filter. If the high-pass filter is enabled, all three axes are instantaneously set to 0 g. This allows the settling time of the high-pass filter to be overcome. 7.8 REFERENCE (26h) Table 33. REFERENCE register Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0 Table 34. REFERENCE description Ref7 - Ref0 Reference value for high-pass filter. Default value: 00h. This register sets the acceleration value taken as a reference for the high-pass filter output. When the filter is turned on (at least one of the FDS, HPen2, or HPen1 bits is equal to ‘1’) and the HPM bits are set to “01”, filter-out is generated, taking this value as a reference. 7.9 STATUS_REG (27h) Table 35. STATUS_REG register ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA Table 36. STATUS_REG description X, Y and Z-axis data overrun. Default value: 0 ZYXOR (0: no overrun has occurred; 1: new data has overwritten the previous data before it was read) Z-axis data overrun. Default value: 0 ZOR (0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data) Y-axis data overrun. Default value: 0 YOR (0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous data) X-axis data overrun. Default value: 0 XOR (0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data) ZYXDA X, Y and Z-axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) DocID023111 Rev 3 29/38 38
Register description H3LIS331DL Table 36. STATUS_REG description (continued) ZDA Z-axis new data available. Default value: 0 (0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available) YDA Y-axis new data available. Default value: 0 (0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available) XDA X-axis new data available. Default value: 0 (0: new data for the X-axis is not yet available; 1: new data for the X-axis is available) 7.10 OUT_X_L (28h), OUT_X_H (29h) X-axis acceleration data. The value is expressed as two’s complement. 7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh) Y-axis acceleration data. The value is expressed as two’s complement. 7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh) Z-axis acceleration data. The value is expressed as two’s complement. 7.13 INT1_CFG (30h) Table 37. INT1_CFG register AOI 0 ZHIE ZLIE YHIE YLIE XHIE XLIE Table 38. INT1_CFG description AND/OR combination of interrupt events. Default value: 0. AOI (See Table 39) Enable interrupt generation on Z high event. Default value: 0 ZHIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on Z low event. Default value: 0 ZLIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) Enable interrupt generation on Y high event. Default value: 0 YHIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on Y low event. Default value: 0 YLIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) 30/38 DocID023111 Rev 3
H3LIS331DL Register description Table 38. INT1_CFG description (continued) Enable interrupt generation on X high event. Default value: 0 XHIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on X low event. Default value: 0 XLIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) Configuration register for interrupt 1 source. Table 39. Interrupt 1 source configurations AOI Interrupt mode 0 OR combination of interrupt events 1 AND combination of interrupt events 7.14 INT1_SRC (31h) Table 40. INT1_SRC register 0 IA ZH ZL YH YL XH XL Table 41. INT1_SRC description Interrupt active. Default value: 0 IA (0: no interrupt has been generated; 1: one or more interrupts have been generated) Z high. Default value: 0 ZH (0: no interrupt, 1: Z high event has occurred) Z low. Default value: 0 ZL (0: no interrupt; 1: Z low event has occurred) Y high. Default value: 0 YH (0: no interrupt, 1: Y high event has occurred) Y low. Default value: 0 YL (0: no interrupt, 1: Y low event has occurred) X high. Default value: 0 XH (0: no interrupt, 1: X high event has occurred) X low. Default value: 0 XL (0: no interrupt, 1: X low event has occurred) Interrupt 1 source register. Read-only register. Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1 pin) and allows the refreshment of data in the INT1_SRC register if the latched option is chosen. DocID023111 Rev 3 31/38 38
Register description H3LIS331DL 7.15 INT1_THS (32h) Table 42. INT1_THS register 0 THS6 THS5 THS4 THS3 THS2 THS1 THS0 Table 43. INT1_THS description THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000 7.16 INT1_DURATION (33h) Table 44. INT1_DURATION register 0 D6 D5 D4 D3 D2 D1 D0 Table 45. INT2_DURATION description D6 - D0 Duration value. Default value: 000 0000 The D6 - D0 bits set the minimum duration of the interrupt 2 event to be recognized. Duration steps and maximum values depend on the ODR chosen. 7.17 INT2_CFG (34h) Table 46. INT2_CFG register AOI 0 ZHIE ZLIE YHIE YLIE XHIE XLIE Table 47. INT2_CFG description AND/OR combination of interrupt events. Default value: 0. AOI (See Table 48) Enable interrupt generation on Z high event. Default value: 0 ZHIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on Z low event. Default value: 0 ZLIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) Enable interrupt generation on Y high event. Default value: 0 YHIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on Y low event. Default value: 0 YLIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) 32/38 DocID023111 Rev 3
H3LIS331DL Register description Table 47. INT2_CFG description (continued) Enable interrupt generation on X high event. Default value: 0 XHIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) Enable interrupt generation on X low event. Default value: 0 XLIE (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) Configuration register for interrupt 2 source. Table 48. Interrupt mode configuration AOI Interrupt mode 0 OR combination of interrupt events 1 AND combination of interrupt events 7.18 INT2_SRC (35h) Table 49. INT2_SRC register 0 IA ZH ZL YH YL XH XL Table 50. INT2_SRC description Interrupt active. Default value: 0 IA (0: no interrupt has been generated; 1: one or more interrupts have been generated) Z high. Default value: 0 ZH (0: no interrupt, 1: Z high event has occurred) Z low. Default value: 0 ZL (0: no interrupt; 1: Z low event has occurred) Y high. Default value: 0 YH (0: no interrupt, 1: Y high event has occurred) Y low. Default value: 0 YL (0: no interrupt, 1: Y low event has occurred) X high. Default value: 0 XH (0: no interrupt, 1: X high event has occurred) X Low. Default value: 0 XL (0: no interrupt, 1: X low event has occurred) Interrupt 2 source register. Read-only register. Reading at this address clears the INT2_SRC IA bit (and the interrupt signal on the INT 2 pin) and allows the refreshment of data in the INT2_SRC register if the latched option is chosen. DocID023111 Rev 3 33/38 38
Register description H3LIS331DL 7.19 INT2_THS (36h) Table 51. INT2_THS register 0 THS6 THS5 THS4 THS3 THS2 THS1 THS0 Table 52. INT2_THS description THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000 7.20 INT2_DURATION (37h) Table 53. INT2_DURATION register 0 D6 D5 D4 D3 D2 D1 D0 Table 54. INT2_DURATION description D6 - D0 Duration value. Default value: 000 0000 The D6 - D0 bits set the minimum duration of the interrupt 2 event to be recognized. Duration time steps and maximum values depend on the ODR chosen. 34/38 DocID023111 Rev 3
H3LIS331DL Package information 8 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. DocID023111 Rev 3 35/38 38
Package information H3LIS331DL Table 55. TFLGA 3x3x1.0 mm3 16L mechanical data mm Dim. Min. Typ. Max. A1 1 A2 0.785 A3 0.200 D1 2.850 3.000 3.150 E1 2.850 3.000 3.150 L1 1.000 1.060 L2 2.000 2.060 N1 0.500 N2 1.000 M 0.040 0.100 0.160 P1 0.875 P2 1.275 T1 0.290 0.350 0.410 T2 0.190 0.250 0.310 d 0.150 k 0.050 Figure 12. TFLGA 3x3x1.0 mm3 16L mechanical drawing 7983231_L 36/38 DocID023111 Rev 3
H3LIS331DL Revision history 9 Revision history Table 56. Document revision history Date Revision Changes 20-Apr-2012 1 Initial release Document status promoted from preliminary data to production data 16-Jul-2013 2 Updated Table 3 Minor textual updates 16-Sep-2013 3 Updated Company information appearing on last page of document DocID023111 Rev 3 37/38 38
H3LIS331DL Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 38/38 DocID023111 Rev 3
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: S TMicroelectronics: H3LIS331DLTR H3LIS331DL