图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: BA4560RF-E2
  • 制造商: ROHM Semiconductor
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

BA4560RF-E2产品简介:

ICGOO电子元器件商城为您提供BA4560RF-E2由ROHM Semiconductor设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 BA4560RF-E2价格参考¥1.31-¥1.93。ROHM SemiconductorBA4560RF-E2封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 2 电路 8-SOP。您可以下载BA4560RF-E2参考资料、Datasheet数据手册功能说明书,资料中有BA4560RF-E2 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 4MHZ 8SOP运算放大器 - 运放 DUAL 3MA 4MHZ

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

ROHM Semiconductor

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,运算放大器 - 运放,ROHM Semiconductor BA4560RF-E2-

数据手册

点击此处下载产品Datasheet

产品型号

BA4560RF-E2

产品目录页面

点击此处下载产品Datasheet

产品种类

运算放大器 - 运放

供应商器件封装

8-SOP

共模抑制比—最小值

70 dB

关闭

No Shutdown

其它名称

BA4560RF-E2TR
BA4560RFE2

包装

带卷 (TR)

压摆率

4 V/µs

双重电源电压

+/- 5 V, +/- 9 V, +/- 12 V

商标

ROHM Semiconductor

增益带宽生成

10 MHz

增益带宽积

4MHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

8-SOIC(0.173",4.40mm 宽)

封装/箱体

SOP-8

工作温度

-40°C ~ 105°C

工作电源电压

4 V to 15 V, +/- 4 V to +/- 15 V

工厂包装数量

2500

技术

Bipolar

放大器类型

Low Noise Amplifier

最大双重电源电压

+/- 15 V

最大工作温度

+ 105 C

最小双重电源电压

+/- 4 V

最小工作温度

- 40 C

标准包装

2,500

电压-电源,单/双 (±)

8 V ~ 30 V, ±4 V ~ 15 V

电压-输入失调

500µV

电流-电源

3mA

电流-输入偏置

50nA

电流-输出/通道

25mA

电源电流

7.5 mA

电路数

2

转换速度

4 V/us

输入偏压电流—最大

500 nA

输入参考电压噪声

8 nV

输入补偿电压

6 mV

输出类型

-

通道数量

2 Channel

推荐商品

型号:LT1364CN8#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LT1996AIMS#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:TL074ACDG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LF411CDRG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1782HS6#TRMPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:MAX4081TAUA

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:TS922EIJT

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:MCP6491T-E/LTY

品牌:Microchip Technology

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
BA4560RF-E2 相关产品

TS321IDT

品牌:STMicroelectronics

价格:

MCP6142T-E/MS

品牌:Microchip Technology

价格:

MCP603T-I/CH

品牌:Microchip Technology

价格:

INA106U/2K5

品牌:Texas Instruments

价格:

NCS2372DWR2G

品牌:ON Semiconductor

价格:

EL5292CS-T13

品牌:Renesas Electronics America Inc.

价格:

TLV274CD

品牌:Texas Instruments

价格:

OPA2695IDR

品牌:Texas Instruments

价格:

PDF Datasheet 数据手册内容提取

Datasheet Operational Amplifiers Low Noise Operational Amplifiers BA4560xxx BA4560Rxxx BA4564RFV BA4564WFV General Description Packages W(Typ) x D(Typ) x H(Max) BA4560xxx for normal grade and BA4560Rxxx, SOP8 5.00mm x 6.20mm x 1.71mm BA4564RFV, BA4564WFV for high-reliability grade SOP-J8 4.90mm x 6.00mm x 1.65mm integrate two or four high voltage gain Op-Amps on a TSSOP-B8 3.00mm x 6.40mm x 1.20mm single chip. Especially, this series is suitable for any MSOP8 2.90mm x 4.00mm x 0.90mm audio applications due to low noise and low distortion SOP14 8.70mm x 6.20mm x 1.71mm characteristics and they are usable for other many SSOP-B14 5.00mm x 6.40mm x 1.35mm applications of wide operating supply voltage range.BA4560Rxxx, BA4564RFV, BA4564WFV are Key Specification high-reliability products with extended operating  Operating Supply Voltage temperature range. (Split Supply):±4V to ±15V  Temperature Range: Features BA4560xxx -40°C to +85°C  High Voltage Gain, Low Noise, Low Distortion BA4560Rxxx,BA4564RFV,BA4564WFV  Wide Operating Supply Voltage Range -40°C to +105°C  Wide Operating Temperature Range  Slew Rate: 4V/µs(Typ)  Total Harmonic Distortion: 0.003%(Typ)  Input Referred Noise Voltage: 8nV/ Hz(Typ)  Offset Voltage: BA4564WFV 2.5mV(Max) Selection Guide Maximum Operation Temperature Slew Rate +85°C Normal Dual 4V/µs BA4560F BA4560FJ BA4560FV BA4560FVT BA4560FVM +105°C Slew Rate BA4560RF BA4560RFJ High Reliability Dual 4V/µs BA4560RFV BA4560RFVT BA4560RFVM Quad 4V/µs BA4564RFV BA4564WFV Simplified Schematic VCC -IN VOUT +IN VEE Figure 1. Simplified Schematic ○Product structure:Silicon monolithic integrated circuit ○This product is not designed protection against radioactive rays. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 1/48 19.Nov.2014 Rev.003 TSZ22111・14・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Pin Configuration BA4560F, BA4560RF : SOP8 BA4560FJ, BA4560RFJ : SOP-J8 BA4560FV, BA4560RFV : SSOP-B8 BA4560FVT, BA4560RFVT : TSSOP-B8 BA4560FVM, BA4560RFVM : MSOP8 Pin No. Pin Name 1 OUT1 OUT1 1 8 VCC 2 -IN1 -IN1 2 C H1 7 OUT2 3 +IN1 - ++ 4 VEE +IN1 3 C H2 6 -IN2 5 +IN2 + - 6 -IN2 VEE 4 5 +IN2 7 OUT2 OUT2 8 VCC BA4564RFV, BA4564WFV : SSOP-B14 Pin No. Pin Name 1 OUT1 OUT1 1 14 OUT4 2 -IN1 -IN1 2 13 -IN4 3 +IN1 C H1 C H4 --- +++ +++ --- 4 VCC +IN1 3 12 +IN4 5 +IN2 VCC 4 11 VEE 6 -IN2 7 OUT2 +IN2 5 10 +IN3 --- +++ +++ --- 8 OUT3 -IN2 6 C H2 C H3 9 -IN3 9 -IN3 10 +IN3 OUT2 7 8 OUT3 11 VEE 12 +IN4 13 -IN4 14 OUT4 Package SOP8 SOP-J8 SSOP-B8 TSSOP-B8 MSOP8 SSOP-B14 BA4560F BA4560FJ BA4560FV BA4560FVT BA4560FVM BA4564RFV BA4560RF BA4560RFJ BA4560RFV BA4560RFVT BA4560RFVM BA4564WFV www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 2/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Ordering Information B A 4 5 6 x x x x x - x x Part Number Package Packaging and forming specification BA4560xxx F : SOP8 E2: Embossed tape and reel BA4560Rxxx FJ : SOP-J8 (SOP8/SSOP-B8/TSSOP-B8/SOP-J8 FV : SSOP-B8 BA4564RFV SSOP-B14) : SSOP-B14 BA4560WFV TR: Embossed tape and reel FVM : MSOP8 (MSOP8) FVT : TSSOP-B8 Line-up Operating Operating Supply Supply Offset Orderable Temperature Voltage Current Voltage Package Part Number Range (Split Supply) (Typ) (Max) SOP8 Reel of 2500 BA4560F-E2 SOP-J8 Reel of 2500 BA4560FJ-E2 -40°C to +85°C 4mA SSOP-B8 Reel of 2500 BA4560FV-E2 TSSOP-B8 Reel of 2500 BA4560FVT-E2 MSOP8 Reel of 3000 BA4560FVM-TR 6mV SOP8 Reel of 2500 BA4560RF-E2 ±4.0V to ±15.0V SOP-J8 Reel of 2500 BA4560RFJ-E2 3mA SSOP-B8 Reel of 2500 BA4560RFV-E2 -40°C to +105°C TSSOP-B8 Reel of 3000 BA4560RFVT-E2 MSOP8 Reel of 3000 BA4560RFVM-TR SSOP-B14 Reel of 2500 BA4564RFV-E2 6mA 2.5mV SSOP-B14 Reel of 2500 BA4564WFV-E2 www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 3/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Absolute Maximum Ratings (T =25℃) A Ratings Parameter Symbol Unit BA4560xxx BA4560Rxxx BA4564RFV BA4564WFV Supply Voltage VCC-VEE +36 V SOP8 0.55(Note1,6) 0.69(Note1,6) - - SOP-J8 0.54(Note2,6) 0.67(Note2,6) - - SSOP-B8 0.50(Note3,6) 0.62(Note3,6) - - Power Dissipation P W D TSSOP-B8 0.50(Note3,6) 0.62(Note3,6) - - MSOP8 0.47(Note4,6) 0.58(Note4,6) - - SSOP-B14 - - 0.87(Note5,6) 0.87(Note5,6) Differential Input Voltage(Note 7) V VCC-VEE +36 V ID Input Common-mode Voltage V VEE to VCC (VEE-0.3) to VEE+36 V Range ICM Input Current(Note 8) I -10 mA I Operating Supply Voltage Range V +8 to +30 (±4 to ±15) V opr Operating Temperature Range T -40 to +85 -40 to +105 ℃ opr Storage Temperature Range T -55 to +125 -55 to +150 ℃ stg Maximum Junction Temperature T +125 +150 ℃ JMAX Note: Absolute maximum rating item indicates the condition which must not be exceeded. Application of voltage in excess of absolute maximum rating or use out absolute maximum rated temperature environment may cause deterioration of characteristics. (Note 1) To use at temperature above TA=25℃ reduce 5.5mW. (Note 2) To use at temperature above TA=25℃ reduce 5.4mW. (Note 3) To use at temperature above TA=25℃ reduce 5.0mW. (Note 4) To use at temperature above TA=25℃ reduce 4.7mW. (Note 5) To use at temperature above TA=25℃ reduce 7.0mW. (Note 6) Mounted on a FR4 glass epoxy PCB(70mm×70mm×1.6mm). (Note 7) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE. (Note 8) An excessive input current will flow when input voltages of less than VEE-0.6V are applied. The input current can be set to less than the rated current by adding a limiting resistor. Caution: Operating the IC over the absolute maximum ratings may damage the IC. In addition, it is impossible to predict all destructive situations such as short-circuit modes, open circuit modes, etc. Therefore, it is important to consider circuit protection measures, like adding a fuse, in case the IC is operated in a special mode exceeding the absolute maximum ratings. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 4/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Electrical Characteristics ○BA4560xxx (Unless otherwise specified VCC=+15V, VEE=-15V) Temperature Limits Parameter Symbol Unit Condition Range Min Typ Max Input Offset Voltage (Note 9) V 25℃ - 0.5 6 mV VOUT=0V IO Input Offset Current (Note 9) I 25℃ - 5 200 nA VOUT=0V IO Input Bias Current (Note 10) I 25℃ - 50 500 nA VOUT=0V B R =∞, All Op-Amps, Supply Current I 25℃ - 4 7.5 mA L CC VIN+=0V 25℃ ±12 ±14 - R ≥ 10kΩ L Maximum Output Voltage V V OM 25℃ ±10 ±13 - R ≥ 2kΩ L R ≥ 2kΩ, VOUT=±10V Large Signal Voltage Gain A 25℃ 86 100 - dB L V V =0V ICM Input Common-mode Voltage Range V 25℃ ±12 ±14 - V - ICM Common-mode Rejection Ratio CMRR 25℃ 70 90 - dB V =-12V~+12V ICM Power Supply Rejection Ratio PSRR 25℃ 76.3 90 - dB R≤ 10kΩ I A =0dB, R =2kΩ Slew Rate SR 25℃ - 4 - V/μs V L C =100pF L Unity Gain Frequency f 25℃ - 4 - MHz R =2kΩ T L Gain Band Width GBW 25℃ - 10 - MHz f=10kHz A =20dB, R =2kΩ Total Harmonic Distortion+Noise THD+N 25℃ - 0.003 - % V L VIN=0.05Vrms, f=1kHz R =100Ω, V=0V - 8 - nV/ Hz f=S1kHz I Input Referred Noise Voltage V 25℃ N R =2.2Ω, RIAA - - 2.2 μVrms S BW=10kHz to 30kHz (Note 9) Absolute value (Note 10) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 5/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4560Rxxx (Unless otherwise specified VCC=+15V, VEE=-15V, Full range -40℃ to +105℃) Temperature Limits Parameter Symbol Unit Condition Range Min Typ Max 25℃ - 0.5 6 Input Offset Voltage (Note 11) V mV VOUT=0V IO Full range - - 7 25℃ - 5 200 Input Offset Current (Note 11) I nA VOUT=0V IO Full range - - 200 25℃ - 50 500 Input Bias Current (Note 12) I nA VOUT=0V B Full range - - 800 25℃ - 3 7 R =∞, All Op-Amps Supply Current I mA L CC Full range - - 7.5 VIN+=0V 25℃ ±12 ±14 - R ≥ 2kΩ L Maximum Output Voltage V V OM Full range ±10 ±11.5 - I =25mA O 25℃ 86 100 - R ≥ 2kΩ, VOUT=±10V Large Signal Voltage Gain A dB L V Full range 83 - - VICM=0V 25℃ ±12 ±14 - Input Common-mode Voltage Range V V - ICM Full range ±12 - - Common-mode Rejection Ratio CMRR 25℃ 70 90 - dB V =-12V~+12V ICM Power Supply Rejection Ratio PSRR 25℃ 76.5 90 - dB R≤ 10kΩ I Channel Separation CS 25℃ - 105 - dB R1=100Ω,f=1kHz A =0dB, R =2kΩ Slew Rate SR 25℃ - 4 - V/μs V L C =100pF L Unity Gain Frequency f 25℃ - 4 - MHz R =2kΩ T L A =20dB, R =2kΩ Total Harmonic Distortion+Noise THD+N 25℃ - 0.003 - % V L VIN=0.05Vrms, f=1kHz R =100Ω, V=0V - 8 - nV/ Hz f=S1kHz I Input Referred Noise Voltage V 25℃ N - 1.0 - μVrms DIN-AUDIO (Note 11) Absolute value (Note 12) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 6/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564RFV (Unless otherwise specified VCC=+15V, VEE=-15V, Full range -40℃ to +105℃) Temperature Limits Parameter Symbol Unit Condition Range Min Typ Max 25℃ - 0.5 6 Input Offset Voltage (Note 13) V mV VOUT=0V IO Full range - - 7 25℃ - 5 200 Input Offset Current (Note 13) I nA VOUT=0V IO Full range - - 200 25℃ - 50 500 Input Bias Current (Note 14) I nA VOUT=0V B Full range - - 800 25℃ - 6 14 R =∞, All Op-Amps Supply Current I mA L CC Full range - - 15 VIN+=0V 25℃ ±12 ±14 - R ≥ 2kΩ L Maximum Output Voltage V V OM Full range ±10 ±11.5 - I =25mA O 25℃ 86 100 - R ≥ 2kΩ, VOUT=±10V Large Signal Voltage Gain A dB L V Full range 83 - - VICM=0V 25℃ ±12 ±14 - Input Common-mode Voltage Range V V - ICM Full range ±12 - - Common-mode Rejection Ratio CMRR 25℃ 70 90 - dB V =-12V~+12V ICM Power Supply Rejection Ratio PSRR 25℃ 76.5 90 - dB R≤ 10kΩ I Channel Separation CS 25℃ - 105 - dB R1=100Ω, f=1kHz A =0dB, R =2kΩ Slew Rate SR 25℃ - 4 - V/μs V L C =100pF L Unity Gain Frequency f 25℃ - 4 - MHz R =2kΩ T L A =20dB, R =2kΩ Total Harmonic Distortion+Noise THD+N 25℃ - 0.003 - % V L VIN=0.05Vrms, f=1kHz R =100Ω, V=0V - 8 - nV/ Hz f=S1kHz I Input Referred Noise Voltage V 25℃ N - 1.0 - μVrms DIN-AUDIO (Note 13) Absolute value (Note 14) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 7/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564WFV (Unless otherwise specified VCC=+15V, VEE=-15V, Full range -40℃ to +105℃) Limits Temperature Parameter Symbol BA4564WFV Unit Condition Range Min Typ Max 25℃ - 0.5 2.5 Input Offset Voltage (Note 15) V mV VOUT=0V IO Full range - - 4 25℃ - 5 200 Input Offset Current (Note 15) I nA VOUT=0V IO Full range - - 200 25℃ - 50 300 Input Bias Current (Note 16) I nA VOUT=0V B Full range - - 500 25℃ - 6 11 R =∞, All Op-Amps Supply Current I mA L CC Full range - - 13 VIN+=0V 25℃ ±12 ±14 - R ≥ 2kΩ L Maximum Output Voltage V V OM Full range ±10 ±11.5 - I =25mA O 25℃ 86 100 - R ≥ 2kΩ, VOUT=±10V Large Signal Voltage Gain A dB L V Full range 83 - - VICM=0V 25℃ ±12 ±14 - Input Common-mode Voltage Range V V - ICM Full range ±12 - - Common-mode Rejection Ratio CMRR 25℃ 70 90 - dB V =-12V~+12V ICM Power Supply Rejection Ratio PSRR 25℃ 76.5 90 - dB R≤ 10kΩ I Channel Separation CS 25℃ - 105 - dB R1=100Ω, f=1kHz A =0dB, R =2kΩ Slew Rate SR 25℃ - 4 - V/μs V L C =100pF L Unity Gain Frequency f 25℃ - 4 - MHz R =2kΩ T L A =20dB, R =2kΩ Total Harmonic Distortion+Noise THD+N 25℃ - 0.003 - % V L VIN=0.05Vrms, f=1kHz R =100Ω, V=0V - 8 - nV/ Hz f=S1kHz I Input Referred Noise Voltage V 25℃ N - 1.0 - μVrms DIN-AUDIO (Note 15) Absolute value (Note 16) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 8/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Description of electrical characteristics Described here are the terms of electric characteristics used in this datasheet. Items and symbols used are also shown. Note that item name and symbol and their meaning may differ from those on another manufacture’s document or general document. 1. Absolute maximum ratings Absolute maximum rating item indicates the condition which must not be exceeded. Application of voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. 1.1 Power supply voltage (VCC-VEE) Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power supply terminal without deterioration or destruction of characteristics of internal circuit. 1.2 Differential input voltage (V ) ID Indicates the maximum voltage that can be applied between non-inverting terminal and inverting terminal without deterioration and destruction of characteristics of IC. 1.3 Input common-mode voltage range (V ) ICM Indicates the maximum voltage that can be applied to non-inverting terminal and inverting terminal without deterioration or destruction of characteristics. Input common-mode voltage range of the maximum ratings not assure normal operation of IC. When normal operation of IC is desired, the input common-mode voltage of characteristics item must be followed. 1.4 Power dissipation (P ) D Indicates the power that can be consumed by specified mounted board at the ambient temperature 25℃(normal temperature). As for package product, P is determined by the temperature that can be permitted by IC chip in the package D (maximum junction temperature)and thermal resistance of the package. 2. Electrical characteristics item 2.1 Input offset voltage (V ) IO Indicates the voltage difference between non-inverting terminal and inverting terminal. It can be translated into the input voltage difference required for setting the output voltage at 0 V . 2.2 Input offset current (I ) IO Indicates the difference of input bias current between non-inverting terminal and inverting terminal. 2.3 Input bias current (I ) B Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias current at non-inverting terminal and input bias current at inverting terminal. 2.4 Input common-mode voltage range(V ) ICM Indicates the input voltage range where IC operates normally. 2.5 Large signal voltage gain (A ) V Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal and Inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage. A = (Output voltage fluctuation) / (Input offset fluctuation) V 2.6 Circuit current (I ) CC Indicates the IC current that flows under specified conditions and no-load steady status. 2.7 Output saturation voltage (V ) OM Signifies the voltage range that can be output under specific output conditions. 2.8 Common-mode rejection ratio (CMRR) Indicates the ratio of fluctuation of input offset voltage when in-phase input voltage is changed. It is normally the fluctuation of DC. CMRR = (Change of Input common-mode voltage) / (Input offset fluctuation) 2.9 Power supply rejection ratio (PSRR) Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation of DC. PSRR = (Change of power supply voltage) / (Input offset fluctuation) 2.10 Unity gain frequency (ft) Indicates a frequency where the voltage gain of operational amplifier is 1. 2.11 Slew Rate (SR) SR is a parameter that shows movement speed of operational amplifier. It indicates rate of variable output voltage as unit time. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 9/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet 2.12 Gain Band Width (GBW) Indicates to multiply by the frequency and the gain where the voltage gain decreases 6dB/octave. 2.13 Total harmonic distortion + Noise (THD+N) Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage of driven channel. 2.14 Input referred noise voltage (V ) N Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in series with input terminal. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 10/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Typical Performance Curves ○BA4560xxx 1 8.0   . W] . 0.8 BA4560F A] 6.0 -40℃ ON [ BA4560FJ T [m 25℃ ATI 0.6 BA4560FV/FVT REN DISSIP 0.4 B A4560FVM Y CUR 4.0 85℃ ER PL W UP 2.0 O S P 0.2 0 0.0 0 25 50 75 100 125 0 5 10 15 20 25 30 35 AMBIENT TEMPERTURE [℃] . SUPPLY VOLTAGE [V] Figure 2. Figure 3. Derating Curve Supply Current - Supply Voltage 8.0 V]P-P 30 G [ N 25 WI A] 6.0 S NT [m ±7.5 V ±15V TAGE 20 E L R O R 4.0 V 15 U T C U Y ±4 V P L T 10 P U SUP 2.0 M O U 5 M XI A 0.0 M 0 -50 -25 0 25 50 75 100 0.1 1 10 AMBIENT TEMPERATURE [℃] LOAD RESISTANCE [kΩ] Figure 4. Figure 5. Supply Current - Ambient Temperature Maximum Output Voltage Swing - Load Resistance (VCC/VEE=+15V/-15V,T =25℃) A (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 11/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4560xxx 20 20 15 15 VOH V] 10 VOH V] 10 E [ E [ G 5 G 5 A A T T L L O 0 O 0 V V T T U -5 U -5 P P T VOL T OU -10 OU -10 VOL -15 -15 -20 -20 0.1 1 10 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18 LOAD RESISTANCE [kΩ] SUPPLY VOLTAGE [V] Figure 6. Figure 7. Maximum Output Voltage Maximum Output Voltage - Load Resistance - Supply Voltage (VCC/VEE=+15V/-15V, TA =25℃) (RL=2kΩ, TA =25℃) 20 20 15 15 10 10 E [V] VOH E [V] VOH G 5 G 5 A A T T L L O 0 O 0 V V T T U -5 U -5 P VOL P VOL T T U -10 U -10 O O -15 -15 -20 -20 -50 -25 0 25 50 75 100 0 5 10 15 20 25 AMBIENT TEMPERATURE [℃] OUTPUT CURRENT [mA] Figure 8. Figure 9. Maximum Output Voltage Maximum Output Voltage - Ambient Temperature - Output Current (VCC/VEE=+15V/-15V, RL=2kΩ) (VCC/VEE=+15V/-15V, TA =25℃) (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 12/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4560xxx 6 6 mV] 4 V] 4 GE [ -40℃ 25℃ E [m ±4V ±7.5V A 2 G 2 T A L T O L V O T 0 V 0 E T S E F S ±15V F F O -2 F -2 UT 85℃ T O P U IN -4 NP -4 I -6 -6 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 -50 -25 0 25 50 75 100 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Figure 10. Figure 11. Input Offset Voltage - Supply Voltage Input Offset Voltage - Ambient Temperature (VICM=0V, VOUT=0V) (V =0V, VOUT=0V) ICM 80 60 A] . 70 A] 50 ±4V n 60 n T [ T [ N -40℃ N 40 E 50 E R 25℃ R R R U 40 U 30 C C S S ±7.5V BIA 30 BIA 20 ± 15V T T PU 20 85℃ PU N N 10 I I 10 0 0 ±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 -50 -25 0 25 50 75 100 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Figure 13. Figure 12. Input Bias Current - Ambient Temperature Input Bias Current - Supply Voltage (V =0V, VOUT=0V) ICM (V =0V, VOUT=0V) ICM (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 13/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4560xxx T [nA] . 2300 NT [nA] 2300 EN 10 -40℃ RE 10 R 25℃ R ±4V ±7.5V UR CU T C 0 ET 0 E S OFFS -10 OFF -10 ± 15V UT 85℃ UT NP -20 NP -20 I I -30 -30 -50 -25 0 25 50 75 100 ±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [°C] Figure 15. Figure 14. Input Offset Current - Ambient Temperature Input Offset Current - Supply Voltage (V =0V, VOUT=0V) (VICM=0V, VOUT=0V) ICM 5 B] 150 d 4 O [ V] 85℃ TI 125 m 3 A GE [ 2 25℃ N R A O 100 OLT 1 -40℃ CTI V E T 0 EJ 75 E R FS -1 E F D O O 50 T -2 M U N P -3 O N M 25 I -4 M O -5 C 0 0 2 4 6 8 -50 -25 0 25 50 75 100 COMMON MODE INPUT VOLTAGE [V] AMBIENT TEMPERATURE [°C] Figure 16. Figure 17. Input Offset Voltage Common Mode Rejection Ratio -Common Mode Input Voltage - Ambient Temperature (VCC=8V, VOUT=4V) (VCC/VEE=+15V/-15V, VICM=-12V to +12V) (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 14/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4560xxx B] . 150 6 N RATIO [d 110205 V/µs] . 45 TIO TE [ EC 75 RA 3 EJ W R E LY 50 SL 2 P P SU 25 1 R E W O 0 0 P ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 -50 -25 0 25 50 75 100 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Figure 18. Figure 19. Power Supply Rejection Ratio Slew Rate - Supply Voltage - Ambient Temperature (CL=100pF, RL=2kΩ, TA =25℃) (VCC/VEE=+4V/-4V to +15V/-15V) 80 1 E G A %] LT N [ O 60 O 0.1 E V RTI OIS z] TO 20kHz N H S D √ 40 DI 0.01 E V/ C RR [n NI 1kHz E O F M E R R 20 A 0.001 T H U L 20Hz P A N T I O 0 T 0.0001 1 10 100 1000 10000 0.1 1 10 FREQUENCY [Hz] OUTPUT VOLTAGE [Vrms] Figure 20. Figure 21. Equivalent Input Noise Voltage - Frequency Total Harmonic Distortion - Output Voltage (VCC/VEE=+15V/-15V, RS=100Ω, TA =25℃) (VCC/VEE=+15V/-15V, AV=20dB, R =2kΩ, 80kHz-LPF, T =25℃) L A (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 15/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4560xxx ]P 30 50 200 G [VP- PHASE 180 N 25 40 160 WI B] AGE S 20 GAIN[d 30 112400 eg] OLT 15 GE G. AIN 100 E [d V A S T LT 20 80 HA U O P P 10 V T 60 U O 10 40 M 5 U 20 M XI A 0 0 0 M 1103 11004 110005 1100060 1.1E0+20 2 11.E0+3 0 3 1 .1E0+40 4 11.E0+5 0 5 1 .1E0+60 6 1 .E10+70 7 FREQUENCY [KHz] SUPPLY VOLTAGE [V] Figure 22. Figure 23. Maximum Output Voltage Swing – Frequency Voltage Gain - Frequency (VCC/VEE=+15V/-15V, RL=2kΩ, TA =25℃) (VCC/VEE=+15V/-15V, AV=40dB, RL=2kΩ, TA =25℃) (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 16/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4560Rxxx 1 5.0 W] .0.8 BA4560RF  A] . 4.0 -40℃ 25℃ N [ BA4560RFJ m O T [ ATI0.6 BA4560RFV/FVT EN 3.0 P R SI BA4560RFVM R S U R DI0.4 LY C 2.0 105℃ WE PP O U P0.2 S 1.0 0 0.0 0 25 50 75 100 125 0 5 10 15 20 25 30 35 AMBIENT TEMPERTURE [℃] . SUPPLY VOLTAGE [V] Figure 24. Figure 25. Derating Curve Supply Current - Supply Voltage 5.0 30 ]P VP- ±15V G [ 25 4.0 N A] WI m T [ E S 20 N 3.0 G E A R T Y CUR 2.0 ±4 V ±7.5 V UT VOL 15 PL P 10 P T U U S 1.0 M O 5 U M 0.0 AXI 0 -50 -25 0 25 50 75 100 125 M 0.1 1 10 AMBIENT TEMPERATURE [℃] LOAD RESISTANCE [kΩ] Figure 26. Figure 27. Supply Current - Ambient Temperature Maximum Output Voltage Swing - Load Resistance (VCC/VEE=+15V/-15V, T =25℃) A (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 17/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4560Rxxx 20 20 15 15 VOH V] 10 V] 10 E [ VOH E [ G 5 G 5 A A T T OL 0 OL 0 V V UT -5 UT -5 P VOL P T T OU -10 OU -10 VOL -15 -15 -20 -20 0.1 1 10 ±4 ±6 ±8 ±10 ±12 ±14 ±16 LOAD RESISTANCE [kΩ] SUPPLY VOLTAGE [V] Figure 28. Figure 29. Maximum Output Voltage Maximum Output Voltage - Load Resistance - Supply Voltage (VCC/VEE=+15V/-15V, TA =25℃) (RL=2kΩ, TA =25℃) 20 20 15 15 V] 10 V] 10 E [ VOH E [ VOH G 5 G 5 A A LT LT O 0 O 0 V V T T U -5 U -5 P VOL P VOL T T OU -10 OU -10 -15 -15 -20 -20 -50 -25 0 25 50 75 100 125 0 5 10 15 20 25 AMBIENT TEMPERATURE [℃] OUTPUT CURRENT [mA] Figure 30. Figure 31. Maximum Output Voltage Maximum Output Voltage - Ambient Temperature - Output Current (VCC/VEE=+15V/-15V, RL=2kΩ) (VCC/VEE=+15V/-15V, TA =25℃) (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 18/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4560Rxxx 6 6 V] 4 V] 4 m m E [ E [ G G ±4V LTA 2 -40℃ 25℃ LTA 2 ±7.5V O O T V 0 T V 0 E E S S F 105℃ F OF -2 OF -2 ±15V T T NPU -4 NPU -4 I I -6 -6 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 -50 -25 0 25 50 75 100 125 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Figure 33. Figure 32. Input Offset Voltage - Ambient Temperature Input Offset Voltage - Supply Voltage (V =0V, V VOUT =0V) (V =0V, VOUT=0V) ICM ICM 200 200 A] . 116800 A] . 116800 n n NT [ 140 NT [ 140 E E R 120 R 120 R R ±4V U 25℃ U ±7.5V S C 100 -40℃ S C 100 A 80 A 80 BI BI T 60 T 60 U U P P N 40 N 40 I 105℃ I ±15V 20 20 0 0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 SUPPLY VOLTAGE [V] SUPPLY VOLTAGE [V] Figure 34. Figure 35. Input Bias Current - Supply Voltage Input Bias Current - Ambient Temperature (VICM=0V, VOUT =0V) (VICM=0V, VOUT =0V) (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 19/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4560Rxxx ET CURRENT [nA] . 2460000 -40℃ 10 5℃ T CURRENT [nA] 2460000 ±4V ± 15V FS SE PUT OF -20 25℃ UT OFF -20 ± 7.5V IN -40 NP -40 I -60 -60 ±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 -50 -25 0 25 50 75 100 125 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [°C] Figure 36. Figure 37. Input Offset Current - Supply Voltage Input Offset Current - Ambient Temperature (V =0V, VOUT =0V) (V =0V, VOUT =0V) ICM ICM 5 B] 150 d 4 O [ V] TI 125 m 3 A AGE [ 2 ON R 100 LT 1 CTI O E V J T 0 E 75 E R FS -1 -40℃ DE F O 50 UT O -2 25℃ N M P -3 O N M 25 I -4 105℃ M O C -5 0 0 2 4 6 8 -50 -25 0 25 50 75 100 125 COMMON MODE INPUT VOLTAGE [V] AMBIENT TEMPERATURE [°C] Figure 38. Figure 39. Input Offset Voltage Common Mode Rejection Ratio -Common Mode Input Voltage - Ambient Temperature (VCC/VEE=+15V/-15V, V =-12V to +12V) (VCC=8V, VOUT =4V) ICM (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 20/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4560Rxxx B] . 150 5.0 d O [ CTION RATI 110205 E [V/µs] .34..00 E T J 75 A E R R W Y E2.0 PL 50 SL P U S R 25 1.0 E W O P 0 0.0 -50 -25 0 25 50 75 100 125 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 40. Figure 41. Power Supply Rejection Ratio Slew Rate - Supply Voltage - Ambient Temperature (CL=100pF, RL=2kΩ, TA =25℃) (VCC/VEE=+4V/-4V to +15V/-15V) 80 1 AGE N [%] T O OL 60 TI 0.1 20kHz V R ED NOISE √Hz] .40 NIC DISTO 0.01 1kHz ERR [nV/ RMO EF A UT R 20 TAL H 0.001 20Hz P O N T I 0 0.0001 1 10 100 1000 10000 0.1 1 10 OUTPUT VOLTAGE [Vrms] FREQUENCY [Hz] Figure 42. Figure 43. Equivalent Input Noise Voltage - Frequency Total Harmonic Distortion - Output Voltage (VCC/VEE=+15V/-15V, RS=100Ω, TA =25℃) (RVC=C2k/VΩE, E80=k+H15z-VL/P-1F5, VT, A =V2=52℃0d)B , L A (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 21/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4560Rxxx V]P-P 30 60 0 G [ N 25 50 -30 WI PHASE AGE S 20 N [dB] 40 -60 g] T VOLT 15 GE GAI 30 GAIN -90 ASE [de U A H P T P UT 10 OL 20 -120 O V UM 5 10 -150 M XI MA 0 0 -180 1100 110020 1100030 1 0100040 1 0100005 0 1 0100060 00 1.E1+002 2 1 .1E0+30 3 1 .E10+40 4 1 .1E0+50 5 1 .1E0+60 6 1 .E1+007 7 FREQUENCY [Hz] FREQUENCY [Hz] Figure 44. Figure 45. Maximum Output Voltage Swing - Frequency Voltage Gain - Frequency (VCC/VEE=+15V/-15V, (VCC/VEE=+15V/-15V, RL=2kΩ, TA =25℃) AV=40dB, RL=2kΩ, TA =25℃) (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 22/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564RFV 1 12.0   . mA] 0.8 BA4564RFV mA] 10.0 -40℃ T [ T [ 8.0 REN 0.6 REN 25℃ UR UR 6.0 C C Y 0.4 Y L PL PP 4.0 SUP 0.2 SU 105℃ 2.0 0 0.0 0 25 50 75 100 125 0 5 10 15 20 25 30 35 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 46. Figure 47. Derating Curve Supply Current - Supply Voltage 12.0 30 ]P VP- 10.0 G [ 25 N A] WI m ±15V S T [ 8.0 GE 20 N A RE LT R 6.0 O 15 U V C T Y ±4V U L 4.0 P 10 P T P U U O S 2.0 ±7.5V M 5 U M XI 0.0 A 0 M -50 -25 0 25 50 75 100 125 0.1 1 10 AMBIENT TEMPERATURE [℃] LOAD RESISTANCE [kΩ] Figure 49. Figure 48. Maximum Output Voltage Swing Supply Current - Ambient Temperature - Load Resistance (VCC/VEE=+15V/-15V, T =25℃) A (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 23/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564RFV 20 20 15 15 VOH E [V] 10 VOH E [V] 10 G 5 G 5 A A T T L L O 0 O 0 T V T V U -5 U -5 P P T VOL T U -10 U -10 O O VOL -15 -15 -20 -20 0.1 1 10 ±4 ±6 ±8 ±10 ±12 ±14 ±16 LOAD RESISTANCE [kΩ] SUPPLY VOLTAGE [V] Figure 50. Figure 51. Maximum Output Voltage Maximum Output Voltage -Load Resistance -Supply Voltage (VCC/VEE=+15V/-15V, T =25℃) (R =2kΩ, T =25℃) A L A 20 20 15 15 V] 10 V] 10 E [ VOH E [ VOH G 5 G 5 A A LT LT O 0 O 0 V V T T PU -5 VOL PU -5 VOL T T OU -10 OU -10 -15 -15 -20 -20 -50 -25 0 25 50 75 100 125 0 5 10 15 20 25 AMBIENT TEMPERATURE [℃] OUTPUT CURRENT [mA] Figure 52. Figure 53. Maximum Output Voltage Maximum Output Voltage - Ambient Temperature - Output Current (VCC/VEE=+15V/-15V, RL=2kΩ) (VCC/VEE=+15V/-15V, T =25℃) A (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 24/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564RFV 6 6 mV] 4 mV] 4 AGE [ 2 -40℃ 25℃ AGE [ 2 ±4V ±7.5V T T OL OL T V 0 T V 0 E E FS 105℃ FS ±15V OF-2 OF -2 T T U U NP-4 NP -4 I I -6 -6 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 -50 -25 0 25 50 75 100 125 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Figure 54. Figure 55. Input Offset Voltage - Supply Voltage Input Offset Voltage - Ambient Temperature (VICM=0V, VOUT =0V) (VICM=0V, VOUT =0V) 200 200 nA] . 116800 A] 116800 RENT [ 112400 -40℃ 25℃ RENT [n 112400 ±4V ±7.5V R U R C 100 CU 100 AS 80 S 80 INPUT BI 4600 105℃ INPUT BIA 4600 ± 15V 20 20 0 0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 -50 -25 0 25 50 75 100 125 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Figure 56. Figure 57. Input Bias Current - Supply Voltage Input Bias Current - Ambient Temperature (V =0V, VOUT =0V) ICM (VICM=0V, VOUT =0V) (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 25/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564RFV 60 60 T [nA] 40 T [nA] 40 N N RE 20 -40℃ 105℃ RE 20 ±4V R R ±15V U U C C T 0 T 0 E E S S OFF -20 OFF -20 ± 7.5V T 25℃ T U U P P N -40 N -40 I I -60 -60 ±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 -50 -25 0 25 50 75 100 125 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [°C] Figure 58. Figure 59. Input Offset Current - Supply Voltage Input Offset Current - Ambient Temperature (VICM=0V, VOUT =0V) (VICM=0V, VOUT =0V) 5 B] 150 d O [ 4 V] -40℃ ATI 125 m 3 R E [ 25℃ N G 2 O 100 TA 105℃ CTI OL 1 E T V 0 REJ 75 SE E F -1 D F O 50 O M -2 T N U O P -3 M 25 IN M -4 O C 0 -5 -50 -25 0 25 50 75 100 125 0 2 4 6 8 AMBIENT TEMPERATURE [°C] COMMON MODE INPUT VOLTAGE [V] Figure 61. Figure 60. Common Mode Rejection Ratio Input Offset Voltage - Ambient Temperature - Common Mode Input Voltage (VCC/VEE=+15V/-15V, V =-12V to +12V) (VCC=8V, VOUT =4V) ICM (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 26/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564RFV B] .150 5.0 d O [ N RATI125 s] . 4.0 CTIO100 E [V/µ 3.0 E T EJ 75 RA Y R W 2.0 PPL 50 SLE U S R 25 1.0 E W O P 0 0.0 -50 -25 0 25 50 75 100 125 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 62. Figure 63. Power Supply Rejection Ratio Slew Rate - Supply Voltage - Ambient Temperature (CL=100pF, RL=2kΩ, TA =25℃) (VCC/VEE=+4V/-4V to +15V/-15V) 80 1 E %] AG N [ T O L O 60 TI 0.1 V R 20kHz E O D NOIS Hz] .40 C DIST 0.01 1kHz E√ NI RR nV/ MO FE [ R E A R 20 H 0.001 UT TAL 20Hz P O N T I 0 0.0001 1 10 100 1000 10000 0.1 1 10 FREQUENCY [Hz] OUTPUT VOLTAGE [Vrms] Figure 64. Figure 65. Equivalent Input Noise Voltage - Frequency Total Harmonic Distortion - Output Voltage (VCC/VEE=+15V/-15V, RS=100Ω, TA =25℃) (VCC/VEE=+15V/-15V, AV=20dB, R =2kΩ, 80kHz-LPF, T =25℃) L A (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 27/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564RFV V]P-P 30 60 -200 G [ N 25 50 PHASE -170 WI E S B] -140 AG 20 N [d 40 g] UT VOLT 15 AGE GAI 30 GAIN --18100 HASE [de P T P UT 10 OL 20 O V -50 M U 5 10 M -20 XI A M 0 0 1.E1+00 1 1 .1E0+20 2 1 .1E0+30 3 1 .E10+40 4 1 .E10+50 5 1 .E1+060 6 1.E1+0022 1 .E1+030 3 1 .E1+004 4 1 .1E0+50 5 1 .E10+60 6 1 .E1+007 7 FREQUENCY [Hz] FREQUENCY [Hz] Figure 66. Figure 67. Maximum Output Voltage Swing – Frequency Voltage Gain - Frequency (VCC/VEE=+15V/-15V, RL=2kΩ, TA =25℃) (VCC/VEE=+15V/-15V, AV=40dB, RL=2kΩ, TA =25℃) (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 28/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564WFV 1 12.0   . SIPATION [W] RRENT [mA] 00..68 BA4564WFV URRENT [mA] 1680...000 -40℃ 25℃ R DISY CU 0.4 LY C OWEUPPL SUPP 4.0 105℃ PS 0.2 2.0 0 0.0 0 25 50 75 100 125 0 5 10 15 20 25 30 35 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 68. Derating Curve Figure 69. Supply Current - Supply Voltage 12.0 30 ]P VP- 10.0 G [ 25 N A] WI m ±15V S T [ 8.0 GE 20 N A RE LT R 6.0 O 15 U V C T LY 4.0 ±4V PU 10 P T P U U O S 2.0 ±7.5V M 5 U M XI 0.0 A 0 M -50 -25 0 25 50 75 100 125 0.1 1 10 AMBIENT TEMPERATURE [℃] LOAD RESISTANCE [kΩ] Figure 71. Figure 70. Maximum Output Voltage Swing Supply Current - Ambient Temperature - Load Resistance (VCC/VEE=+15V/-15V, T =25℃) A (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 29/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564WFV 20 20 15 15 VOH GE [V] 105 VOH GE [V] 105 A A T T L L O 0 O 0 V V T T U -5 U -5 P P T VOL T U -10 U -10 O O VOL -15 -15 -20 -20 0.1 1 10 ±4 ±6 ±8 ±10 ±12 ±14 ±16 LOAD RESISTANCE [kΩ] SUPPLY VOLTAGE [V] Figure 72. Figure 73. Maximum Output Voltage Maximum Output Voltage -Load Resistance -Supply Voltage (VCC/VEE=+15V/-15V, T =25℃) (R =2kΩ, T =25℃) A L A 20 20 15 15 V] 10 V] 10 E [ VOH E [ VOH G 5 G 5 A A LT LT O 0 O 0 V V T T PU -5 VOL PU -5 VOL T T OU -10 OU -10 -15 -15 -20 -20 -50 -25 0 25 50 75 100 125 0 5 10 15 20 25 AMBIENT TEMPERATURE [℃] OUTPUT CURRENT [mA] Figure 74. Figure 75. Maximum Output Voltage Maximum Output Voltage - Ambient Temperature - Output Current (VCC/VEE=+15V/-15V, RL=2kΩ) (VCC/VEE=+15V/-15V, T =25℃) A (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 30/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564WFV 6 6 mV] 4 mV] 4 AGE [ 2 -40℃ 25℃ AGE [ 2 ±4V ±7.5V T T OL OL T V 0 T V 0 E E FS 105℃ FS ±15V OF-2 OF -2 T T U U NP-4 NP -4 I I -6 -6 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 -50 -25 0 25 50 75 100 125 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Figure 76. Figure 77. Input Offset Voltage - Supply Voltage Input Offset Voltage - Ambient Temperature (VICM=0V, VOUT =0V) (VICM=0V, VOUT =0V) 200 200 nA] . 116800 A] 116800 RENT [ 112400 -40℃ 25℃ RENT [n 112400 ±4V ±7.5V R U R C 100 CU 100 AS 80 S 80 INPUT BI 4600 105℃ INPUT BIA 4600 ± 15V 20 20 0 0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 -50 -25 0 25 50 75 100 125 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Figure 78. Figure 79. Input Bias Current - Supply Voltage Input Bias Current - Ambient Temperature (V =0V, VOUT =0V) ICM (VICM=0V, VOUT =0V) (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 31/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564WFV 60 60 T [nA] 40 T [nA] 40 N N RE 20 -40℃ 105℃ RE 20 ±4V R R ±15V U U C C T 0 T 0 E E S S OFF -20 OFF -20 ± 7.5V T 25℃ T U U P P N -40 N -40 I I -60 -60 ±0 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 -50 -25 0 25 50 75 100 125 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [°C] Figure 80. Figure 81. Input Offset Current - Supply Voltage Input Offset Current - Ambient Temperature (VICM=0V, VOUT =0V) (VICM=0V, VOUT =0V) 5 B] 150 d O [ 4 V] -40℃ ATI 125 m 3 R E [ 25℃ N G 2 O 100 TA 105℃ CTI OL 1 E T V 0 REJ 75 SE E F -1 D F O 50 O M -2 T N U O P -3 M 25 IN M -4 O C 0 -5 -50 -25 0 25 50 75 100 125 0 2 4 6 8 AMBIENT TEMPERATURE [°C] COMMON MODE INPUT VOLTAGE [V] Figure 83. Figure 82. Common Mode Rejection Ratio Input Offset Voltage - Ambient Temperature - Common Mode Input Voltage (VCC/VEE=+15V/-15V, V =-12V to +12V) (VCC=8V, VOUT =4V) ICM (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 32/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564WFV B] .150 5.0 d O [ N RATI125 s] . 4.0 CTIO100 E [V/µ 3.0 JE 75 AT E R Y R W 2.0 PPL 50 SLE U S R 25 1.0 E W O P 0 0.0 -50 -25 0 25 50 75 100 125 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Figure 84. Figure 85. Power Supply Rejection Ratio Slew Rate - Supply Voltage - Ambient Temperature (CL=100pF, RL=2kΩ, TA =25℃) (VCC/VEE=+4V/-4V to +15V/-15V) 80 1 E %] TAG ON [ OL 60 TI 0.1 V R 20kHz E O D NOIS Hz] .40 C DIST 0.01 1kHz E√ NI RR nV/ MO FE [ R E A R 20 H 0.001 UT TAL 20Hz NP TO I 0 0.0001 1 10 100 1000 10000 0.1 1 10 FREQUENCY [Hz] OUTPUT VOLTAGE [Vrms] Figure 86. Figure 87. Equivalent Input Noise Voltage - Frequency Total Harmonic Distortion - Output Voltage (VCC/VEE=+15V/-15V,RS=100Ω, TA =25℃) (VCC/VEE=+15V/-15V, AV=20dB, R =2kΩ,80kHz-LPF, T =25℃) L A (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 33/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet ○BA4564WFV ]P 30 60 -200 VP- G [ N 25 50 PHASE -170 WI S E B] -140 T VOLTAG 1250 GE GAIN [d 3400 GAIN -110 ASE [deg] U A -80 H TP 10 OLT 20 P OU V -50 M U 5 10 M -20 XI MA 0 0 1.E1+0 0 1 1 .1E0+20 2 1 .1E0+30 3 1 .1E0+40 4 1 .1E0+50 5 1 .1E0+60 6 1.E11+000222 1 . E110+030 33 1 .E 11+0004 44 1 . 1E10+050 55 1 . E110+060 66 1 .E 11+0007 77 FREQUENCY [Hz] FREQUENCY [Hz] Figure 88. Figure 89. Maximum Output Voltage Swing – Frequency Voltage Gain - Frequency (VCC/VEE=+15V/-15V, RL=2kΩ, TA =25℃) (VCC/VEE=+15V/-15V, AV=40dB, RL=2kΩ, TA =25℃) (*)The above data is measurement value of typical sample, it is not guaranteed. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 34/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Application Information Test Circuit1 NULL method VCC, VEE, E , V Unit: V K ICM Parameter VF S1 S2 S3 VCC VEE EK VICM Calculation Input Offset Voltage V ON ON OFF 15 -15 0 0 1 F1 Input Offset Current V OFF OFF OFF 15 -15 0 0 2 F2 V OFF ON 0 0 F3 Input Bias Current OFF 15 -15 3 V ON OFF 0 0 F4 V 15 -15 0 0 F5 Large Signal Voltage Gain ON ON ON 4 V 15 -15 0 0 F6 Common-mode Rejection Ratio VF7 3 -27 -12 0 ON ON OFF 5 (Input common-mode Voltage Range) V 27 -3 12 0 F8 Power Supply VF9 4 -4 0 0 ON ON OFF 6 Rejection Ratio V 15 -15 0 0 F10 -Calculation- 0.1µF 1. Input Offset Voltage (V ) IO |V | VIO = 1+RFF1/RS [V] SW1 VCC RF=50kΩ 500kΩ 0.1µF 2. Input Offset Current (I ) IO EK +15V |VF2-VF1| RS=50Ω RI=10kΩ IIO = R ×(1+R /R ) [A] 500kΩ I F S DUT 3. Input Bias Current (I ) SW3 NULL B |V -V | RS=50Ω RI=10kΩ 1000pF IB = 2 × RF 4×(1F+3R /R ) [A] SW2 RL VF I F S 50kΩ VEE -15V 4. Large Signal Voltage Gain (A ) V AV = 20Log ΔEK × (1+RF/RS) [dB] |V -V | F5 F6 Figure 90. Test Circuit1 (one channel only) 5. Common-mode Rejection Ration (CMRR) CMRR = 20Log ΔVICM × (1+RF/RS) [dB] |V -V | F8 F7 6. Power supply rejection ratio (PSRR) PSRR = 20Log ΔVCC × (1+ RF/RS) [dB] |V – V | F10 F9 Test Circuit 2 Switch Condition SW No. SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12 SW13 SW14 Supply Current OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF High Level Output Voltage OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF Low Level Output Voltage OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF Slew Rate OFF OFF OFF ON OFF OFF OFF ON ON ON OFF OFF OFF OFF Unity Gain Frequency OFF ON OFF OFF ON ON OFF OFF ON ON ON OFF OFF OFF Total Harmonic Distortion ON OFF OFF OFF ON OFF ON OFF ON ON ON OFF OFF OFF Input Referred Noise Voltage ON OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 35/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Input voltage SW4 SW5 R2 VH ● VCC - VL t SW1 SW2 SW3 + Input wave SW6 SW7 SW8 SW9 SW10 SW11 SW12 SW13 SW14 Output voltage RS R1 VH 90% SR=ΔV/Δt VEE C VIN- VIN+ RL CL VOUT 10% ΔV VRL VL Δt t Figure 91. Test Circuit 2 (each Op-Amp) Output wave Figure 92. Slew Rate Input/Output Waveform VCC VCC OTHER R1//R2 R1//R2 CH VEE VEE VINR1 R2 V V=O0V=.U50O[T.V5U1rmVTrs1m] s R1 R2 V VOVUOT2UT2 CS=20×log 100×VOUT1 VOUT2 Figure 93. Test Circuit 3(Channel Separation) (VCC=+15V, VEE=-15V, R1=1kΩ, R2=100kΩ) www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 36/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Power Dissipation Power dissipation(total loss) indicates the power that can be consumed by IC at T =25℃(normal temperature). IC is A heated when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited. Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and thermal resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame of the package. The parameter which indicates this heat dissipation capability(hardness of heat release)is called thermal resistance, represented by the symbol θ ℃/W. The temperature of IC inside the package can be estimated by this JA thermal resistance. Figure 94.(a) shows the model of thermal resistance of the package. Thermal resistance θ , ambient JA temperature T , junction temperature T , and power dissipation P can be calculated by the equation below: A JMAX D θ = (T - T ) / P ℃/W JA JMAX A D Derating curve in Figure 94. (b) indicates power that can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient is determined by thermal resistance θ . Thermal resistance θ depends on JA JA chip size, power consumption, package, ambient temperature, package condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Figure 95.(c), to , (e) show a derating curve for an example of BA4560xxx, BA4560Rxxx, BA4564RFV, BA4564WFV. Power Dissipation of LSI [W] θJA=(TJmax-TA)/ PD °C/W P2 PD(max) θJA2 < θJA1 Ambient Temperature TA [ °C ] P1 θ’JA2 θ JA 2 TJ’max T J m a x θ’JA1 θJA1 Chip Surface Temperature TJ [ °C ] 0 25 Ambie5n0 t Temp7e5 rature1 0T0A [ °C 1]2 5 150 (a) Thermal Resistance (b) Derating Curve Figure 94. Thermal Resistance and Derating Curve 1 1 1 W] W] . 0.8 W] W] . 0.8 BA4560F(Note 17) W] . 0.8 BA4564RFV/WFV(Note 21) POWER DISSIPATION P[POWER DISSIPATION [D 000...246 BA4560FB(AN4o5te6 01F7BJ)A (N4B5oA6t4e05 F16V80)/F FVVMT((NNoottee 1290)) POWER DISSIPATION P[POWER DISSIPATION [D 000...246 BA456B0FAJ4B(5NA6o40t5Fe6V 10/8FF)VVTM((NNoottee 1290)) POWER DISSIPATION P [D 000...246 0 0 0 0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125 AAMMBBIIEENNTT TTEEMMPPEERRTAUTRUER E[℃ T]A [ ℃ .] AAMMBBIIEENNTT T TEEMMPPEERRATTUURREE [ ℃TA] [ ℃ .] AMBIENT TEMPERATURE TA [℃] . (c)BA4560xxx (d)BA4560Rxxx (e)BA4564RFV/BA4564WFV (Note 17) (Note 18) (Note 19) (Note 20) (Note 21) Unit 5.5 5.4 5.0 4.7 7.0 mW/℃ When using the unit above TA=25℃, subtract the value above per degree℃. Permissible dissipation is the value. Permissible dissipation is the value when FR4 glass epoxy board 70mm ×70mm ×1.6mm (cooper foil area below 3%) is mounted. Figure 95. Derating Curve www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 37/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Examples of Circuit ○Voltage Follower Voltage gain is 0dB. Using this circuit, the output voltage (OUT) is VCC configured to be equal to the input voltage (IN). This circuit also stabilizes the output voltage (OUT) due to high input impedance and low output impedance. Computation for output voltage (OUT) is shown below. OUT=IN OUT IN VEE Figure 96. Voltage Follower Circuit ○Inverting Amplifier R2 For inverting amplifier, input voltage (IN) is amplified by a voltage gain and depends on the ratio of R1 and VCC R2. The out-of-phase output voltage is shown in the next expression OUT=-(R2/R1)・IN R1 IN This circuit has input impedance equal to R1. OUT R1//R2 VEE Figure 97. Inverting Amplifier Circuit ○Non-inverting Amplifier R1 R2 For non-inverting amplifier, input voltage (IN) is amplified by a voltage gain, which depends on the ratio VCC of R1 and R2. The output voltage (OUT) is in-phase with the input voltage (IN) and is shown in the next expression. OUT=(1 + R2/R1)・IN Effectively, this circuit has high input impedance since OUT its input side is the same as that of the operational IN amplifier. VEE Figure 98. Non-inverting Amplifier Circuit www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 38/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. Ground Wiring Pattern When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance. 5. Thermal Consideration Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. The absolute maximum rating of the P stated in this specification is when D the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the P rating. D 6. Recommended Operating Conditions These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter. 7. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. 8. Operation Under Strong Electromagnetic Field Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction. 9. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 10. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 39/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Operational Notes – continued 11. Regarding the Input Pin of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below): When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor. Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided. Resistor Transistor (NPN) Pin A Pin B B Pin B C Pin A E P+ P P+ P+ N P P+ B C N N N N Parasitic N N N E Elements Parasitic P Substrate P Substrate Elements GND GND GND GND Parasitic Parasitic N Region Elements Elements close-by Figure 99. Example of monolithic IC structure 12. Unused Circuits VCC It is recommended to apply the connection (see Figure 100.) and set the non-inverting input terminal at a potential within the Input Common-mode Voltage Range (V ) for any unused circuit. ICM Keep this potential in VICM V 13. Input Voltage ICM Applying VEE +36V to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, regardless of the supply voltage. However, this does not ensure normal circuit operation. VEE Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics. Figure 100. Example of Application Circuit for Unused Op-amp 14. Power Supply(single/dual) The operational amplifier operates when the voltage supplied is between VCC and VEE. Therefore, the single supply operational amplifier can be used as dual supply operational amplifier as well. 15. IC Handling When pressure is applied to the IC through warp on the printed circuit board, the characteristics may fluctuate due to the piezo effect. Be careful with the warp on the printed circuit board. 16. The IC Destruction Caused by Capacitive Load The IC may be damaged when VCC terminal and VEE terminal is shorted with the charged output terminal capacitor. When IC is used as an operational amplifier or as an application circuit where oscillation is not activated by an output capacitor, output capacitor must be kept below 0.1μF in order to prevent the damage mentioned above. www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 40/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Physical Dimension, Tape and Reel Information Package Name SOP8 (Max 5.35 (include.BURR)) (UNIT : mm) PKG : SOP8 Drawing No. : EX112-5001-1 www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 41/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Physical Dimension, Tape and Reel Information Package Name SSOP-B8 www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 42/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Physical Dimension, Tape and Reel Information Package Name SOP-J8 www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 43/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Physical Dimension, Tape and Reel Information Package Name MSOP8 www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 44/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Physical Dimension, Tape and Reel Information Package Name TSSOP-B8 www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 45/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Physical Dimension, Tape and Reel Information Package Name SSOP-B14 www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 46/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Marking Diagrams SOP8(TOP VIEW) SSOP-B8(TOP VIEW) Part Number Marking Part Number Marking LOT Number LOT Number 1PIN MARK 1PIN MARK MSOP8(TOP VIEW) TSSOP-B8(TOP VIEW) Part Number Marking Part Number Marking LOT Number LOT Number 1PIN MARK 1PIN MARK SOP-J8(TOP VIEW) SSOP-B14(TOP VIEW) Part Number Marking Part Number Marking LOT Number LOT Number 1PIN MARK 1PIN MARK Product Name Package Type Marking F SOP8 FJ SOP-J8 FV SSOP-B8 BA4560 4560 FVT TSSOP-B8 FVM MSOP8 FJ SOP-J8 F SOP8 FJ SOP-J8 FV SSOP-B8 BA4560R 4560R FVT TSSOP-B8 FVM MSOP8 FJ SOP-J8 BA4564R FV SSOP-B14 4564R BA4564W FV SSOP-B14 4564W www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 47/48 19.Nov.2014 Rev.003 TSZ22111・15・00

B A4560xxx BA4560Rxxx BA4564RFV BA4564WFV Datasheet Revision History Date Revision Changes 10/May/2012 001 New Release 07/Sep/2012 002 Added Line-up 19/Nov/2014 003 Page.3 Absolute Maximum Ratings : Added Input Current www.rohm.com TSZ02201-0RAR1G200020-1-2 © 2012 ROHM Co., Ltd. All rights reserved. 48/48 19.Nov.2014 Rev.003 TSZ22111・15・00

Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-GE Rev.003 © 2013 ROHM Co., Ltd. All rights reserved.

Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.: 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-GE Rev.003 © 2013 ROHM Co., Ltd. All rights reserved.

DDaattaasshheeeett General Precaution 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this document is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sale s representative. 3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information. Notice – WE Rev.001 © 2014 ROHM Co., Ltd. All rights reserved.

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: R OHM Semiconductor: BA4560 BA4560F-E2 BA4560RF-E2 BA4560RFV-E2 BA4560RFVM-TR BA4560FJ-GE2 BA4560FV-GE2 BA4560FVM-GTR BA4560FVT-GE2 BA4560RFVT-E2 BA4564WFV-E2 BA4564RFV-E2 BA4560RFJ-GE2