ICGOO在线商城 > B32912B3224M
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
B32912B3224M产品简介:
ICGOO电子元器件商城为您提供B32912B3224M由EPCOS设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 提供B32912B3224M价格参考以及EPCOSB32912B3224M封装/规格参数等产品信息。 你可以下载B32912B3224M参考资料、Datasheet数据手册功能说明书, 资料中有B32912B3224M详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | |
描述 | CAP FILM 0.22UF 760VDC RADIAL薄膜电容器 0.22uF 330volts 20% X1 |
ESR(等效串联电阻) | - |
产品分类 | |
品牌 | EPCOS |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 薄膜电容器,EPCOS B32912B3224MB32912 |
数据手册 | |
产品型号 | B32912B3224M |
PCN封装 | |
PCN设计/规格 | |
产品 | Safety Film Capacitors |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=7588 |
产品目录绘图 | |
产品目录页面 | |
产品种类 | |
介电材料 | 聚丙烯(PP), 金属化 |
其它名称 | 495-3246 |
包装 | 散装 |
商标 | EPCOS |
外壳长度 | 18 mm |
大小/尺寸 | 0.709" 长 x 0.335" 宽(18.00mm x 8.50mm) |
安装类型 | 通孔 |
容差 | 20 % |
封装 | Bulk |
封装/外壳 | 径向 |
工作温度 | -40°C ~ 110°C |
工厂包装数量 | 500 |
应用 | EMI、RFI 抑制 |
引线间距 | 0.591"(15.00mm) |
引线间隔 | 15 mm |
最大工作温度 | + 110 C |
最小工作温度 | - 40 C |
标准包装 | 500 |
特性 | 达到 X1 安全等级 |
电介质 | Polypropylene (PP) |
电压额定值AC | 330 V |
电容 | 0.22 uF |
端接 | PC 引脚 |
端接类型 | Radial |
系列 | B32912 |
零件号别名 | B32912B3224M000 |
额定电压-AC | 330V |
额定电压-DC | 760V |
高度-安装(最大值) | 0.571"(14.50mm) |
Film Capacitors EMI Suppression Capacitors (MKP) Series/Type: B32911*3 ... B32916*3 Date: June 2018 ©EPCOSAG2018.Reproduction,publicationanddisseminationofthispublication,enclosuresheretoandthe informationcontainedthereinwithoutEPCOS'priorexpressconsentisprohibited. EPCOSAGisaTDKGroupCompany.
EMI suppression capacitors (MKP) B32911*3 ... B32916*3 X1 / 330 V AC Typical applications Dimensional drawing X1 class for interference suppression "Across the line" applications Climatic Max. operating temperature: 110 °C Climatic category (IEC 60068-1:2013): 40/110/56 Construction Dielectric: polypropylene (MKP) Plastic case (UL 94 V-0) Epoxy resin sealing (UL 94 V-0) Dimensions in mm Features Very small dimensions Lead Lead Type Good self-healing properties spacing diameter High voltage capability ±0.4 d ±0.05 1 RoHS-compatible 10 0.6 B32911*3 Halogen-free capacitors available on 15 ... 27.5 0.8 B32912*3 ... B32914*3 request 37.5 1.0 B32916*3 Terminals Parallel wire leads, lead-free tinned Special lead lengths available on request Marking examples (position of marks may vary): Marking Manufacturer's logo, lot number, date code, rated capacitance (coded), capacitance tolerance (code letter), rated AC voltage (IEC), series number, sub-class (X1), dielectric code (MKP), climatic category, passive flammability category, approvals. Delivery mode Bulk (untaped) Taped (Ammo pack or reel) For taping details, refer to chapter "Taping and packing". PleasereadCautionsandwarningsand Page2of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Approvals Approval Standards Certificate marks EN 60384-14:2014 40010694 (approved by VDE) (C ≤ 10 μF) IEC 60384-14:2013 UL 1414:2000 E97863 / E157153 UL 1283:2005 CSA C22.2 No.1:2004 E97863 / E157153 (approved by UL) CSA C22.2 No.8:2013 UL 60384-14:2014 E97863 (approved by UL) CSA E60384-14:2013 Notes: Effective January 2014, only for EMI supression capacitors: (cid:4) UL 60384-14:2014 certification replaces both UL 1414:2000 and UL 1283:2005 standards. (cid:4) CSA C22.2 No.1.2004 and CSA C22.2 No.8:2013 are replaced by CSA E60384-14:2013. (cid:4) References like 1414, 1283 are removed from the capacitor marking. Capacitors under UL 1414:2000, UL 1283:2005 produced during or before 2013, are accepted under UL scope. Capacitors under CSA C22.2 No.1:2004 / CSA C22.2 No.8:2013 produced during or before 2013, are accepted under cUL scope. PleasereadCautionsandwarningsand Page3of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Overview of available types Lead spacing 10 mm 15 mm 22.5 mm 27.5 mm 37.5 mm Type B32911*3 B32912*3 B32913*3 B32914*3 B32916*3 C (μF) R 0.010 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 6.8 PleasereadCautionsandwarningsand Page4of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Ordering codes and packing units Lead spacing C Max. dimensions Ordering code Ammo Reel Untaped R w × h × l (composition see pack mm μF mm below) pcs./MOQ pcs./MOQ pcs./MOQ 10 0.010 4.0 × 9.0 × 13.0 B32911A3103+*** 4000 6800 4000 0.022 5.0 × 11.0 × 13.0 B32911B3223+*** 3320 5200 4000 0.033 6.0 × 12.0 × 13.0 B32911A3333M*** 2720 4400 4000 15 0.022 5.0 × 10.5 × 18.0 B32912A3223+*** 4680 5200 4000 0.033 5.0 × 10.5 × 18.0 B32912A3333+*** 4680 5200 4000 0.047 5.0 × 10.5 × 18.0 B32912A3473+*** 4680 5200 4000 0.068 6.0 × 11.0 × 18.0 B32912A3683+*** 3840 4400 4000 0.10 7.0 × 12.5 × 18.0 B32912A3104+*** 3320 3600 4000 0.15 7.0 × 12.5 × 18.0 B32912B3154M*** 3320 3600 4000 0.15 8.5 × 14.5 × 18.0 B32912A3154+*** 2720 2800 2000 0.22 8.5 × 14.5 × 18.0 B32912B3224M*** 2720 2800 2000 0.22 9.0 × 17.5 × 18.0 B32912A3224+*** 2560 2800 2000 0.33 9.0 × 17.5 × 18.0 B32912B3334M*** 2560 2800 2000 22.5 0.15 6.0 × 15.0 × 26.5 B32913A3154+*** 2720 2800 2880 0.22 7.0 × 16.0 × 26.5 B32913A3224+*** 2320 2400 2520 0.33 8.5 × 16.5 × 26.5 B32913A3334M*** 1920 2000 2040 0.47 10.5 × 18.5 × 26.5 B32913A3474M*** 1560 1600 2160 MOQ = Minimum Order Quantity, consisting of 4 packing units. Further intermediate capacitance values on request. Compositionoforderingcode += Capacitancetolerancecode: ***= Packagingcode: M=±20% 289= Straightterminals,Ammopack K= ±10% 189= Straightterminals,Reel 003= Straightterminals,untaped (leadlength3.2±0.3mm) 000= Straightterminals,untaped (leadlength6(cid:4)1mm) PleasereadCautionsandwarningsand Page5of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Ordering codes and packing units Lead spacing C Max. dimensions Ordering code Ammo Reel Untaped R w × h × l (composition see pack mm μF mm below) pcs./MOQ pcs./MOQ pcs./MOQ 27.5 0.47 11.0 × 21.0 × 31.5 B32914A3474+*** (cid:4) 1400 1280 0.68 11.0 × 21.0 × 31.5 B32914B3684+*** (cid:4) 1400 1280 1.0 13.5 × 23.0 × 31.5 B32914A3105+*** (cid:4) 1000 1040 1.5 18.0 × 27.5 × 31.5 B32914A3155+*** (cid:4) (cid:4) 800 2.2 19.0 × 30.0 × 31.5 B32914A3225M*** (cid:4) (cid:4) 720 37.5 3.3 18.0 × 32.5 × 41.5 B32916A3335M*** (cid:4) (cid:4) 720 4.7 20.0 × 39.5 × 41.5 B32916A3475M*** (cid:4) (cid:4) 640 6.8 28.0 × 42.5 × 41.5 B32916A3685M*** (cid:4) (cid:4) 440 MOQ = Minimum Order Quantity, consisting of 4 packing units. Further intermediate capacitance values on request. Compositionoforderingcode += Capacitancetolerancecode: ***= Packagingcode: M=±20% 289= Straightterminals,Ammopack K= ±10% 189= Straightterminals,Reel 003= Straightterminals,untaped (leadlength3.2±0.3mm) 000= Straightterminals,untaped (leadlength6(cid:4)1mm) PleasereadCautionsandwarningsand Page6of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Technical data Reference standard: IEC 60384-14:2013 / UL 60384-14:2014. All data given at T = 20 °C, unless otherwise specified. Rated AC voltage 330 V (50/60 Hz) (IEC 60384-14:2013) Maximum continuous DC voltage V 760 V DC Max. operating temperature T +110 °C op,max DC test voltage 2500 V, 2 s The repetition of this DC voltage test may damage the capacitor. Special care must be taken in case of use several capacitors in a parallel configuration. Dissipation factor tan δ (in 10-3) at C ≤ 2.2 μF C > 2.2 μF R R at 20 °C (upper limit values) 1 kHz 1 2 Insulation resistance R or time constant C ≤ 0.33 μF C > 0.33 μF ins R R τ = CR (cid:5) Rins at 100 V DC, 20 °C, 100 000 MΩ 30 000 s rel. humidity ≤ 65% and for 60 s (minimum as-delivered values) Passive flammability category B Capacitance tolerances (measured at 1 kHz) ±10% (K), ±20% (M) Pulse handling capability "dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in V/μs. "k " represents the maximum permissible pulse characteristic of the waveform applied to the 0 capacitor, expressed in V2/μs. Note: The values of dV/dt and k provided below must not be exceeded in order to avoid damaging the 0 capacitor. dV/dt and k values 0 Lead spacing 10 mm 15 mm 22.5 mm 27.5 mm 37.5 mm dV/dt in V/μs 550 400 200 150 100 k in V2/μs 473 000 344 000 172 000 129 000 86 000 0 PleasereadCautionsandwarningsand Page7of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Testing and Standards Test Reference Conditions of test Performance requirements Electrical IEC Voltage Proof: Within specified limits parameters 60384-14:2013 Between terminals, 4.3 V , 1 min. R Terminals and enclosure: 2 V + 1500 V AC R Insulation resistance, R ins Capacitance, C Dissipation factor, tan δ Robustness IEC Tensile strength (test Ua1) Capacitance and tan δ of termina- 60068-2-21:2006 Wire diameter Tensile within specified limits tions force 0.5 < d ≤ 0.8 mm 10 N 1 0.8 < d ≤ 1.25 mm 20 N 1 Resistance IEC Solder bath temperature at ΔC/C ≤ 5% 0 to soldering 60068-2-20:2008, 260 ±5 °C, immersion for tan δ within specified limits heat test Tb, 10 seconds method 1A Rapid IEC T = lower category temperature No visible damage A change of 60384-14:2013 TB = upper category temperature (cid:6)ΔC/C0(cid:6) ≤ 5% temperature Five cycles, duration t = 30 min. tan δ within specified limits Vibration IEC Test F : vibration sinusoidal No visible damage C 60384-14:2013 Displacement: 0.75 mm Accleration: 98 m/s2 Frequency: 10 Hz ... 500 Hz Test duration: 3 orthogonal axes, 2 hours each axe Bump IEC Test Eb: Total 4000 bumps with No visible damage 60384-14:2013 400 m/s2 mounted on PCB (cid:6)ΔC/C0(cid:6) ≤ 5% 6 ms duration tan δ within specified limits Climatic IEC Dry heat Tb / 16 h No visible damage sequence 60384-14:2013 Damp heat cyclic, 1st cycle (cid:6)ΔC/C0(cid:6) ≤ 5% +55 °C / 24 h / 95% ... 100% RH (cid:6)Δ tan δ(cid:6) ≤ 0.008 for C ≤ 1 μF Cold Ta / 2 h (cid:6)Δ tan δ(cid:6) ≤ 0.005 for C > 1 μF Damp heat cyclic, 5 cycles Voltage proof +55 °C / 24 h / 95% ... 100% RH R ≥ 50% of initial limit ins PleasereadCautionsandwarningsand Page8of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Test Reference Conditions of test Performance requirements Damp heat, IEC Test Ca No visible damage steady 60384-14:2013 40 °C / 93% RH / 56 days (cid:6)ΔC/C0(cid:6) ≤ 5% state (cid:6)Δ tan δ(cid:6) ≤ 0.008 for C ≤ 1 μF (cid:6)Δ tan δ(cid:6) ≤ 0.005 for C > 1 μF Voltage proof R ≥ 50% of initial limit ins Impulse IEC 3 impulses No visible damage test 60384-14:2013 Tb / 1.25 VR / 1000 hours, (cid:6)ΔC/C0(cid:6) ≤ 10% Endurance 1000 V for 0.1 s every hour (cid:6)Δ tan δ(cid:6) ≤ 0.008 for C ≤ 1 μF RMS (cid:6)Δ tan δ(cid:6) ≤ 0.005 for C > 1 μF Voltage proof R ≥ 50% of initial limit ins Passive IEC Flame applied for a period of B flammability 60384-14:2013 time depending on capacitor volume Active IEC 20 discharges at 2.5 kV + V The cheesecloth shall not R flammability 60384-14:2013 burn with a flame Mounting guidelines 1 Soldering 1.1 Solderability of leads The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1. Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur. Solder bath temperature 235 ±5 °C Soldering time 2.0 ±0.5 s Immersion depth 2.0 +0/(cid:4)0.5 mm from capacitor body or seating plane Evaluation criteria: Wetting of wire surface by new solder ≥90%, Visual inspection free-flowing solder PleasereadCautionsandwarningsand Page9of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC 1.2 Resistance to soldering heat Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1. Conditions: Series Solder bath temperature Soldering time MKT boxed (except 2.5 × 6.5 × 7.2 mm) 260 ±5 °C 10 ±1 s coated uncoated (lead spacing >10 mm) MFP MKP (lead spacing >7.5 mm) MKT boxed (case 2.5 × 6.5 × 7.2 mm) 5 ±1 s MKP (lead spacing ≤7.5 mm) <4 s MKT uncoated (lead spacing ≤10 mm) recommended soldering insulated (B32559) profile for MKT uncoated (lead spacing ≤ 10 mm) and insulated (B32559) Immersion depth 2.0 +0/(cid:4)0.5 mm from capacitor body or seating plane Shield Heat-absorbing board, (1.5 ±0.5) mm thick, between capacitor body and liquid solder Evaluation criteria: Visual inspection No visible damage 2% for MKT/MKP/MFP ΔC/C 0 5% for EMI suppression capacitors tan δ As specified in sectional specification PleasereadCautionsandwarningsand Page10of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC 1.3 General notes on soldering Permissible heat exposure loads on film capacitors are primarily characterized by the upper cate- gory temperature T . Long exposure to temperatures above this type-related temperature limit max can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like: Pre-heating temperature and time Forced cooling immediately after soldering Terminal characteristics: diameter, length, thermal resistance, special configurations (e.g. crimping) Height of capacitor above solder bath Shadowing by neighboring components Additional heating due to heat dissipation by neighboring components Use of solder-resist coatings The overheating associated with some of these factors can usually be reduced by suitable coun- termeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included. EPCOS recommendations As a reference, the recommended wave soldering profile for our film capacitors is as follows: PleasereadCautionsandwarningsand Page11of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Body temperature should follow the description below: MKP capacitor During pre-heating: T ≤110 °C p During soldering: T ≤120 °C, t ≤45 s s s MKT capacitor During pre-heating: T ≤125 °C p During soldering: T ≤160 °C, t ≤45 s s s When SMD components are used together with leaded ones, the film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step. Leaded film capacitors are not suitable for reflow soldering. In order to ensure proper conditions for manual or selective soldering, the body temperature of the capacitor (T ) must be ≤120 °C. s One recommended condition for manual soldering is that the tip of the soldering iron should be <360 °C and the soldering contact time should be no longer than 3 seconds. For uncoated MKT capacitors with lead spacings ≤10 mm (B32560/B32561) the following mea- sures are recommended: pre-heating to not more than 110 °C in the preheater phase rapid cooling after soldering Please refer to EPCOS Film Capacitor Data Book in case more details are needed. PleasereadCautionsandwarningsand Page12of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Application note for the different possible X1 / X2 positions In series with the powerline In parallel with the powerline (i.e. capacitive power supply) Typical Applications: Typical Applications: Standard X2 are used parallel over the mains for Power meters reducing electromagnetic interferences coming ECUs for white goods and household from the grid. For such purposes they must meet appliances the applicable EMC directives and standards. Different sensor applications Severe ambient conditions Basic circuit Basic circuit Required features Required features High capacitance stability over the lifetime Standard safety approvals Narrow tolerances for a controlled current (ENEC, UL, CSA, CQC) supply High pulse load capability Withstand surge voltages Recommended EPCOS product series Recommended EPCOS product series B3293* (305 V AC) heavy duty with B3292*C/D (305 V AC) EN approval for X2 (UL Q1/2010) standard series, approved as X2 B3265* MKP series B3291* (330 V AC), approved as X1 standard MKP capacitor without safety B3291* (530 V AC), approved as X1 approvals B3292*H/J (305 V AC), severe ambient B3267*L MKP series condition, approved as X2 standard MKP capacitor without safety approvals B3292*H/J (305 V AC), severe ambient condition, approved as X2 PleasereadCautionsandwarningsand Page13of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Cautions and warnings Do not exceed the upper category temperature (UCT). Do not apply any mechanical stress to the capacitor terminals. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after it has been soldered to the PC board. Do not pick up the PC board by the soldered capacitor. Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing. Do not exceed the specified time or temperature limits during soldering. Avoid external energy inputs, such as fire or electricity. Avoid overload of the capacitors. Consult us if application is with severe temperature and humidity condition. There are no serviceable or repairable parts inside the capacitor. Opening the capacitor or any attempts to open or repair the capacitor will void the warranty and liability of EPCOS. Please note that the standards referred to in this publication may have been revised in the meantime. The table below summarizes the safety instructions that must always be observed. A detailed de- scription can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines". Topic Safety information Reference chapter "General technical information" Storage Make sure that capacitors are stored within the specified 4.5 conditions range of time, temperature and humidity conditions. "Storage conditions" Flammability Avoid external energy, such as fire or electricity (passive 5.3 flammability), avoid overload of the capacitors (active "Flammability" flammability) and consider the flammability of materials. Resistance to Do not exceed the tested ability to withstand vibration. 5.2 vibration The capacitors are tested to IEC 60068-2-6:2007. "Resistance to EPCOS offers film capacitors specially designed for vibration" operation under more severe vibration regimes such as those found in automotive applications. Consult our catalog "Film Capacitors for Automotive Electronics". Topic Safety information Reference chapter "Mounting guidelines" Soldering Do not exceed the specified time or temperature limits 1 "Soldering" during soldering. Cleaning Use only suitable solvents for cleaning capacitors. 2 "Cleaning" PleasereadCautionsandwarningsand Page14of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Topic Safety information Reference chapter "Mounting guidelines" Embedding of When embedding finished circuit assemblies in plastic 3 "Embedding of capacitors in resins, chemical and thermal influences must be taken capacitors in finished finished into account. assemblies" assemblies Caution: Consult us first, if you also wish to embed other uncoated component types! Design of EMI Capacitors EPCOS EMI capacitors use polypropylene (PP) film metalized with a thin layer of Zinc (Zn). The following key points have made this design suitable to IEC/UL testing, holding a minimum size. Overvoltage AC capability with very high temperature Endurance test of IEC 60384-14:2013 (4 edition) / UL 60384-14:2014 (2nd edition) must be performed at 1.25 × V at maximum tem- th R perature, during 1000 hours, with a capacitance drift less than 10%. Higher breakdown voltage withstanding if compared to other film metallizations, like Aluminum. IEC 60384-14:2013 (4th edition) / UL 60384-14:2014 (2nd edition) establishes high voltage tests performed at 4.3 × VR (cid:4)1 minute, impulse testing at 2500 V for C = 1 μF and active flammability tests. Damp heat steady state: 40 °C/ 93% RH / 56 days. (without voltage or current load) Effect of humidity on capacitance stability Long contact of a film capacitor with humidity can produce irreversible effects. Direct contact with liquid water or excess exposure to high ambient humidity or dew will eventually remove the film metallization and thus destroy the capacitor. Plastic boxed capacitors must be properly tested in the final application at the worst expected conditions of temperature and humidity in order to check if any parameter drift may provoke a circuit malfunction. In case of penetration of humidity through the film, the layer of Zinc can be degraded, specially under AC operation (change of polarity), accelerated by the temperature, provoking an increment of the serial resistance of the electrode and eventually a reduction of the capacitance value. For DC operation, the parameter drift is much less. Plastic boxes and resins can not protect 100% against humidity. Metal enclosures, resin potting or coatings or similar measures by customers in their applications will offer additional protection against humidity penetration. Display of ordering codes for EPCOS products The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the or- dering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes. PleasereadCautionsandwarningsand Page15of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Symbols and terms Symbol English German α Heat transfer coefficient Wärmeübergangszahl α Temperature coefficient of capacitance Temperaturkoeffizient der Kapazität C A Capacitor surface area Kondensatoroberfläche β Humidity coefficient of capacitance Feuchtekoeffizient der Kapazität C C Capacitance Kapazität C Rated capacitance Nennkapazität R ΔC Absolute capacitance change Absolute Kapazitätsänderung ΔC/C Relative capacitance change (relative Relative Kapazitätsänderung (relative deviation of actual value) Abweichung vom Ist-Wert) ΔC/C Capacitance tolerance (relative deviation Kapazitätstoleranz (relative Abweichung R from rated capacitance) vom Nennwert) dt Time differential Differentielle Zeit Δt Time interval Zeitintervall ΔT Absolute temperature change Absolute Temperaturänderung (self-heating) (Selbsterwärmung) Δtan δ Absolute change of dissipation factor Absolute Änderung des Verlustfaktors ΔV Absolute voltage change Absolute Spannungsänderung dV/dt Time differential of voltage function (rate Differentielle Spannungsänderung of voltage rise) (Spannungsflankensteilheit) ΔV/Δt Voltage change per time interval Spannungsänderung pro Zeitintervall E Activation energy for diffusion Aktivierungsenergie zur Diffusion ESL Self-inductance Eigeninduktivität ESR Equivalent series resistance Ersatz-Serienwiderstand f Frequency Frequenz f Frequency limit for reducing permissible Grenzfrequenz für thermisch bedingte 1 AC voltage due to thermal limits Reduzierung der zulässigen Wechselspannung f Frequency limit for reducing permissible Grenzfrequenz für strombedingte 2 AC voltage due to current limit Reduzierung der zulässigen Wechselspannung f Resonant frequency Resonanzfrequenz r F Thermal acceleration factor for diffusion Therm. Beschleunigungsfaktor zur D Diffusion F Derating factor Deratingfaktor T i Current (peak) Stromspitze I Category current (max. continuous Kategoriestrom (max. Dauerstrom) C current) PleasereadCautionsandwarningsand Page16of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Symbol English German I (Sinusoidal) alternating current, (Sinusförmiger) Wechselstrom RMS root-mean-square value i Capacitance drift Inkonstanz der Kapazität z k Pulse characteristic Impulskennwert 0 L Series inductance Serieninduktivität S λ Failure rate Ausfallrate λ Constant failure rate during useful Konstante Ausfallrate in der 0 service life Nutzungsphase λ Failure rate, determined by tests Experimentell ermittelte Ausfallrate test P Dissipated power Abgegebene Verlustleistung diss P Generated power Erzeugte Verlustleistung gen Q Heat energy Wärmeenergie ρ Density of water vapor in air Dichte von Wasserdampf in Luft R Universal molar constant for gases Allg. Molarkonstante für Gas R Ohmic resistance of discharge circuit Ohmscher Widerstand des Entladekreises R Internal resistance Innenwiderstand i R Insulation resistance Isolationswiderstand ins R Parallel resistance Parallelwiderstand P R Series resistance Serienwiderstand S S severity (humidity test) Schärfegrad (Feuchtetest) t Time Zeit T Temperature Temperatur τ Time constant Zeitkonstante tan δ Dissipation factor Verlustfaktor tan δ Dielectric component of dissipation Dielektrischer Anteil des Verlustfaktors D factor tan δ Parallel component of dissipation factor Parallelanteil des Verlfustfaktors P tan δ Series component of dissipation factor Serienanteil des Verlustfaktors S T Temperature of the air surrounding the Temperatur der Luft, die das Bauteil A component umgibt T Upper category temperature Obere Kategorietemperatur max T Lower category temperature Untere Kategorietemperatur min t Operating life at operating temperature Betriebszeit bei Betriebstemperatur und OL and voltage -spannung T Operating temperature, T + ΔT Beriebstemperatur, T + ΔT op A A T Rated temperature Nenntemperatur R T Reference temperature Referenztemperatur ref t Reference service life Referenz-Lebensdauer SL PleasereadCautionsandwarningsand Page17of20 Importantnotesattheendofthisdocument.
B32911*3 ... B32916*3 X1 / 330 V AC Symbol English German V AC voltage Wechselspannung AC V Category voltage Kategoriespannung C V Category AC voltage (Sinusförmige) C,RMS Kategorie-Wechselspannung V Corona-discharge onset voltage Teilentlade-Einsatzspannung CD V Charging voltage Ladespannung ch V DC voltage Gleichspannung DC V Fly-back capacitor voltage Spannung (Flyback) FB V Input voltage Eingangsspannung i V Output voltage Ausgangssspannung o V Operating voltage Betriebsspannung op V Peak pulse voltage Impuls-Spitzenspannung p V Peak-to-peak voltage Impedance Spannungshub pp V Rated voltage Nennspannung R Amplitude of rated AC voltage Amplitude der Nenn-Wechselspannung R V (Sinusoidal) alternating voltage, (Sinusförmige) Wechselspannung RMS root-mean-square value V S-correction voltage Spannung bei Anwendung "S-correction" SC V Snubber capacitor voltage Spannung bei Anwendung sn "Beschaltung" Z Impedance Scheinwiderstand Lead spacing Rastermaß PleasereadCautionsandwarningsand Page18of20 Importantnotesattheendofthisdocument.
Important notes The following applies to all products named in this publication: 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical re- quirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incum- bent on the customer to check and decide whether an EPCOS product with the properties de- scribed in the product specification is suitable for use in a particular customer application. 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component. 3. The warnings, cautions and product-specific notes must be observed. 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Ma- terial Data Sheets on the Internet (www.epcos.com/material). Should you have any more de- tailed questions, please contact our sales offices. 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the fore- going for customer-specific products. 6. Unless otherwise agreed in individual contracts, all orders are subject to the current ver- sion of the "General Terms of Delivery for Products and Services in the Electrical In- dustry" published by the German Electrical and Electronics Industry Association (ZVEI). Page19of20
Important notes 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements (“CSR”) TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon. 8. The trade names EPCOS, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other coun- tries. Further information will be found on the Internet at www.epcos.com/trademarks. Release 2018-06 Page20of20
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: E PCOS / TDK: B32911A3103K B32911A3103K189 B32911A3103K289 B32911A3103M B32911A3103M189 B32911A3103M289 B32911A3333M B32911A3333M189 B32911A3333M289 B32911A4102M B32911A4102M189 B32911A4102M289 B32911A4103M B32911A4103M189 B32911A4103M289 B32911A4152M B32911A4152M189 B32911A4152M289 B32911A4222M B32911A4222M189 B32911A4222M289 B32911A4332M B32911A4332M189 B32911A4332M289 B32911A4472M B32911A4472M189 B32911A4472M289 B32911A4562M B32911A4562M189 B32911A4562M289 B32911A4682M B32911A4682M189 B32911A4682M289 B32911A4822M B32911A4822M189 B32911A4822M289 B32911B3223K189 B32911B3223K289 B32911B3223M B32911B3223M189 B32911B3223M289 B32912A3104K B32912A3104K189 B32912A3104K289 B32912A3104M B32912A3104M189 B32912A3104M289 B32912A3154K B32912A3154K189 B32912A3154K289 B32912A3154M B32912A3223K B32912A3223K189 B32912A3223K289 B32912A3223M B32912A3223M189 B32912A3223M289 B32912A3224K B32912A3224K189 B32912A3224K289 B32912A3224M B32912A3333K B32912A3333K189 B32912A3333K289 B32912A3333M B32912A3333M189 B32912A3333M289 B32912A3473K B32912A3473K189 B32912A3473K289 B32912A3473M B32912A3473M189 B32912A3473M289 B32912A3683K B32912A3683K189 B32912A3683K289 B32912A3683M B32912A3683M189 B32912A3683M289 B32912A4103M B32912A4103M189 B32912A4103M289 B32912A4153M B32912A4153M189 B32912A4153M289 B32912A4223M B32912A4223M189 B32912A4223M289 B32912A4333M B32912A4333M189 B32912A4333M289 B32912A4473M B32912A4473M189 B32912A4473M289 B32912A4563M B32912A4563M189 B32912A4563M289 B32912A4683M B32912A4683M189 B32912A4683M289