ICGOO在线商城 > 集成电路(IC) > 嵌入式 - 微控制器 > ATTINY44V-10PU
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
ATTINY44V-10PU产品简介:
ICGOO电子元器件商城为您提供ATTINY44V-10PU由Atmel设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 ATTINY44V-10PU价格参考¥13.11-¥14.50。AtmelATTINY44V-10PU封装/规格:嵌入式 - 微控制器, AVR 微控制器 IC AVR® ATtiny 8-位 10MHz 4KB(2K x 16) 闪存 14-PDIP。您可以下载ATTINY44V-10PU参考资料、Datasheet数据手册功能说明书,资料中有ATTINY44V-10PU 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC) |
描述 | IC MCU 8BIT 4KB FLASH 14DIP |
EEPROM容量 | 256 x 8 |
产品分类 | |
I/O数 | 12 |
品牌 | Atmel |
数据手册 | |
产品图片 | |
产品型号 | ATTINY44V-10PU |
PCN设计/规格 | |
RAM容量 | 256 x 8 |
rohs | 无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | AVR® ATtiny |
供应商器件封装 | 14-PDIP |
包装 | 管件 |
外设 | 欠压检测/复位,POR,PWM,WDT |
封装/外壳 | 14-DIP(0.300",7.62mm) |
工作温度 | -40°C ~ 85°C |
振荡器类型 | 内部 |
数据转换器 | A/D 8x10b |
标准包装 | 25 |
核心处理器 | AVR |
核心尺寸 | 8-位 |
电压-电源(Vcc/Vdd) | 1.8 V ~ 5.5 V |
程序存储器类型 | 闪存 |
程序存储容量 | 4KB(2K x 16) |
连接性 | USI |
速度 | 10MHz |
配用 | /product-detail/zh/ATAVRISP2/ATAVRISP2-ND/898891 |
Features • High Performance, Low Power AVR® 8-Bit Microcontroller (cid:129) Advanced RISC Architecture – 120 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation (cid:129) Non-Volatile Program and Data Memories – 2/4/8K Bytes of In-System Programmable Program Memory Flash (cid:129) Endurance: 10,000 Write/Erase Cycles 8-bit – 128/256/512 Bytes of In-System Programmable EEPROM (cid:129) Endurance: 100,000 Write/Erase Cycles Microcontroller – 128/256/512 Bytes of Internal SRAM – Data Retention: 20 years at 85°C / 100 years at 25°C with 2/4/8K – Programming Lock for Self-Programming Flash & EEPROM Data Security (cid:129) Peripheral Features Bytes In-System – One 8-Bit and One 16-Bit Timer/Counter with Two PWM Channels, Each Programmable – 10-bit ADC (cid:129) 8 Single-Ended Channels Flash (cid:129) 12 Differential ADC Channel Pairs with Programmable Gain (1x / 20x) – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator – Universal Serial Interface ATtiny24 (cid:129) Special Microcontroller Features – debugWIRE On-chip Debug System ATtiny44 – In-System Programmable via SPI Port ATtiny84 – Internal and External Interrupt Sources: Pin Change Interrupt on 12 Pins – Low Power Idle, ADC Noise Reduction, Standby and Power-Down Modes – Enhanced Power-on Reset Circuit – Programmable Brown-out Detection Circuit Summary – Internal Calibrated Oscillator – On-chip Temperature Sensor (cid:129) I/O and Packages – Available in 20-Pin QFN/MLF & 14-Pin SOIC and PDIP – Twelve Programmable I/O Lines (cid:129) Operating Voltage: – 1.8 – 5.5V for ATtiny24V/44V/84V – 2.7 – 5.5V for ATtiny24/44/84 (cid:129) Speed Grade – ATtiny24V/44V/84V (cid:129) 0 – 4 MHz @ 1.8 – 5.5V (cid:129) 0 – 10 MHz @ 2.7 – 5.5V – ATtiny24/44/84 (cid:129) 0 – 10 MHz @ 2.7 – 5.5V (cid:129) 0 – 20 MHz @ 4.5 – 5.5V (cid:129) Industrial Temperature Range: -40°C to +85°C (cid:129) Low Power Consumption – Active Mode (1 MHz System Clock): 300 µA @ 1.8V – Power-Down Mode: 0.1 µA @ 1.8V Rev. 8006KS–AVR–10/10
1. Pin Configurations Figure 1-1. Pinout ATtiny24/44/84 PDIP/SOIC VCC 1 14 GND (PCINT8/XTAL1/CLKI) PB0 2 13 PA0 (ADC0/AREF/PCINT0) (PCINT9/XTAL2) PB1 3 12 PA1 (ADC1/AIN0/PCINT1) (PCINT11/RESET/dW) PB3 4 11 PA2 (ADC2/AIN1/PCINT2) (PCINT10/INT0/OC0A/CKOUT) PB2 5 10 PA3 (ADC3/T0/PCINT3) (PCINT7/ICP/OC0B/ADC7) PA7 6 9 PA4 (ADC4/USCK/SCL/T1/PCINT4) (PCINT6/OC1A/SDA/MOSI/DI/ADC6) PA6 7 8 PA5 (ADC5/DO/MISO/OC1B/PCINT5) QFN/MLF C C C Pin 16: PA6 (PCINT6/OC1A/SDA/MOSI/DI/ADC6) 5 6 A N N N A P D D D P Pin 20: PA5 (ADC5/DO/MISO/OC1B/PCINT5) 0 9 8 7 6 2 1 1 1 1 (ADC4/USCK/SCL/T1/PCINT4) PA4 1 15 PA7 (PCINT7/ICP/OC0B/ADC7) (ADC3/T0/PCINT3) PA3 2 14 PB2 (PCINT10/INT0/OC0A/CKOUT) (ADC2/AIN1/PCINT2) PA2 3 13 PB3 (PCINT11/RESET/dW) (ADC1/AIN0/PCINT1) PA1 4 12 PB1 (PCINT9/XTAL2) (ADC0/AREF/PCINT0) PA0 5 11 PB0 (PCINT8/XTAL1/CLKI) 0 6 7 8 9 1 NOTE C C D C C N N N C N Bottom pad should be D D G V D soldered to ground. DNC: Do Not Connect 1.1 Pin Descriptions 1.1.1 VCC Supply voltage. 1.1.2 GND Ground. 1.1.3 Port B (PB3:PB0) Port B is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability except PB3 which has the RESET capability. To use pin PB3 as an I/O pin, instead of RESET pin, program (‘0’) RSTDISBL fuse. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. ATtiny24/44/84 2 8006KS–AVR–10/10
ATtiny24/44/84 Port B also serves the functions of various special features of the ATtiny24/44/84 as listed in Section 10.2 “Alternate Port Functions” on page 58. 1.1.4 RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The min- imum pulse length is given in Table 20-4 on page 177. Shorter pulses are not guaranteed to generate a reset. The reset pin can also be used as a (weak) I/O pin. 1.1.5 Port A (PA7:PA0) Port A is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A has alternate functions as analog inputs for the ADC, analog comparator, timer/counter, SPI and pin change interrupt as described in “Alternate Port Functions” on page 58. 3 8006KS–AVR–10/10
2. Overview ATtiny24/44/84 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny24/44/84 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Figure 2-1. Block Diagram VCC 8-BIT DATABUS INTERNAL INTERNAL CALIBRATED OSCILLATOR OSCILLATOR GND PROGRAM STACK WATCHDOG TIMING AND COUNTER POINTER TIMER CONTROL MCU CONTROL PROGRAM SRAM REGISTER FLASH MCU STATUS INSTRUCTION GENERAL REGISTER REGISTER PURPOSE REGISTERS TIMER/ X COUNTER0 INSTRUCTION Y DECODER Z TIMER/ COUNTER1 CONTROL LINES ALU STATUS REGISTER INTERRUPT UNIT PROGRAMMING LOGIC ISP INTERFACE EEPROM OSCILLATORS +- NALOGPARATOR DATA PROERGTIS ATER REDGA.TPAO RDTIR A. ADC DATA PROERGTIS BTER REDGA.TPAO RDTIR B. AM O C PORT A DRIVERS PORT B DRIVERS PA7-PA0 PB3-PB0 The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than con- ventional CISC microcontrollers. ATtiny24/44/84 4 8006KS–AVR–10/10
ATtiny24/44/84 The ATtiny24/44/84 provides the following features: 2/4/8K byte of In-System Programmable Flash, 128/256/512 bytes EEPROM, 128/256/512 bytes SRAM, 12 general purpose I/O lines, 32 general purpose working registers, an 8-bit Timer/Counter with two PWM channels, a 16-bit timer/counter with two PWM channels, Internal and External Interrupts, a 8-channel 10-bit ADC, programmable gain stage (1x, 20x) for 12 differential ADC channel pairs, a programmable Watchdog Timer with internal oscillator, internal calibrated oscillator, and four software select- able power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. ADC Noise Reduction mode minimizes switching noise during ADC conversions by stopping the CPU and all I/O mod- ules except the ADC. In Power-down mode registers keep their contents and all chip functions are disbaled until the next interrupt or hardware reset. In Standby mode, the crystal/resonator oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined with low power consumption. The device is manufactured using Atmel’s high density non-volatile memory technology. The on- chip ISP Flash allows the Program memory to be re-programmed in-system through an SPI serial interface, by a conventional non-volatile memory programmer or by an on-chip boot code running on the AVR core. The ATtiny24/44/84 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators and Evaluation kits. 5 8006KS–AVR–10/10
3. About 3.1 Resources A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/avr. 3.2 Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen- tation for more details. For I/O Registers located in the extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow access to extended I/O. Typically, this means “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”. Note that not all AVR devices include an extended I/O map. 3.3 Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C. 3.4 Disclaimer Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. ATtiny24/44/84 6 8006KS–AVR–10/10
ATtiny24/44/84 4. Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page 0x3F (0x5F) SREG I T H S V N Z C Page 8 0x3E (0x5E) SPH – – – – – – SP9 SP8 Page 11 0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 Page 11 0x3C (0x5C) OCR0B Timer/Counter0 – Output Compare Register B Page 85 0x3B (0x5B) GIMSK – INT0 PCIE1 PCIE0 – – – – Page 51 0x3A (0x5A GIFR – INTF0 PCIF1 PCIF0 – – – – Page 52 0x39 (0x59) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 Page 85 0x38 (0x58) TIFR0 – – – – OCF0B OCF0A TOV0 Page 85 0x37 (0x57) SPMCSR – – RSIG CTPB RFLB PGWRT PGERS SPMEN Page 157 0x36 (0x56) OCR0A Timer/Counter0 – Output Compare Register A Page 84 0x35 (0x55) MCUCR BODS PUD SE SM1 SM0 BODSE ISC01 ISC00 Pages 36, 51, and 67 0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF Page 45 0x33 (0x53) TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00 Page 83 0x32 (0x52) TCNT0 Timer/Counter0 Page 84 0x31 (0x51) OSCCAL CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 Page 30 0x30 (0x50) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – WGM01 WGM00 Page 80 0x2F (0x4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – WGM11 WGM10 Page 108 0x2E (0x4E) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 Page 110 0x2D (0x4D) TCNT1H Timer/Counter1 – Counter Register High Byte Page 112 0x2C (0x4C) TCNT1L Timer/Counter1 – Counter Register Low Byte Page 112 0x2B (0x4B) OCR1AH Timer/Counter1 – Compare Register A High Byte Page 112 0x2A (0x4A) OCR1AL Timer/Counter1 – Compare Register A Low Byte Page 112 0x29 (0x49) OCR1BH Timer/Counter1 – Compare Register B High Byte Page 112 0x28 (0x48) OCR1BL Timer/Counter1 – Compare Register B Low Byte Page 112 0x27 (0x47) DWDR DWDR[7:0] Page 152 0x26 (0x46) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 Page 31 0x25 (0x45) ICR1H Timer/Counter1 - Input Capture Register High Byte Page 113 0x24 (0x44) ICR1L Timer/Counter1 - Input Capture Register Low Byte Page 113 0x23 (0x43) GTCCR TSM – – – – – – PSR10 Page 116 0x22 (0x42) TCCR1C FOC1A FOC1B – – – – – – Page 111 0x21 (0x41) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 Page 45 0x20 (0x40) PCMSK1 – – – – PCINT11 PCINT10 PCINT9 PCINT8 Page 52 0x1F (0x3F) EEARH – – – – – – – EEAR8 Page 20 0x1E (0x3E) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 Page 21 0x1D (0x3D) EEDR EEPROM Data Register Page 21 0x1C (0x3C) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE Page 21 0x1B (0x3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 Page 67 0x1A (0x3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 Page 67 0x19 (0x39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 Page 68 0x18 (0x38) PORTB – – – – PORTB3 PORTB2 PORTB1 PORTB0 Page 68 0x17 (0x37) DDRB – – – – DDB3 DDB2 DDB1 DDB0 Page 68 0x16 (0x36) PINB – – – – PINB3 PINB2 PINB1 PINB0 Page 68 0x15 (0x35) GPIOR2 General Purpose I/O Register 2 Page 23 0x14 (0x34) GPIOR1 General Purpose I/O Register 1 Page 23 0x13 (0x33) GPIOR0 General Purpose I/O Register 0 Page 23 0x12 (0x32) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 Page 53 0x11 (0x31)) Reserved – 0x10 (0x30) USIBR USI Buffer Register Page 125 0x0F (0x2F) USIDR USI Data Register Page 124 0x0E (0x2E) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 Page 125 0x0D (0x2D) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC Page 126 0x0C (0x2C) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 Page 113 0x0B (0x2B) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 Page 114 0x0A (0x2A) Reserved – 0x09 (0x29) Reserved – 0x08 (0x28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 Page 130 0x07 (0x27) ADMUX REFS1 REFS0 MUX5 MUX4 MUX3 MUX2 MUX1 MUX0 Page 145 0x06 (0x26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 Page 147 0x05 (0x25) ADCH ADC Data Register High Byte Page 149 0x04 (0x24) ADCL ADC Data Register Low Byte Page 149 0x03 (0x23) ADCSRB BIN ACME – ADLAR – ADTS2 ADTS1 ADTS0 Page 131, Page 149 0x02 (0x22) Reserved – 0x01 (0x21) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D Page 131, Page 150 0x00 (0x20) PRR – – – – PRTIM1 PRTIM0 PRUSI PRADC Page 37 7 8006KS–AVR–10/10
Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only. ATtiny24/44/84 8 8006KS–AVR–10/10
ATtiny24/44/84 5. Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1 ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1 ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1 ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1 COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1 NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1 SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1 CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1 INC Rd Increment Rd ← Rd + 1 Z,N,V 1 DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1 TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1 CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1 SER Rd Set Register Rd ← 0xFF None 1 BRANCH INSTRUCTIONS RJMP k Relative Jump PC ← PC + k + 1 None 2 IJMP Indirect Jump to (Z) PC ← Z None 2 RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3 ICALL Indirect Call to (Z) PC ← Z None 3 RET Subroutine Return PC ← STACK None 4 RETI Interrupt Return PC ← STACK I 4 CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3 CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1 SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2 BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2 BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2 BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2 BRIE k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1 None 1/2 BRID k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1 None 1/2 BIT AND BIT-TEST INSTRUCTIONS SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2 CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2 LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1 LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1 ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1 9 8006KS–AVR–10/10
Mnemonics Operands Description Operation Flags #Clocks ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1 ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1 SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1 BSET s Flag Set SREG(s) ← 1 SREG(s) 1 BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1 BST Rr, b Bit Store from Register to T T ← Rr(b) T 1 BLD Rd, b Bit load from T to Register Rd(b) ← T None 1 SEC Set Carry C ← 1 C 1 CLC Clear Carry C ← 0 C 1 SEN Set Negative Flag N ← 1 N 1 CLN Clear Negative Flag N ← 0 N 1 SEZ Set Zero Flag Z ← 1 Z 1 CLZ Clear Zero Flag Z ← 0 Z 1 SEI Global Interrupt Enable I ← 1 I 1 CLI Global Interrupt Disable I ← 0 I 1 SES Set Signed Test Flag S ← 1 S 1 CLS Clear Signed Test Flag S ← 0 S 1 SEV Set Twos Complement Overflow. V ← 1 V 1 CLV Clear Twos Complement Overflow V ← 0 V 1 SET Set T in SREG T ← 1 T 1 CLT Clear T in SREG T ← 0 T 1 SEH Set Half Carry Flag in SREG H ← 1 H 1 CLH Clear Half Carry Flag in SREG H ← 0 H 1 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers Rd ← Rr None 1 MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1 LDI Rd, K Load Immediate Rd ← K None 1 LD Rd, X Load Indirect Rd ← (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2 LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2 LD Rd, Y Load Indirect Rd ← (Y) None 2 LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2 LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2 LD Rd, Z Load Indirect Rd ← (Z) None 2 LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2 LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2 LDS Rd, k Load Direct from SRAM Rd ← (k) None 2 ST X, Rr Store Indirect (X) ← Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2 ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2 ST Y, Rr Store Indirect (Y) ← Rr None 2 ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2 ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2 STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2 ST Z, Rr Store Indirect (Z) ← Rr None 2 ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2 ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2 STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2 STS k, Rr Store Direct to SRAM (k) ← Rr None 2 LPM Load Program Memory R0 ← (Z) None 3 LPM Rd, Z Load Program Memory Rd ← (Z) None 3 LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3 SPM Store Program Memory (z) ← R1:R0 None IN Rd, P In Port Rd ← P None 1 OUT P, Rr Out Port P ← Rr None 1 PUSH Rr Push Register on Stack STACK ← Rr None 2 POP Rd Pop Register from Stack Rd ← STACK None 2 MCU CONTROL INSTRUCTIONS NOP No Operation None 1 SLEEP Sleep (see specific descr. for Sleep function) None 1 WDR Watchdog Reset (see specific descr. for WDR/Timer) None 1 BREAK Break For On-chip Debug Only None N/A ATtiny24/44/84 10 8006KS–AVR–10/10
ATtiny24/44/84 6. Ordering Information 6.1 ATtiny24 Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range ATtiny24V-10SSU 14S1 ATtiny24V-10SSUR 14S1 Industrial 10 1.8 - 5.5V ATtiny24V-10PU 14P3 (-40°C to +85°C)(3) ATtiny24V-10MU 20M1 ATtiny24V-10MUR 20M1 ATtiny24-20SSU 14S1 ATtiny24-20SSUR 14S1 Industrial 20 2.7 - 5.5V ATtiny24-20PU 14P3 (-40°C to +85°C)(3) ATtiny24-20MU 20M1 ATtiny24-20MUR 20M1 Notes: 1. Code indicators: – U: matte tin – R: tape & reel 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard- ous Substances (RoHS). 3. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering informa- tion and minimum quantities. Package Type 14S1 14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC) 14P3 14-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 20M1 20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) 11 8006KS–AVR–10/10
6.2 ATtiny44 Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range ATtiny44V-10SSU 14S1 ATtiny44V-10SSUR 14S1 Industrial 10 1.8 - 5.5V ATtiny44V-10PU 14P3 (-40°C to +85°C)(3) ATtiny44V-10MU 20M1 ATtiny44V-10MUR 20M1 ATtiny44-20SSU 14S1 ATtiny44-20SSUR 14S1 Industrial 20 2.7 - 5.5V ATtiny44-20PU 14P3 (-40°C to +85°C)(3) ATtiny44-20MU 20M1 ATtiny44-20MUR 20M1 Notes: 1. Code indicators: – U: matte tin – R: tape & reel 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard- ous Substances (RoHS). 3. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering informa- tion and minimum quantities. Package Type 14S1 14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC) 14P3 14-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 20M1 20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) ATtiny24/44/84 12 8006KS–AVR–10/10
ATtiny24/44/84 6.3 ATtiny84 Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range ATtiny84V-10SSU 14S1 ATtiny84V-10SSUR 14S1 Industrial 10 1.8 - 5.5V ATtiny84V-10PU 14P3 (-40°C to +85°C)(3) ATtiny84V-10MU 20M1 ATtiny84V-10MUR 20M1 ATtiny84-20SSU 14S1 ATtiny84-20SSUR 14S1 Industrial 20 2.7 - 5.5V ATtiny84-20PU 14P3 (-40°C to +85°C)(3) ATtiny84-20MU 20M1 ATtiny84-20MUR 20M1 Notes: 1. Code indicators: – U: matte tin – R: tape & reel 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard- ous Substances (RoHS). 3. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering informa- tion and minimum quantities. Package Type 14S1 14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC) 14P3 14-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 20M1 20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) 13 8006KS–AVR–10/10
7. Packaging Information 7.1 20M1 D 1 Pin 1 ID 2 E SIDE VIEW 3 TOP VIEW A2 D2 A1 A 1 0.08 C Pin #1 2 Notch COMMON DIMENSIONS (0.20 R) 3 E2 (Unit of Measure = mm) b SYMBOL MIN NOM MAX NOTE A 0.70 0.75 0.80 A1 – 0.01 0.05 L A2 0.20 REF b 0.18 0.23 0.30 e D 4.00 BSC BOTTOM VIEW D2 2.45 2.60 2.75 E 4.00 BSC E2 2.45 2.60 2.75 e 0.50 BSC Note: Reference JEDEC Standard MO-220, Fig. 1 (SAW Singulation) WGGD-5. L 0.35 0.4 0 0.55 10/27/04 TITLE DRAWING NO. REV. 2325 Orchard Parkway 20M1, 20-pad, 4 x 4 x 0.8 mm Body, Lead Pitch 0.50 mm, San Jose, CA 95131 2.6 mm Exposed Pad, Micro Lead Frame Package (MLF) 20M1 A R ATtiny24/44/84 14 8006KS–AVR–10/10
ATtiny24/44/84 7.2 14P3 D PIN 1 E1 A SEATING PLANE A1 L B B1 e E COMMON DIMENSIONS (Unit of Measure = mm) C SYMBOL MIN NOM MAX NOTE eC eB A – – 5.334 A1 0.381 – – D 18.669 – 19.685 Note 2 E 7.620 – 8.255 E1 6.096 – 7.112 Note 2 B 0.356 – 0.559 B1 1.143 – 1.778 Notes: 1. This package conforms to JEDEC reference MS-001, Variation AA. 2. Dimensions D and E1 do not include mold Flash or Protrusion. L 2.921 – 3.810 Mold Flash or Protrusion shall not exceed 0.25 mm (0.010"). C 0.203 – 0.356 eB – – 10.922 eC 0.000 – 1.524 e 2.540 TYP 11/02/05 TITLE DRAWING NO. REV. 2325 Orchard Parkway 14P3, 14-lead (0.300"/7.62 mm Wide) Plastic Dual R San Jose, CA 95131 Inline Package (PDIP) 14P3 A 15 8006KS–AVR–10/10
7.3 14S1 1 E E H N L Top View End View COMMON DIMENSIONS (Unit of Measure = mm/inches) e b SYMBOL MIN NOM MAX NOTE A1 A 1.35/0.0532 – 1.75/0.0688 A A1 0.1/.0040 – 0.25/0.0098 b 0.33/0.0130 – 0.5/0.02005 D D 8.55/0.3367 – 8.74/0.3444 2 E 3.8/0.1497 – 3.99/0.1574 3 Side View H 5.8/0.2284 – 6.19/0.2440 L 0.41/0.0160 – 1.27/0.0500 4 e 1.27/0.050 BSC Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-012, Variation AB for additional information. 2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006") per side. 3. Dimension E does not include inter-lead Flash or protrusion. Inter-lead flash and protrusions shall not exceed 0.25 mm (0.010") per side. 4. L is the length of the terminal for soldering to a substrate. 5. The lead width B, as measured 0.36 mm (0.014") or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024") per side. 2/5/02 TITLE DRAWING NO. REV. 2325 Orchard Parkway 14S1, 14-lead, 0.150" Wide Body, Plastic Gull San Jose, CA 95131 Wing Small Outline Package (SOIC) 14S1 A R ATtiny24/44/84 16 8006KS–AVR–10/10
ATtiny24/44/84 8. Errata The revision letters in this section refer to the revision of the corresponding ATtiny24/44/84 device. 8.1 ATtiny24 8.1.1 Rev. D – E No known errata. 8.1.2 Rev. C (cid:129) Reading EEPROM when system clock frequency is below 900 kHz may not work 1. Reading EEPROM when system clock frequency is below 900 kHz may not work Reading data from the EEPROM at system clock frequency below 900 kHz may result in wrong data read. Problem Fix/Work around Avoid using the EEPROM at clock frequency below 900 kHz. 8.1.3 Rev. B (cid:129) EEPROM read from application code does not work in Lock Bit Mode 3 (cid:129) Reading EEPROM when system clock frequency is below 900 kHz may not work 1. EEPROM read from application code does not work in Lock Bit Mode 3 When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code. Problem Fix/Work around Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM. 2. Reading EEPROM when system clock frequency is below 900 kHz may not work Reading data from the EEPROM at system clock frequency below 900 kHz may result in wrong data read. Problem Fix/Work around Avoid using the EEPROM at clock frequency below 900 kHz. 8.1.4 Rev. A Not sampled. 17 8006KS–AVR–10/10
8.2 ATtiny44 8.2.1 Rev. B – D No known errata. 8.2.2 Rev. A (cid:129) Reading EEPROM when system clock frequency is below 900 kHz may not work 1. Reading EEPROM when system clock frequency is below 900 kHz may not work Reading data from the EEPROM at system clock frequency below 900 kHz may result in wrong data read. Problem Fix/Work around Avoid using the EEPROM at clock frequency below 900 kHz. ATtiny24/44/84 18 8006KS–AVR–10/10
ATtiny24/44/84 8.3 ATtiny84 8.3.1 Rev. A – B No known errata. 19 8006KS–AVR–10/10
9. Datasheet Revision History Please note that the referring page numbers refer to the complete document. 9.1 Rev K. - 10/10 1. Added note for Internal 1.1V Reference in Table16-4 on page146. 2. Added tape & reel in Section 24. “Ordering Information” on page 217. 3. Updated last page. 9.2 Rev J. - 08/10 1. Updated Section 6.4 “Clock Output Buffer” on page 30, changed CLKO to CKOUT. 2. Removed text "Not recommended for new design" from cover page. 9.3 Rev I. - 06/10 1. Removed “Preliminary” from cover page. 2. Updated notes in Table19-16, “High-voltage Serial Programming Instruction Set for ATtiny24/44/84,” on page171. 3. Added clarification before Table6-8, “Capacitance for the Low-Frequency Crystal Oscillator,” on page28. 4. Updated some table notes in Section 20. “Electrical Characteristics” on page 174. 9.4 Rev H. 10/09 1. Updated document template. Re-arranged some sections. 2. Updated “Low-Frequency Crystal Oscillator” with the Table 6-8 on page 28 3. Updated Tables: – “Active Clock Domains and Wake-up Sources in Different Sleep Modes” on page 33 – “DC Characteristics” on page 174 – “Register Summary” on page 213 4. Updated Register Description: – “ADMUX – ADC Multiplexer Selection Register” on page 145 5. Signature Imprint Reading Instructions updated in “Reading Device Signature Imprint Table from Firmware” on page 156. 6. Updated Section: – Step 1. on page 164 7. Added Table: – “Analog Comparator Characteristics” on page 179 8. Updated Figure: – “Active Supply Current vs. frequency (1 - 20 MHz)” on page 187 9. Updated Figure 21-30 on page 201 and Figure 21-33 on page 202 under “Pin Thresh- old and Hysteresis”. 10. Changed ATtiny24/44 device status to “Not Recommended for New Designs. Use: ATtiny24A/44A”. ATtiny24/44/84 20 8006KS–AVR–10/10
ATtiny24/44/84 9.5 Rev G. 01/08 1. Updated sections: – “Features” on page 1 – “RESET” on page 3 – “Overview” on page 4 – “About” on page 6 – “SPH and SPL — Stack Pointer Register” on page 11 – “Atomic Byte Programming” on page 17 – “Write” on page 17 – “Clock Sources” on page 25 – “Default Clock Source” on page 30 – “Sleep Modes” on page 33 – “Software BOD Disable” on page 34 – “External Interrupts” on page 49 – “USIBR – USI Data Buffer” on page 125 – “USIDR – USI Data Register” on page 124 – “DIDR0 – Digital Input Disable Register 0” on page 131 – “Features” on page 132 – “Prescaling and Conversion Timing” on page 135 – “Temperature Measurement” on page 144 – “ADMUX – ADC Multiplexer Selection Register” on page 145 – “Limitations of debugWIRE” on page 152 – “Reading Lock, Fuse and Signature Data from Software” on page 155 – “Device Signature Imprint Table” on page 161 – “Enter High-voltage Serial Programming Mode” on page 168 – “Absolute Maximum Ratings*” on page 174 – “DC Characteristics” on page 174 – “Speed” on page 175 – “Clock Characteristics” on page 176 – “Accuracy of Calibrated Internal RC Oscillator” on page 176 – “System and Reset Characteristics” on page 177 – “Supply Current of I/O Modules” on page 185 – “ATtiny24” on page 223 – “ATtiny44” on page 224 – “ATtiny84” on page 225 2. Updated bit definitions in sections: – “MCUCR – MCU Control Register” on page 36 – “MCUCR – MCU Control Register” on page 51 – “MCUCR – MCU Control Register” on page 67 – “PINA – Port A Input Pins” on page 68 21 8006KS–AVR–10/10
– “SPMCSR – Store Program Memory Control and Status Register” on page 157 – “Register Summary” on page 213 3. Updated Figures: – “Reset Logic” on page 39 – “Watchdog Reset During Operation” on page 42 – “Compare Match Output Unit, Schematic (non-PWM Mode)” on page 95 – “Analog to Digital Converter Block Schematic” on page 133 – “ADC Timing Diagram, Free Running Conversion” on page 137 – “Analog Input Circuitry” on page 140 – “High-voltage Serial Programming” on page 167 – “Serial Programming Timing” on page 183 – “High-voltage Serial Programming Timing” on page 184 – “Active Supply Current vs. Low Frequency (0.1 - 1.0 MHz)” on page 186 – “Active Supply Current vs. frequency (1 - 20 MHz)” on page 187 – “Active Supply Current vs. V (Internal RC Oscillator, 8 MHz)” on page 187 CC – “Active Supply Current vs. V (Internal RC Oscillator, 1 MHz)” on page 188 CC – “Active Supply Current vs. V (Internal RC Oscillator, 128 kHz)” on page 188 CC – “Idle Supply Current vs. Low Frequency (0.1 - 1.0 MHz)” on page 189 – “Idle Supply Current vs. Frequency (1 - 20 MHz)” on page 189 – “Idle Supply Current vs. V (Internal RC Oscillator, 8 MHz)” on page 190 CC – “Idle Supply Current vs. V (Internal RC Oscillator, 1 MHz)” on page 190 CC – “Idle Supply Current vs. V (Internal RC Oscillator, 128 kHz)” on page 191 CC – “Power-down Supply Current vs. V (Watchdog Timer Disabled)” on page 191 CC – “Power-down Supply Current vs. V (Watchdog Timer Enabled)” on page 192 CC – “Reset Pin Input Hysteresis vs. V ” on page 202 CC – “Reset Pin Input Hysteresis vs. V (Reset Pin Used as I/O)” on page 203 CC – “Watchdog Oscillator Frequency vs. V ” on page 205 CC – “Watchdog Oscillator Frequency vs. Temperature” on page 205 – “Calibrated 8 MHz RC Oscillator Frequency vs. V ” on page 206 CC – “Calibrated 8 MHz RC oscillator Frequency vs. Temperature” on page 206 – “ADC Current vs. V ” on page 207 CC – “Programming Current vs. V (ATtiny24)” on page 209 CC – “Programming Current vs. V (ATtiny44)” on page 209 CC – “Programming Current vs. V (ATtiny84)” on page 210 CC 4. Added Figures: – “Reset Pin Output Voltage vs. Sink Current (V = 3V)” on page 198 CC – “Reset Pin Output Voltage vs. Sink Current (V = 5V)” on page 198 CC – “Reset Pin Output Voltage vs. Source Current (V = 3V)” on page 199 CC – “Reset Pin Output Voltage vs. Source Current (V = 5V)” on page 199 CC 5. Updated Tables: – “Device Clocking Options Select” on page 25 ATtiny24/44/84 22 8006KS–AVR–10/10
ATtiny24/44/84 – “Start-up Times for the Crystal Oscillator Clock Selection” on page 29 – “Start-up Times for the Internal Calibrated RC Oscillator Clock Selection” on page 27 – “Start-up Times for the External Clock Selection” on page 26 – “Start-up Times for the 128 kHz Internal Oscillator” on page 27 – “Active Clock Domains and Wake-up Sources in Different Sleep Modes” on page 33 – “Watchdog Timer Prescale Select” on page 47 – “Reset and Interrupt Vectors” on page 48 – “Overriding Signals for Alternate Functions in PA7:PA5” on page 63 – “Overriding Signals for Alternate Functions in PA4:PA2” on page 64 – “Overriding Signals for Alternate Functions in PA1:PA0” on page 64 – “Port B Pins Alternate Functions” on page 65 – “Overriding Signals for Alternate Functions in PB3:PB2” on page 66 – “Overriding Signals for Alternate Functions in PB1:PB0” on page 67 – “Waveform Generation Modes” on page 110 – “ADC Conversion Time” on page 138 – “Temperature vs. Sensor Output Voltage (Typical Case)” on page 144 – “DC Characteristics. T = -40°C to +85°C” on page 174 A – “Calibration Accuracy of Internal RC Oscillator” on page 176 – “Reset, Brown-out, and Internal Voltage Characteristics” on page 177 – “VBOT vs. BODLEVEL Fuse Coding” on page 179 – “ADC Characteristics, Single Ended Channels. T = -40°C to +85°C” on page 180 – “ADC Characteristics, Differential Channels (Bipolar Mode), T = -40°C to +85°C” on A page 182 – “Serial Programming Characteristics, T = -40°C to +85°C, V = 1.8 - 5.5V (Unless A CC Otherwise Noted)” on page 183 – “High-voltage Serial Programming Characteristics T = 25°C, V = 5V (Unless A CC otherwise noted)” on page 184 6. Updated code examples in sections: – “Write” on page 17 – “SPI Master Operation Example” on page 119 7. Updated “Ordering Information” in: – “ATtiny84” on page 219 9.6 Rev F. 02/07 1. Updated Figure 1-1 on page 2, Figure 8-7 on page 43, Figure 20-6 on page 184. 2. Updated Table 9-1 on page 48, Table 10-7 on page 65, Table 11-2 on page 80, Table 11-3 on page 81, Table 11-5 on page 81, Table 11-6 on page 82, Table 11-7 on page 82, Table 11-8 on page 83, Table 20-11 on page 182, Table 20-13 on page 184. 3. Updated table references in “TCCR0A – Timer/Counter Control Register A” on page 80. 4. Updated Port B, Bit 0 functions in “Alternate Functions of Port B” on page 65. 5. Updated WDTCR bit name to WDTCSR in assembly code examples. 23 8006KS–AVR–10/10
6. Updated bit5 name in “TIFR1 – Timer/Counter Interrupt Flag Register 1” on page 114. 7. Updated bit5 in “TIFR1 – Timer/Counter Interrupt Flag Register 1” on page 114. 8. Updated “SPI Master Operation Example” on page 119. 9. Updated step 5 in “Enter High-voltage Serial Programming Mode” on page 168. 9.7 Rev E. 09/06 1. All characterization data moved to “Electrical Characteristics” on page 174. 2. All Register Descriptions gathered up in separate sections at the end of each chapter. 3. Updated “System Control and Reset” on page 39. 4. Updated Table 11-3 on page 81, Table 11-6 on page 82, Table 11-8 on page 83, Table 12-3 on page 109 and Table 12-5 on page 110. 5. Updated “Fast PWM Mode” on page 97. 6. Updated Figure 12-7 on page 98 and Figure 16-1 on page 133. 7. Updated “Analog Comparator Multiplexed Input” on page 129. 8. Added note in Table 19-12 on page 165. 9. Updated “Electrical Characteristics” on page 174. 10. Updated “Typical Characteristics” on page 185. 9.8 Rev D. 08/06 1. Updated “Calibrated Internal 8 MHz Oscillator” on page 26. 2. Updated “OSCCAL – Oscillator Calibration Register” on page 30. 3. Added Table 20-2 on page 176. 4. Updated code examples in “SPI Master Operation Example” on page 119. 5. Updated code examples in “SPI Slave Operation Example” on page 121. 6. Updated “Signature Bytes” on page 162. 9.9 Rev C. 07/06 1. Updated Features in “USI – Universal Serial Interface” on page 117. 2. Added “Clock speed considerations” on page 123. 3. Updated Bit description in “ADMUX – ADC Multiplexer Selection Register” on page 145. 4. Added note to Table 18-1 on page 157. 9.10 Rev B. 05/06 1. Updated “Default Clock Source” on page 30 2. Updated “Power Reduction Register” on page 35. 3. Updated Table 20-4 on page 177, Table 9-4 on page 42, Table 16-3 on page 145, Table 19-5 on page 161, Table 19-12 on page 165, Table 19-16 on page 171, Table 20- 11 on page 182. 4. Updated Features in “Analog to Digital Converter” on page 132. 5. Updated Operation in “Analog to Digital Converter” on page 132. 6. Updated “Temperature Measurement” on page 144. ATtiny24/44/84 24 8006KS–AVR–10/10
ATtiny24/44/84 7. Updated DC Characteristics in “Electrical Characteristics” on page 174. 8. Updated “Typical Characteristics” on page 185. 9. Updated “Errata” on page 223. 9.11 Rev A. 12/05 Initial revision. 25 8006KS–AVR–10/10
Headquarters International Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan 2325 Orchard Parkway Unit 01-5 & 16, 19F Business Campus 9F, Tonetsu Shinkawa Bldg. San Jose, CA 95131 BEA Tower, Millennium City 5 Parkring 4 1-24-8 Shinkawa USA 418 Kwun Tong Road D-85748 Garching b. Munich Chuo-ku, Tokyo 104-0033 Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81)(3) 3523-3551 Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81)(3) 3523-7581 Fax: (+852) 2722-1369 Product Contact Web Site Technical Support Sales Contact www.atmel.com avr@atmel.com www.atmel.com/contacts Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise,to any intellectualproperty right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI- TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN- TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representationsor warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustainlife. © 2010 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 8006KS–AVR–10/10