图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: BA05SFP-E2
  • 制造商: ROHM Semiconductor
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

BA05SFP-E2产品简介:

ICGOO电子元器件商城为您提供BA05SFP-E2由ROHM Semiconductor设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 BA05SFP-E2价格参考¥2.84-¥2.84。ROHM SemiconductorBA05SFP-E2封装/规格:PMIC - 稳压器 - 线性, Linear Voltage Regulator IC Positive Fixed 1 Output 5V 1A TO-252-5。您可以下载BA05SFP-E2参考资料、Datasheet数据手册功能说明书,资料中有BA05SFP-E2 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)

描述

IC REG LDO 5V 1A TO252-5

产品分类

PMIC - 稳压器 - 线性

品牌

Rohm Semiconductor

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

BA05SFP-E2

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30333

供应商器件封装

TO-252-5

其它名称

BA05SFP-E2CT

包装

剪切带 (CT)

安装类型

表面贴装

封装/外壳

TO-252-5,DPak(4 引线 + 接片),TO-252AD

工作温度

-40°C ~ 85°C

标准包装

1

特色产品

http://www.digikey.cn/product-highlights/cn/zh/rohm-ba-bd-ldo-regulator-ics/3995

电压-跌落(典型值)

0.3V @ 500mA

电压-输入

6 V ~ 25 V

电压-输出

5V

电流-输出

1A

电流-限制(最小值)

-

稳压器拓扑

正,固定式

稳压器数

1

推荐商品

型号:TLV70732DQNR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1764AEFE-1.5#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LD3985M47R

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:NCV4274DS50R4G

品牌:ON Semiconductor

产品名称:集成电路(IC)

获取报价

型号:TPS71725DCKT

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT3007ETS8-1.8#TRMPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LD29150DT25R

品牌:STMicroelectronics

产品名称:集成电路(IC)

获取报价

型号:LP2983IM5-1.0/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
BA05SFP-E2 相关产品

LM317LILPR

品牌:Texas Instruments

价格:

XC6218P302NR-G

品牌:Torex Semiconductor Ltd

价格:

LT3085MPMS8E#TRPBF

品牌:Linear Technology/Analog Devices

价格:

TPS73216DBVT

品牌:Texas Instruments

价格:¥0.88-¥0.89

LT3007ITS8-2.5#TRMPBF

品牌:Linear Technology/Analog Devices

价格:

ADM7150ARDZ-3.3-R7

品牌:Analog Devices Inc.

价格:¥34.87-¥34.87

PQ1U501M2ZPH

品牌:Sharp Microelectronics

价格:¥0.99-¥2.39

TPS76818QPWPG4

品牌:Texas Instruments

价格:

PDF Datasheet 数据手册内容提取

BAΟΟST / BAΟΟSFP series Regulator ICs Regulator, low drop-out type with ON/OFF switch ΟΟΟΟΟΟΟΟ ΟΟΟΟΟΟΟΟ BA ST / BA SFP series The BAΟΟST and BAΟΟSFP series are variable, fixed output low drop-out type voltage regulators with an ON/OFF switch. These regulators are used to provide a stabilized output voltage from a fluctuating DC input voltage. Fixed output voltages are 3.3V, 5V, 6V(SFP), 7V, 8V, 9V, 10V(ST), 12V(ST). The maximum current capacity is 1 A for each of the above voltages. !Application Constant voltage power supply !!!!Features 1) Built-in overvoltage protection circuit, overcurrent protection circuit and thermal shutdown circuit 2) TO220FP-5, TO252-5 standard packages can be accomodated in wide application. 3) 0µA (design value) circuit current when switch is off 4) Richly diverse lineup. 5) Low minimum I/O voltage differential. !!!!Product codes Output voltage (V) Product No. Output voltage (V) Product No. Variable BA00AST / ASFP 8.0 BA08ST / SFP 3.3 BA033ST / SFP 9.0 BA09ST / SFP 5.0 BA05ST / SFP 10.0 BA10ST 6.0 BA06SFP 12.0 BA12ST 7.0 BA07ST / SFP !!!!Absolute maximum ratings (Ta=25°C) Parameter Symbol Limits Unit Power supply voltage VCC 35 V Power dissipation TO220FP-5 Pd 2000*1 mW TO252-5 1000*2 Operating temperature Topr -40~+85 ˚C Storage temperature Tstg -55~+150 ˚C Peak applied voltage Vsurge 50*3 V *1 Reduced by 16mW for each increase in Ta of 1˚C over 25˚C. *2 Reduced by 8mW for each increase in Ta of 1˚C over 25˚C. *3 Voltage application time : 200 msec. or less 1/11

BAΟΟST / BAΟΟSFP series Regulator ICs !!!!Block diagram VCC 2 REFERENCE − VOLTAGE OUT + 4 + CTL 1 5 C GND 3 Variable output type (BA00AST / ASFP) VCC 2 REFERENCE − VOLTAGE OUT + 4 + CTL 1 GND 3 Fixed output type !!!!Pin descriptions Pin No. Pin name Function 1 CTL Output ON/OFF 2 VCC Power supply input 3 GND Ground 4 OUT Output Reference power supply pin for setting voltage with C the BA00AST/ASFP. 5 In the BAOOST/SFP Series, these are NC pins, N.C. except for the BA00AST/ASFP. 2/11

BAΟΟST / BAΟΟSFP series Regulator ICs !!!!Recommended operating conditions BA00AST / ASFP BA08ST / SFP Parameter Symbol Min. Max. Unit Parameter Symbol Min. Max. Unit Input voltage VCC 4 25 V Input voltage VCC 9 25 V Output current IO - 1 A Output current IO - 1 A BA033ST / SFP BA09ST / SFP Parameter Symbol Min. Max. Unit Parameter Symbol Min. Max. Unit Input voltage VCC 4.3 25 V Input voltage VCC 10 25 V Output current IO - 1 A Output current IO - 1 A BA05ST / SFP BA10ST Parameter Symbol Min. Max. Unit Parameter Symbol Min. Max. Unit Input voltage VCC 6 25 V Input voltage VCC 11 25 V Output current IO - 1 A Output current IO - 1 A BA06SFP BA12ST Parameter Symbol Min. Max. Unit Parameter Symbol Min. Max. Unit Input voltage VCC 7 25 V Input voltage VCC 13 25 V Output current IO - 1 A Output current IO - 1 A BA07ST / SFP Parameter Symbol Min. Max. Unit Input voltage VCC 8 25 V Output current IO - 1 A !!!!Electrical characteristics BA00AST / ASFP (unless otherwise noted, Ta=25°C, Vcc=10V, Io=500mA) Measurement Parameter Symbol Min. Typ. Max. Unit Conditions circuit Reference voltage Vref 1.200 1.225 1.250 V Fig.1 Power save current Ist - 0 10 µA OFF mode Fig.4 Output voltage VO - 5.0 - V Fig.1 Input stability Reg.I - 20 100 mV VCC=6→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Load regulation Reg.L - 50 150 mV IO=5mA→1A Fig.1 Temperature coefficient of output voltage TCVO - ±0.01 - % / ˚C IO=5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V VCC=0.95VO Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 Input high level current IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 3/11

BAΟΟST / BAΟΟSFP series Regulator ICs BA033ST / SFP (unless otherwise noted, Ta=25°C, Vcc=8 V, Io=500 mA) Measurement Parameter Symbol Min. Typ. Max. Unit Conditions circuit Power save current IST - 0 10 µA OFF mode Fig.4 Output voltage VO1 3.13 3.3 3.47 V Fig.1 Input stability Reg.I - 20 100 mV VCC=4=.3→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Load regulation Reg.L - 50 150 mV IO=5mA→1A Fig.1 Temperature coefficient of output voltage TCVO - ±0.02 - % / ˚C IO=5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V VCC=0.95VO Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 Input high level current IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 BA05ST / SFP (unless otherwise noted, Ta=25°C, Vcc=10 V, Io=500 mA) Measurement Parameter Symbol Min. Typ. Max. Unit Conditions circuit Power save current IST - 0 10 µA OFF mode Fig.4 Output voltage VO1 4.75 5.0 5.25 V Fig.1 Input stability Reg.I - 20 100 mV VCC=6→2=5V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Load regulation Reg.L - 50 150 mV IO=5mA→1A Fig.1 Temperature coefficient of output voltage TCVO - ±0.02 - % / ˚C IO=5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V VCC=4.75V Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 Input high level current IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 BA06SFP ( unless otherwise noted, Ta=25°C, Vcc=11 V, Io=500 mA) Measurement Parameter Symbol Min. Typ. Max. Unit Conditions circuit Power save current IST - 0 10 µA OFF mode Fig.4 Output voltage VO1 5.7 6.0 6.3 V Fig.1 Input stability Reg.I - 20 100 mV VCC=7→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Load regulation Reg.L - 50 150 mV IO=5mA→1A Fig.1 Temperature coefficient of output voltage TCVO - ±0.02 - % / ˚C IO=5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V VCC=5.7V Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 Input high level current IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 4/11

BAΟΟST / BAΟΟSFP series Regulator ICs BA07ST / SFP (unless otherwise noted, Ta=25°C, Vcc=12 V, Io=500 mA) (under development) Measurement Parameter Symbol Min. Typ. Max. Unit Conditions circuit Power save current IST - 0 10 µA OFF mode Fig.4 Output voltage VO1 6.65 7.0 7.35 V Fig.1 Input stability Reg.I - 20 100 mV VCC=8→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Load regulation Reg.L - 50 150 mV IO=5mA→1A Fig.1 Temperature coefficient of output voltage TCVO - ±0.02 - % / ˚C IO=5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V VCC=6.65V Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 Input high level current IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 BA08ST / SFP (unless otherwise noted, Ta=25°C, Vcc=13 V, Io=500 mA) Measurement Parameter Symbol Min. Typ. Max. Unit Conditions circuit Power save current IST - 0 10 µA OFF mode Fig.4 Output voltage VO1 7.6 8.0 8.4 V Fig.1 Input stability Reg.I - 20 100 mV VCC9→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Load regulation Reg.L - 50 150 mV IO=5mA→1A Fig.1 Temperature coefficient of output voltage TCVO - ±0.02 - % / ˚C IO=5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V VCC=0.95VO Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 Input high level current IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 BA09ST / SFP (unless otherwise noted, Ta=25°C, Vcc=14 V, Io=500 mA) Measurement Parameter Symbol Min. Typ. Max. Unit Conditions circuit Power save current IST - 0 10 µA OFF mode Fig.4 Output voltage VO1 8.55 9.0 9.45 V Fig.1 Input stability Reg.I - 20 100 mV VCC=10→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Load regulation Reg.L - 50 150 mV IO=5mA→1A Fig.1 Temperature coefficient of output voltage TCVO - ±0.02 - % / ˚C IO=5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V VCC=0.95VO Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 Input high level current IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 5/11

BAΟΟST / BAΟΟSFP series Regulator ICs BA10ST (unless otherwise noted, Ta=25°C, Vcc=15 V, Io=500 mA) Measurement Parameter Symbol Min. Typ. Max. Unit Conditions circuit Power save current IST - 0 10 µA OFF mode Fig.4 Output voltage VO1 9.5 10 10.5 V Fig.1 Input stability Reg.I - 20 100 mV VCC=11→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Load regulation Reg.L - 50 150 mV IO=5mA→1A Fig.1 Temperature coefficient of output voltage TCVO - ±0.02 - % / ˚C IO=5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V VCC=0.95VO Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 Input high level current IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 BA12ST (unless otherwise noted, Ta=25°C, Vcc=17 V, Io=500 mA) Measurement Parameter Symbol Min. Typ. Max. Unit Conditions circuit Power save current IST - 0 10 µA OFF mode Fig.4 Output voltage VO1 11.4 12 12.6 V Fig.1 Input stability Reg.I - 20 100 mV VCC=13→25V Fig.1 Ripple rejection ratio R.R. 45 55 - dB eIN=1Vrms, f=120Hz, IO=100mA Fig.2 Load regulation Reg.L - 50 150 mV IO=5mA→1A Fig.1 Temperature coefficient of output voltage TCVO - ±0.02 - % / ˚C IO=5mA, Tj=0~125˚C Fig.1 Minimum I/O voltage differential Vd - 0.3 0.5 V VCC=0.95VO Fig.3 Bias current Ib - 2.5 5.0 mA IO=0mA Fig.4 Peak output current IO 1.0 1.5 - A Tj=25˚C Fig.1 Output short-circuit current IOS - 0.4 - A VCC=25V Fig.5 ON mode voltage Vth1 2.0 - - V Output Active mode, IO=0mA Fig.6 OFF mode voltage Vth2 - - 0.8 V Output OFF mode, IO=0mA Fig.6 Input high level current IIN 100 200 300 µA CTL=5V, IO=0mA Fig.6 6/11

BAΟΟST / BAΟΟSFP series Regulator ICs !!!!Measurement circuits ( The C pin only exists on the BA00AST / ASFP, for the BA00AST / ASFP, place a 6.8kΩ resistor between the OUT and C pins, and a 2.2kΩ resisitor between the C and pins.) V eIN 10Ω5W VCC µ0.33F VCCCTL GNDO *UCT +22µFIO V VCC 1000.3µ3FµF CVTCCL GNDO *UCT +22µF VeOUT IO=100mA eIN=1Vrms 5V f=120Hz 5V Fig.1 Measurement circuit for output voltage, input Ripple rejection ratio R.R. = 20 log (eeOIUNT) stability, load regulation, and temperature coefficient of output voltage Fig.2 Measurement circuit for ripple rejection ratio V 0.33µF VCC OUT 22µF+ 0.33µF VCC OUT 22µF VCC CTL GND *C + VCC=0.95VO CTL GND *C IO=500mA A 5V Fig.3 Measurement circuit for minimum I/O Fig.4 Measurement circuit for bias current, voltage differential power save current measurement circuit 0.33µF VCC OUT 22µF 0.33µF VCC OUT + + VCC CTL GND *C IOS A VCC CTL GND *C 22µF V 5V A Fig.5 Measurement circuit for output short-circuit current Fig.6 Measurement circuit for ON/OFF mode voltage, input high level current 7/11

BAΟΟST / BAΟΟSFP series Regulator ICs !!!!Operation notes (1) Operating power supply voltage When operating within the normal voltage range and within the ambient operating temperature range, most circuit functions are guaranteed. The rated values cannot be guaranteed for the electrical characteristics, but there are no sudden changes of the characteristics within these ranges. (2) Power dissipation Heat attenuation characteristics are noted on a separate page and can be used as a guide in judging power dissipation. If these ICs are used in such a way that the allowable power dissipation level is exceeded, an increase in the chip temperature could cause a reduction in the current capability or could otherwise adversely affect the performance of the IC. Make sure a sufficient margin is allowed so that the allowable power dissipation value is not exceeded. (3) Output oscillation prevention and bypass capacitor Be sure to connect a capacitor between the output pin and GND to prevent oscillation. Since fluctuations in the valve of the capacitor due to temperature changes may cause oscillations, a tantalum electrolytic capacitor with a small internal series resistance (ESR) is recommended. A 22µF capacitor is recommended; however, be aware that if an extremely large capacitance is used (1000µF or greater), then oscillations may occur at low frequencies. Therefore, be sure to perform the appropriate verifications before selecting the capacitor. Also, we recommend connecting a 0.33µF bypass capacitor as close as possible between the input pin and GND. (4) Current overload protection circuit A current overload protection circuit is built into the outputs, to prevent IC destruction if the load is shorted. This protection circuit limits the current in the shape of a fall back characteristics. It is designed with a high margin, so that even if a large current suddenly flows through the large capacitor in the IC, the current is restricted and latching is prevented. However, these protection circuits are only good for pre-venting damage from sudden accidents. The design should take this into consideration, so that the protection circuit is not made to operate continuously (for instance, clamping at an output of 1VF or greater; below 1VF, the short mode circuit operates). Note that the capacitor has negative temperature characteristics, and the design should take this into consideration. (5) Thermal overload circuit A built-in thermal overload circuit prevents damage from overheating. When the thermal circuit is activated, the various outputs are in the OFF state. When the temperature drops back to a constant level, the circuit is restored. (6) Internal circuits could be damaged if there are modes in which the electric potential of the application(cid:146)s input (VCC) and GND are the opposite of the electric potential of the various outputs. Use of a diode or other such bypass path is recommended. (7) Although the manufacture of this product includes rigorous quality assurance procedures, the product may be damaged if absolute maximum ratings for voltage or operating temperature are exceeded. If damage has occurred, special modes (such as short circuit mode or open circuit mode) cannot be specified. If it is possible that such special modes may be needed, please consider using a fuse or some other mechanical safety measure. (8) When used within a strong magnetic field, be aware that there is a slight possibility of malfunction. 8/11

BAΟΟST / BAΟΟSFP series Regulator ICs (9) When the connected load which contains a big inductance component in an output terminal is connected and the occurrence of a reverse electromotive force can be considered at the time of and power-output OFF at the time of starting, I ask the insertion of protection diode of you. (Example) Output pin (10) Although it is sure that the example of an application circuit should be recommended, in a usage, I fully ask the validation of a property of you. In addition, when you alter the circuit constant with outside and you become a usage, please see and decide sufficient margin in consideration of the dispersion in an external component and IC of our company etc. not only including the static characteristic but including a transient characteristic. This IC is monolithic IC and has P+ isolation and P substrate for an isolation between each element. A P-N junction is formed by these P layers and N layers of each element, and various kinds of parasitic elements are formed. For example, when the resistor and the transistor are connected with the pin like the example of a simple architecture, •At a resistor, it is at the time of GND > (PIN A), at a transistor (NPN), it is at the time of GND > (PIN B), A P-N junction operates as parasitism diode. •At a transistor (NPN), it is at the time of GND > (PIN B), The NPN transistor of a parasitic element operates by N layers of other elements which approach with the above-mentioned parasitism diode. A parasitic element is inevitably made according to a potential relation on the architecture of IC. When a parasitic element operates, the interference of a circuit operation is caused and the cause of a malfunction, as a result a destructive is obtained. Therefore, please be fully careful of impressing a voltage lower than GND(P substrate) to an input/output terminal etc. not to carry out usage with which a parasitic element operates. 9/11

BAΟΟST / BAΟΟSFP series Regulator ICs Resistor Transistor (NPN) B (Pin A) (Pin B) C E GND N P P + + + + P N P P N P N N N N P substrate Parasitic elements P substrate GND Parasitic elements GND (Pin B) (Pin A) C B Parasitic elements E GND Other approaching GND elements Parasitic elements The example of a simple architecture of bipolar IC !!!!Electrical characteristic curves 25 12.5 6 POWER DISSIPATION : Pd (W) 2110505(((123)))21621.5..00 ((((1234)))) IAAInCllfuu ianmmliotiiennn aaeh ePPaCCt BBs,,in 15k000×5×100×20 ×m2m m2 m2 POWER DISSIPATION : Pd(W) 721..0555 (1)10.0 ((12)) IInCf insiimtep hlee astu sbisntka nisc ues eθdj- a θ=j1-c2=51.02 .(5º C(º/CW/)W) OUTPUT VOLTAGE : V (V)OUT 12345 VBCAC0=51S0TV IOUT=0 (4)2.0 (2)1.0 0 0 25 50 75 100 125 150 0 25 50 75 100 125 150 25 50 75 100 125 150 175 200 AMBIENT TEMPERATURE : Ta(˚C) AMBIENT TEMPERATURE : Ta (ºC) JUNCTION TEMPERATURE : Tj (˚C) Fig. 7 Thermal derating curves Fig.8 Thermal derating curves Fig.9 Thermal cutoff circuit (TO220FP-5) (TO252-5) characteristics 10/11

BAΟΟST / BAΟΟSFP series Regulator ICs 10 6 Vcc=10V BA05ST BA05ST GE : V(V)OUT 86 GE : V (V)OUT 54 OLTA OLTA 3 UT V 4 UT V 2 OUTP 2 OUTP 1 0 0 0 1.0 2.0 0 10 20 30 40 50 OUTPUT CURRENT : IOUT (A) INPUT VOLTAGE : VCC (V) Fig.10 Current limit characteristics Fig.11 Over voltage protection characteristics !!!!External Dimensions (Units: mm) 10.0+−00..31 4.5+−00..31 8±0.2 7.0 +−00..31 φ3.2±0.1 2.8+−00..21 1. +0.417.0−0.2 12.0±0.2 8.0±0.2 7.0±0.25.5±0.2 1625..51±30.8−+000..2.1425 2.3±0.02.51.5±02.5.19.5±0.5 Min. ±0.2 1.2 0.5 1.27 0.5±0.1 1.0±0.2 13.5 0.85 0.8 1 2 3 4 5 0.5+0.1 1pin : CTL 1.778 2.85 2pin : VCC 3pin : GND 4pin : OUT 5pin : N.C. TO220FP-5 TO252-5 11/11