数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
CL05C080CB5NCNC产品简介:
ICGOO电子元器件商城为您提供CL05C080CB5NCNC由SAMSUNG设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 CL05C080CB5NCNC价格参考。SAMSUNGCL05C080CB5NCNC封装/规格:陶瓷电容器, 8pF ±0.25pF 50V 陶瓷电容器 C0G,NP0 0402(1005 公制)。您可以下载CL05C080CB5NCNC参考资料、Datasheet数据手册功能说明书,资料中有CL05C080CB5NCNC 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | CAP CER 8PF 50V NP0 0402 |
产品分类 | |
品牌 | Samsung Electro-Mechanics America, Inc |
数据手册 | |
产品图片 | |
产品型号 | CL05C080CB5NCNC |
rohs | 无铅 / 符合限制有害物质指令(RoHS)规范要求 |
RoHS指令信息 | |
产品系列 | CL |
其它名称 | 1276-1613-1 |
包装 | 剪切带 (CT) |
厚度(最大值) | 0.022"(0.55mm) |
大小/尺寸 | 0.039" 长 x 0.020" 宽(1.00mm x 0.50mm) |
安装类型 | 表面贴装,MLCC |
容差 | ±0.25pF |
封装/外壳 | 0402(1005 公制) |
工作温度 | -55°C ~ 125°C |
应用 | 通用 |
引线形式 | - |
引线间距 | - |
标准包装 | 1 |
温度系数 | C0G,NP0 |
特性 | - |
特色产品 | http://www.digikey.cn/product-highlights/cn/zh/samsung-mlcc-ceramic-capacitors/4040 |
电压-额定 | 50V |
电容 | 8.0pF |
等级 | - |
高度-安装(最大值) | - |
General Multilayer Ceramic Capacitors MLCC is an electronic part that temporarily stores an electricalcharge and the most prevalent type of capacitor today. New technologies have enabled the MLCC manufacturers to follow the trend dictated by smaller and smaller electronic devices such as Cellular telephones, Computers, DSC, DVC General Features -Miniature Size -Wide Capacitance and Voltage Range -Tape & Reel for Surface Mount Assembly -Low ESR Applications -General Electronic Circuit Part Numbering G e n CL 10 B 104 K B 8 N N N C e r ●1 ●2 ●3 ●4 ●5 ●6 ●7 ●8 ●9 ●10 ●11 a l C a ●1 Samsung Multilayer Ceramic Capacitor ●7 Thickness Option p a ●2 Size(mm) ●8 Product & Plating Method ci t o ●3 Capacitance Temperature Characteristic ●9 Samsung Control Code r s ●4 Nominal Capacitance ●108Reserved For Future Use ●5 Capacitance Tolerance ●118Packaging Type ●6 Rated Voltage ●1 Samsung Multilayer Ceramic Capacitor ●2 SIZE(mm) Code EIA CODE Size(mm) 03 0201 0.6 × 0.3 05 0402 1.0 × 0.5 10 0603 1.6 × 0.8 21 0805 2.0 × 1.25 31 1206 3.2 × 1.6 32 1210 3.2 × 2.5 43 1812 4.5 × 3.2 55 2220 5.7 × 5.0
●3 CAPACITANCE TEMPERATURE CHARACTERISTIC Temperature Code Temperature Characteristics Range C COG C△ 0±30(ppm/℃) P P2H P△ -150±60 R R2H R△ -220±60 S Class Ⅰ S2H S△ -330±60 -55 ~ +125℃ T T2H T△ -470±60 U U2J U△ -750±60 L S2L S△ +350 ~ -1000 A X5R X5R ±15% -55 ~ +85℃ B X7R X7R ±15% -55 ~ +125℃ Class Ⅱ X X6S X6S ±22% -55 ~ +105℃ F Y5V Y5V +22 ~ -82% -30 ~ +85℃ ※Temperature Characteristic G e Temperature n Below 2.0pF 2.2 ~ 3.9pF Above 4.0pF Above 10pF e Characteristics r a CΔ C0G C0G C0G C0G l C a PΔ - P2J P2H P2H p a c RΔ - R2J R2H R2H i t o SΔ - S2J S2H S2H rs TΔ - T2J T2H T2H UΔ - U2J U2J U2J J : ±120PPM/℃, H : ±60PPM/℃, G : ±30PPM/℃ ●4 NOMINAL CAPACITANCE Nominal capacitance is identified by 3 digits. The first and second digits identify the first and second significant figures of the capacitance. The third digit identifies the multiplier. 'R' identifies a decimal point. ● Example Code Nominal Capacitance 1R5 1.5pF 103 10,000pF, 10nF, 0.01μF 104 100,000pF, 100nF, 0.1μF
●5 CAPACITANCE TOLERANCE Code Tolerance Nominal Capacitance A ±0.05pF B ±0.1pF Less than 10pF C ±0.25pF (Including 10pF) D ±0.5pF F ±1pF F ±1% G ±2% J ±5% More than 10pF K ±10% M ±20% Z +80, -20% G e n ●6 RATED VOLTAGE e r a l C a p a c Code Rated Voltage Code Rated Voltage i t o r R 4.0V D 200V s Q 6.3V E 250V P 10V G 500V O 16V H 630V A 25V I 1,000V L 35V J 2,000V B 50V K 3,000V C 100V
●7 THICKNESS OPTION Size Code Thickness(T) Size Code Thickness(T) 0201(0603) 3 0.30±0.03 F 1.25±0.20 0402(1005) 5 0.50±0.05 H 1.6±0.20 0603(1608) 8 0.80±0.10 1812(4532) I 2.0±0.20 A 0.65±0.10 J 2.5±0.20 C 0.85±0.10 L 3.2±0.30 0805(2012) F 1.25±0.10 F 1.25±0.20 Q 1.25±0.15 H 1.6±0.20 Y 1.25±0.20 2220(5750) I 2.0±0.20 C 0.85±0.15 J 2.5±0.20 1206(3216) F 1.25±0.15 L 3.2±0.30 H 1.6±0.20 G F 1.25±0.20 e n H 1.6±0.20 e r a l 1210(3225) I 2.0±0.20 C a p J 2.5±0.20 a c i V 2.5±0.30 to r s ●8 PRODUCT & PLATING METHOD Code Electrode Termination Plating Type A Pd Ag Sn_100% N Ni Cu Sn_100% G Cu Cu Sn_100% ●9 SAMSUNG CONTROL CODE Code Description of the code Code Description of the code A Array (2-element) N Normal B Array (4-element) P Automotive C High - Q L LICC
●10 RESERVED FOR FUTURE USE 6 Code Description of the code N Reserved for future use ●11 PACKAGING TYPE Code Packaging Type Code Packaging Type B Bulk F Embossing 13" (10,000EA) P Bulk Case L Paper 13" (15,000EA) C Paper 7" O Paper 10" D Paper 13" (10,000EA) S Embossing 10" E Embossing 7" APPEARANCE AND DIMENSION G e n e r L a l C a p a c i t o r T W s BW DIMENSION ( mm ) CODE EIA CODE L W T (MAX) BW 03 0201 0.6 ± 0.03 0.3 ± 0.03 0.33 0.15 ± 0.05 05 0402 1.0 ± 0.05 0.5 ± 0.05 0.55 0.2 +0.15/-0.1 10 0603 1.6 ± 0.1 0.8 ± 0.1 0.9 0.3 ± 0.2 21 0805 2.0 ± 0.1 1.25 ± 0.1 1.35 0.5 +0.2/-0.3 3.2 ± 0.15 1.6 ± 0.15 1.40 0.5 +0.2/-0.3 31 1206 3.2 ± 0.2 1.6 ± 0.2 1.8 0.5 +0.3/-0.3 3.2 ± 0.3 2.5 ± 0.2 2.7 32 1210 0.6 ± 0.3 3.2 ± 0.4 2.5 ± 0.3 2.8 43 1812 4.5 ± 0.4 3.2 ± 0.3 3.5 0.8 ± 0.3 55 2220 5.7 ± 0.4 5.0 ± 0.4 3.5 1.0 ± 0.3
RELIABILTY TEST CONDITION NO ITEM PERFORMANCE TEST CONDITION 1 Appearance No Abnormal Exterior Appearance Through Microscope(×10) 10,000㏁ or 500㏁·㎌ whichever is smaller Insulation 2 Apply the Rated Voltage For 60 ~ 120 Sec. Resistance Rated Voltage is below 16V ; 10,000㏁ or 100㏁·㎌ whichever is smaller ClassⅠ: 300% of the Rated Voltage for 1~5 sec. Withstanding No Dielectric Breakdown or 3 ClassⅡ:250% of the Rated Voltage for 1~5 sec. is applied Voltage Mechanical Breakdown with less than 50㎃ current Capacitance Frequency Voltage Class Within the specified tolerance ≤1,000㎊ 1㎒±10% Ⅰ 0.5 ~ 5 Vrms Capacita >1,000㎊ 1㎑±10% 4 nce Capacitance Frequency Voltage Class Within the specified tolerance ≤10㎌ 1㎑±10% 1.0±0.2Vrms Ⅱ >10㎌ 120㎐±20% 0.5±0.1Vrms Capacitance ≥ 30㎊ : Q ≥1,000 Capacitance Frequency Voltage Class 5 Q < 30㎊: Q ≥400 +20C ≤1,000㎊ 1㎒±10% Ⅰ 0.5 ~ 5 Vrms ( C : Capacitance ) >1,000㎊ 1㎑±10% 1. Characteristic : A(X5R), B(X7R), X(X6S) Capacitance Frequency Voltage ≤10㎌ 1㎑±10% 1.0±0.2Vrms G Rated Voltage Spec e ≥25V 0.025 max >10㎌ 120㎐±20% 0.5±0.1Vrms n e 16V 0.035 max ra l 10V 0.05 max C 6.3V 0.05 max/ 0.10max*1 *1. 0201 C≥0.022uF, 0402 C≥0.22uF, 0603 C≥2.2uF, a 0805 C≥4.7uF, 1206 C≥10uF, 1210 C≥22uF, p a 1812 C≥47uF, 2220 C≥100uF, c 2. Characteristic : F(Y5V) it All Low Profile Capacitors (P.16). o *2.. 0603 C≥0.47uF, 0805 C≥1uF r Class Rated Voltage Spec s 6 Tanδ *3. 0402 C≥0.033uF, 0603 C>0.1uF Ⅱ 50V 0.05 max, 0.07max*2 All 0805, 1206 size, 1210 C≤ 6.8uF 35V 0.07 max *4.. 1210 C>6.8uF 0.05 max/ 25V *5.. 0402 C≥0.22uF 0.07 max*3/ 0.09max*4 *6.. All 1812 size 16V 0.09 max/ 0.125max*5 10V 0.125 max/ 0.16max*6 6.3V 0.16max
RELIABILTY TEST CONDITION NO ITEM PERFORMANCE TEST CONDITION Capacitance shall be measured by the steps shown in the following table. Temp. Coefficient Characteristics (PPM/℃) Step Temp.(℃) C0G 0 ± 30 1 25 ± 2 PH -150 ± 60 2 Min. operating temp. ± 2 Class RH -220 ± 60 Ⅰ 3 25 ± 2 SH -330 ± 60 4 Max. operating temp ± 2 TH -470 ± 60 5 25 ± 2 UL -750 ± 120 (1) Class Ⅰ SL +350 ~ -1000 Temperature Coefficient shall be calculated from Temperature the formula as below. 7 Characteristics Temp, Coefficient = C2 - C1 × 106 [ppm/℃] ofCapacitance C1×△T C1; Capacitance at step 3 C2: Capacitance at 85℃ Capacitance Change Characteristics with No Bias △T: 60℃(=85℃-25℃) Class A(X5R)/ ±15% B(X7R) (2) CLASS Ⅱ Ⅱ G X(X6S) ±22% Capacitance Change shall be calculated from the e F(Y5V) +22% ~ -82% formula as below. n e △C = C2 - C1 × 100(%) ra C1 l C C1; Capacitance at step 3 a p C2: Capacitance at step 2 or 4 a c Apply 500g.f* Pressure for 10±1 sec. i t * 200g.f for 0201 case size. o r s Adhesive Strength No IndicationOf Peeling Shall Occur On The 8 of Termination Terminal Electrode. 500g.f Bending limit ; 1mm Apperance No mechanical damage shall occur. Test speed ; 1.0mm/SEC. Keep the test board at the limit pointin 5 sec., Characteristics Capacitance Change Then measure capacitance. Within ±5% or ± 0. Class I 5 pF whichever is 20 R=230 larger Bending 50 9 Strength A(X5R)/ Capacitance B(X7R)/ Within ±12.5% ○ ○ X(X6S) Bending limit Class II 45±1 45±1 F(Y5V) Within ±30%
RELIABILTY TEST CONDITION NO ITEM PERFORMANCE TEST CONDITION More Than 75% of theterminal surface is to Solder Sn-3Ag-0.5Cu 63Sn-37Pb be soldered newly, So metalpart does not Solder come out or dissolve 245±5℃ 235±5℃ Temp. 10 Solderability Flux RMA Type Dip Time 3±0.3 sec. 5±0.5 sec. Pre-heating at 80~120℃ for 10~30 sec. Apperance No mechanical damage shall occur. Solder Temperature : 270±5℃ Characteristics Capacitance Change Dip Time : 10±1 sec. Each termination shall be fully immersed and Within ±2.5% or preheated as below : Class Ⅰ ±0.25㎊ whichever is larger Capacitance STEP TEMP.(℃) TIME(SEC.) A(X5R)/ Within ±7.5% B(X7R) 1 80~100 60 Class Ⅱ X(X6S) Within ±15% 2 150~180 60 Resistance to F Within ±20% Leave the capacitor in ambientcondition for 11 Soldering heat Capacitance ≥30㎊ : Q≥ 1000 specified time* before measurement Q <30㎊ : Q≥ 400+20×C * 24 ± 2 hours (Class Ⅰ) (Class Ⅰ) (C: Capacitance) 24 ± 2 hours (Class Ⅱ) G e n Tanδ e Within the specified initial value (Class Ⅱ) ra l Insulation C Within the specified initial value a Resistance p a Withstanding c Within the specified initial value i Voltage t o r s Appearance No mechanical damage shall occur. Characteristics Capacitance Change The capacitorshall be subjected to a Within ±2.5% or Class Ⅰ ±0.25㎊ whichever is Harmonic Motion having a total amplitude of 1.5mm changing frequency from 10Hz to 55Hz larger Capacitance and back to 10Hz In 1 min. A(X5R)/ Within ±5% Class B(X7R) Vibration Repeatthis for 2hours each in 3 mutually 12 Ⅱ X(X6S) Within ±10% Test perpendicular directions F(Y5V) Within ±20% Q Within the specified initial value (Class Ⅰ) Tanδ Within the specified initial value (Class Ⅱ) Insulation Within the specified initial value Resistance
RELIABILTY TEST CONDITION NO ITEM PERFORMANCE TEST CONDITION Appearance No mechanical damage shall occur. Temperature : 40±2 ℃ Characteristics Capacitance Change Relative humidity : 90~95 %RH Within ±5.0% or ±0.5㎊ Duration time : 500 +12/-0 hr. Class Ⅰ whichever is larger Leave the capacitor in ambient Capacitance A(X5R)/ condition for specified time* before Class B(X7R)/ Within ±12.5% measurement. Ⅱ X(X6S) CLASSⅠ : 24±2 Hr. F(Y5V) Within ±30% CLASSⅡ : 24±2 Hr. Capacitance ≥ 30㎊ : Q≥ 350 Q Humidity 10≤ Capacitance <30㎊ : Q≥ 275 + 2.5×C CLASSⅠ 13 (Steady Capacitance < 10pF : Q≥ 200 + 10×C (C: Capacitance) State) 1. Characteristic : A(X5R), 2. Characteristic : F(Y5V) B(X7R) 0.05max (16V and over) 0.075max (25V and over) Tanδ 0.075max (10V) 0.1max (16V, C<1.0㎌) CLASS Ⅱ 0.075max 0.125max(16V, C≥1.0㎌) (6.3V except Table 1) 0.15max (10V) 0.125max* 0.195max (6.3V) (refer to Table 1) G Insulation e 1,000 ㏁ or 50㏁·㎌ whichever is smaller. n Resistance e r Appearance No mechanical damage shall occur. AppliedVoltage : rated voltage a l Temperature : 40±2℃ C Characteristics Capacitance Change a Humidity : :90~95%RH p Within ±5.0% or ±0.5㎊ Duration Time : 500+12/-0Hr. a Class Ⅰ c whichever is larger Charge/Discharge Current : 50㎃ max. i t o A(X5R)/ Within ±12.5% r s Perform the initial measurement according to Capacitance B(X7R)/ Within ±12.5% Note1. X(X6S) Within ±30% Class Ⅱ Within ±30% Perform the final measurement according to F(Y5V) Within ±30% Note2. Moisture Q Capacitance ≥30㎊ : Q≥ 200 14 Resistance (Class Ⅰ) Capacitance <30㎊ : Q≥ 100 + 10/3×C (C: Capacitance) 1. Characteristic : A(X5R), 2. Characteristic : F(Y5V) B(X7R) 0.05max (16V and over) 0.075max (25V and over) 0.075max (10V) 0.1max (16V, C<1.0㎌) 0.075max 0.125max(16V, C≥1.0㎌) Tanδ (Class Ⅱ) (6.3V except Table 1) 0.15max (10V) 0.195max (6.3V) 0.125max* (refer to Table 1) X(X6S) 0.11max (6.3V and below) Insulation 500 ㏁ or 25㏁·㎌ whichever is smaller. Resistance
RELIABILTY TEST CONDITION NO ITEM PERFORMANCE TESTCONDITION AppliedVoltage :200%*ofthe rated voltage Appearance No mechanical damageshall occur. Temperature :max. operating temperature Characteristics Capacitance Change Duration Time :1000+48/-0Hr. Within±3%or ±0.3㎊, Charge/Discharge Current:50㎃max. Class Ⅰ Whichever is larger *refer to table(3) :150%/100%of the rated A(X5R)/ Capacitance Within±12.5% voltage B(X7R) Class Ⅱ X(X6S) Within±25% Performthe initial measurement according to Within±30% Note1 for Class Ⅱ F(Y5V) Within ±30% Capacitance ≥30㎊ : Q ≥ 350 Q Performthe final measurement according to 10≤ Capacitance<30 ㎊ : Q ≥ 275+ 2.5×C (Class Ⅰ) Note2. Capacitance < 10㎊:Q ≥200 +10×C(C: Capacitance) High 1. Characteristic : A(X5R), 2. Characteristic : F(Y5V) 15 Temperature B(X7R) Resistance 0.05max 0.075max (16V andover) (25V andover) G 0.075max (10V) 0.1max(16V, C<1.0㎌) e n 0.075max 0.125max(16V,C≥1.0㎌) e Tanδ r a (Class Ⅱ) (6.3V exceptTable1) 0.15max (10V) l C 0.125max* 0.195max (6.3V) a p (refer toTable 1) a c i t o r X(X6S) 0.11max (6.3Vand below) s Insulation 1,000 ㏁or 50㏁·㎌ whichever is smaller. Resistance Appearance No mechanical damageshall occur. Capacitor shall besubjectedto 5cycles. Conditionfor 1 cycle : Characteristics Capacitance Change Within±2.5%or ±0.25㎊ Step Temp.(℃) Time(min.) Class Ⅰ Whichever is larger Min. operating 1 30 temp.+0/-3 Capacitance A(X5R)/ Within±7.5% Class B(X7R)/ 2 25 2~3 Temperature Ⅱ X(X6S) Within±15% Max. operating 16 3 30 Cycle temp.+3/-0 F(Y5V) Within±20% 4 25 2~3 Q Withinthe specifiedinitial value (Class Ⅰ) Leave thecapacitor in ambientcondition Tanδ for specifiedtime* before measurement Withinthe specifiedinitial value (Class Ⅱ) * 24 ±2 hours (Class Ⅰ) 24 ±2 hours (Class Ⅱ) Insulation Withinthe specifiedinitial value Resistance
RELIABILTY TEST CONDITION Recommended Soldering Method Size Temperature Condition Capacitance inch (mm) Characteristic Flow Reflow 0201 (0603) - - - ○ 0402 (1005) Class I - ○ ○ 0603 (1608) C < 1㎌ ○ ○ Class II C ≥ 1㎌ - ○ Class I - ○ ○ Recommended 18 C < 4.7㎌ ○ ○ Soldering Method 0805 (2012) Class II C ≥ 4.7㎌ - ○ By Size & Capacitance Array - - ○ Class I - ○ ○ C < 10㎌ ○ ○ 1206 (3216) Class II C ≥ 10㎌ - ○ Array - - ○ 1210 (3225) ○ 1808 (4520) ○ - - - 1812 (4532) ○ G e 2220 (5750) ○ n e r a Note1.Initial Measurement For ClassⅡ l C Perform the heat treatment at150℃+0/-10℃for 1 hour. ThenLeave the capacitorin ambient condition for 48±4 hours before measurement. a Then perform the measurement. p a c i t Note2.Latter Measurement o r 1. CLASSⅠ s Leave the capacitor in ambient condition for 24±2 hours before measurement Then perform the measurement. 2. Class Ⅱ Perform the heat treatment at150℃+0/-10℃for 1 hour. ThenLeave the capacitorin ambient condition for 48±4 hours before measurement. Then perform the measurement. *Table1. *Table2. *Table3. Tanδ 0.125max* High Temperature Resistance test High Temperature Resistance test 0201 C ≥0.022㎌ ΔC (Y5V) ± 30% Applied 100% of the rated 150% of the rated 0402 C ≥0.22㎌ 0402 C ≥0.47㎌ Voltage voltage voltage 0603 C ≥2.2㎌ 0603 C ≥2.2㎌ 0201 C ≥0.1㎌ 0201 C ≥0.022㎌ CABl(a(XXs57sRRⅡ)), 011822001560 CCC ≥≥≥412.027..㎌00㎌㎌ CFl(aYs5sVⅡ) 011822001560 CCC ≥≥≥412.027..㎌00㎌㎌ CA(laXs5sRⅡ), 000468000235 CCC ≥≥≥142..207.㎌㎌0㎌ 000468000235 CCC ≥≥≥024...4277㎌㎌㎌ 1812 C ≥47.0㎌ 1812 C ≥47.0㎌ B(X7R), 1206 C ≥47.0㎌ 1206 C ≥10.0㎌ 2220 C ≥100.0㎌ 2220 C ≥100.0㎌ X(X6S), 1210 C ≥100.0㎌ 1210 C ≥22.0㎌ All Low Profile F(Y5V) All Low Profile 1812 C ≥47.0㎌ Capacitors (P.16). Capacitors (P.16). 2220 C ≥100.0㎌ Note3.All Size In Reliability Test Condition Section is "inch"
PACKAGING ● CARDBOARD PAPER TAPE (4mm) Feeding Hole Chip Inserting Hole D E A F W B t P0 P2 P1 unit : mm Symbol A B W F E P1 P2 P0 D t Type D 0603 1.1 1.9 i (1608) ±0.2 ±0.2 m e 0805 1.6 2.4 8.0 3.5 1.75 4.0 2.0 4.0 Φ1.5 1.1 n G (2012) ±0.2 ±0.2 ±0.3 ±0.05 ±0.1 ±0.1 ±0.05 ±0.1 +0.1/-0 Below s e i n o 1206 2.0 3.6 er (3216) ±0.2 ±0.2 a n l C a p ● CARDBOARD PAPER TAPE (2mm) a c i t o r s Feeding Hole Chip Inserting Hole D E A F W B t P0 P2 P1 unit : mm Symbol A B W F E P1 P2 P0 D t Type D i 0201 0.38 0.68 0.37 m (0603) ±0.03 ±0.03 ±0.03 e 8.0 3.5 1.75 2.0 2.0 4.0 Φ1.5 n ±0.3 ±0.05 ±0.1 ±0.05 ±0.05 ±0.1 +0.1/-0.03 s i 0402 0.62 1.12 0.6 o (1005) ±0.04 ±0.04 ±0.05 n
PACKAGING ● EMBOSSED PLASTIC TAPE Feeding Hole Chip inserting Hole D E A F W B t1 P0 P2 P1 t0 unit : mm Symbol A B W F E P1 P2 P0 D t1 t0 Type 0805 1.45 2.3 (2012) ±0.2 ±0.2 1206 1.9 3.5 8.0 3.5 4.0 2.5 D (3216) ±0.2 ±0.2 ±0.3 ±0.05 ±0.1 max i m 1210 2.9 3.7 e (3225) ±0.2 ±0.2 1.75 2.0 4.0 Φ1.5 0.6 n +0.1/-0 s 1808 2.3 4.9 ±0.1 ±0.05 ±0.1 Below G i (4520) ±0.2 ±0.2 e on 1812 3.6 4.9 12.0 5.60 8.0 3.8 n (4532) ±0.2 ±0.2 ±0.3 ±0.05 ±0.1 max e r 2220 5.5 6.2 a (5750) ±0.2 ±0.2 l C a ● TAPING SIZE p a c i t o Empty Section Empty Section Loading Section r s 45 Pitch Packed Part 50 Pitch 35 Pitch END START Cardboard Embossed Type Symbol Size Symbol Size Paper Tape Plastic Tape All Size ≤3216 0201(0603) 10,000 1210(3225),1808(4520) 2,000 (t≤1.6mm) 7" Reel C 0402(1005) 10,000 E 1210(3225)(t≥2.0mm) 1,000 OTHERS 4,000 1808(4520)(t≥2.0mm) 1,000 10" Reel O - 10,000 - - - All Size ≤3216 0402(1005) 50,000 1210(3225),1808(4520) 10,000 D (t<1.6mm) 1210(3225)(1.6≤t<2.0mm) OTHERS 10,000 8,000 1206(3216)(1.6≤t) 13" Reel F 1210(3225),1808(4520) 0603(1608) 10,000 or 15,000 (t≥2.0mm) 4,000 L 0805(2012) 15,000 or 1812(4532)(t≤2.0mm) 4,000 (t≤0.85mm) 10,000(Option) 1206(3216) 1812(4532)(t>2.0mm) 10,000 2,000 (t≤0.85mm) 5750(2220)
PACKAGING ● REEL DIMENSION E C B R D W t A G e n e unit : mm ra l C a Symbol A B C D E W t R p a c 7" Reel φ180+0/ -3 φ60+1/ -3 1.2±0.2 i t φ13±0.3 25±0.5 2.0±0.5 9±1.5 1.0 o 13" Reel φ330±2.0 φ80+1/ -3 2.2±0.2 rs
● BULK CASE PACKAGING -Bulk case packaging can reduce the stock space and transportation costs. -The bulk feeding system can increase the productivity. -It can eliminate the components loss. A B T C D E W G F G e n e r H a l L C I a p a c i t o r s unit : mm Symbol A B T C D E Dimension 6.8±0.1 8.8±0.1 12±0.1 1.5+0.1/-0 2+0/-0.1 3.0+0.2/-0 Symbol F W G H L I Dimension 31.5+0.2/-0 36+0/-0.2 19±0.35 7±0.35 110±0.7 5±0.35 ● QUANTITY OF BULK CASE PACKAGING unit : pcs 0805(2012) Size 0402(1005) 0603(1608) T=0.65mm T=0.85mm Quantity 50,000 10,000 or 15,000 10,000 5,000 or 10,000
APPLICATION MANUAL ● ELECTRICAL CHARACTERISTICS ▶ CAPACITANCE - TEMPERATURE CHARACTERISTICS %% CC %% CC 88 4400 66 2200 44 XX55RR SS22LL 22 --6600 --4400 --2200 2255 4400 6600 8800 110000XX77RR112200 --5555 --4400 --2200 2255 4400 6600 8800 110000 112255 CCOOGG --2200 TTeemmpp..((ooooCC)) --22 --4400 --44 UU22JJ YY55VV --6600 --66 --88 --8800 --1100 ▶ CAPACITANCE -DCVOLTAGE CHARACTERISTICS ▶CAPACITANCE CHANGE - AGING 2200 CC00GG 1100 CC %% CCOOGG G 00 55 XX77RR//XX55RR e --1100 XX77RR 5500VV n e --2200 r XX77RR 1166VV a --3300 1100 l --4400 C XX55RR 5500VV --5500 CC a ----67670000 /C [%/C [%ΔΔ1155 YY55VV pac --8800 YY55VV ]] ito --9900 rs --110000 1100 2200 3300 4400VV dd cc 5500 11 1100 110000 11000000 1100000000 TTiimmee((hhrr)) ▶ IMPEDANCE - FREQUENCY CHARACTERISTICS Ohm C0G Ohm X7R/X5R/Y5V 100 100 0.001㎌ 0.01㎌ 10 10 0.1㎌ 1 1 10pF 100pF 0.1 0.1 1000pF 0.01 0.01 1M1.HEz+06 101M.EH+z07 110.E0+M0H8z 11.EG+H0z9 11.0EG+H1z0 11.ME+H0z6 101M.EH+z07 110.0EM+H08z 11G.EH+z09
● STORAGE CONDITION ▶ Storage Environment The electrical characteristics of MLCCswere degraded by the environment of high temperature or humidity. Therefore, the MLCCsshall be stored in the ambient temperature and the relative humidity of less than 40℃and 70%, respectively. Guaranteed storage period is within 6 months from the outgoing date of delivery. ▶ Corrosive Gases Since the solderabilityof the end termination in MLCC was degraded by a chemical atmosphere such as chlorine, acid or sulfide gases, MLCCsmust be avoid from these gases. ▶ Temperature Fluctuations Since dew condensation may occur by the differences in temperature when the MLCCsare taken G out of storage, it is important to maintain the temperature-controlled environment. e n e r a l C a ● DESIGN OF LAND PATTERN p a c i t o r s When designing printed circuit boards, the shape and size of thelands must allow for the proper amount of solder on the capacitor. The amount of solder at the end terminations has a direct effect on the crack. The crack in MLCC will be easily occurred by the tensile stress which was due to too much amount of solder. In contrast, if too little solder is applied, the termination strength will be insufficiently. Use the following illustrations as guidelines for proper land design. Recommendation of Land Shape and Size. Solder Resist Solder Resist T W b a Solder Land 2/3W < b < W 2/3T < a < T
● ADHESIVES When flow soldering the MLCCs, apply the adhesive in accordance with the following conditions. ▶ Requirements for Adhesives They must have enough adhesion, so that, the chips will not falloff or move during the handling of the circuit board. They must maintain their adhesive strength when exposed to soldering temperature. They should not spread or run when applied to the circuit board. They should harden quickly. They should not corrode the circuit board or chip material. They should be a good insulator. They should be non-toxic, and not produce harmful gases, nor be harmful when touched. ▶ Application Method It is important to use the proper amount of adhesive. Too littleand much adhesive will cause poor adhesion and overflow into the land, respectively. G e Solder Resist n e r Land a a a b l unit : mm C a p Type 21 31 a PCB c i a 0.2 min 0.2 min t o r s b 70~100㎛ 70~100㎛ c c c > 0 > 0 ▶ Adhesive hardening Characteristics To prevent oxidation of the terminations, the adhesive must harden at 160℃or less, within 2 minutes or less. ● MOUNTING ▶ Mounting Head Pressure Excessive pressure will cause crack to MLCCs. The pressure of nozzle will be 300g maximum during mounting.
▶ Bending Stress When double-sided circuit boards are used, MLCCsfirst are mounted and soldered onto one side of the board. When the MLCCsare mounted onto the other side, it is important to support the board as shown in the illustration. If the circuit board is not supported, the crack occur to the ready-installed MLCCsby the bending stress. nozzle force support pin G e ▶ Manual Soldering n e r a Manual soldering can pose a great risk of creating thermal cracks in chip capacitors. l C The hot soldering iron tip comes into direct contact with theend terminations, and operator's a p a carelessness may cause the tip of the soldering iron to come into direct contact with the ceramic c i t o body of the capacitor. r s Therefore the soldering iron must be handled carefully, and close attention must be paid to the selection of the soldering iron tip and to temperature control of the tip. ▶ Amount of Solder Too much Cracks tend to occur due Solder to large stress Weak holding force may Not enough cause bad connections or Solder detaching of the capacitor Good
▶ Cooling Natural cooling using air is recommended. If the chips are dipped into solvent for cleaning, the temperature difference(△T) must be less than 100℃ ▶ Cleaning If rosin flux is used, cleaning usually is unnecessary. When strongly activated flux is used, chlorine in the flux may dissolve into some types of cleaning fluids, thereby affecting the chip capacitors. This means that the cleaning fluid must be carefully selected, and should always be new. ▶ Notes for Separating Multiple, Shared PC Boards. A multi-PC board is separated into many individual circuit boards after soldering has been completed. If the board is bent or distorted at the time of separation, cracks may occur in the chip capacitors. Carefully choose a separation method that minimizes the bendingoften circuit board. G ▶ Recommended Soldering Profile e n e r a l C a p a Reflow c i t o r s 260+0/-5℃ Gradual cooling Pre-heating in the air 10sec.max. Soldering Temp.(℃) 200℃ 150℃ Time(sec)
Flow 260±3℃ Gradual Cooling Pre-heating 5 sec. max. in the air Soldering Temp. (℃) △T i) 1206(3216) and below : 150℃ max. Pre-heating Temp. (℃) Time (sec.) 120 sec. min. Soldering Iron G e n e r a Soldering Pre-heating Soldering Cooling l C Variation of Temp. Temp (℃) Time (Sec) Time(Sec) Time(Sec) a p a c △T≤130 300±10℃max ≥ 60 ≤ 4 - it o r s Condition of Iron facilities Wattage Tip Diameter Soldering Time 20W Max 3㎜ Max 4 Sec Max * Caution - Iron Tip Should Not Contact With Ceramic Body Directly.