图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: AOT9N50
  • 制造商: ALPHA&OMEGA
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

AOT9N50产品简介:

ICGOO电子元器件商城为您提供AOT9N50由ALPHA&OMEGA设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 AOT9N50价格参考。ALPHA&OMEGAAOT9N50封装/规格:晶体管 - FET,MOSFET - 单, 通孔 N 沟道 500V 9A(Tc) 192W(Tc) TO-220。您可以下载AOT9N50参考资料、Datasheet数据手册功能说明书,资料中有AOT9N50 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

分立半导体产品

描述

MOSFET N-CH 500V 9A TO-220

产品分类

FET - 单

FET功能

标准

FET类型

MOSFET N 通道,金属氧化物

品牌

Alpha & Omega Semiconductor Inc

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

AOT9N50

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

不同Id时的Vgs(th)(最大值)

4.5V @ 250µA

不同Vds时的输入电容(Ciss)

1042pF @ 25V

不同Vgs时的栅极电荷(Qg)

28nC @ 10V

不同 Id、Vgs时的 RdsOn(最大值)

850 毫欧 @ 4.5A,10V

供应商器件封装

TO-220

其它名称

785-1172-5

功率-最大值

192W

包装

管件

安装类型

通孔

封装/外壳

TO-220-3

标准包装

1,000

漏源极电压(Vdss)

500V

电流-连续漏极(Id)(25°C时)

9A (Tc)

推荐商品

型号:FQD4N20LTM

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:SI4483ADY-T1-GE3

品牌:Vishay Siliconix

产品名称:分立半导体产品

获取报价

型号:STP4N52K3

品牌:STMicroelectronics

产品名称:分立半导体产品

获取报价

型号:BSP298H6327XUSA1

品牌:Infineon Technologies

产品名称:分立半导体产品

获取报价

型号:FDA75N28

品牌:ON Semiconductor

产品名称:分立半导体产品

获取报价

型号:STD3NK80ZT4

品牌:STMicroelectronics

产品名称:分立半导体产品

获取报价

型号:DMP6185SK3-13

品牌:Diodes Incorporated

产品名称:分立半导体产品

获取报价

型号:BSS314PEH6327XTSA1

品牌:Infineon Technologies

产品名称:分立半导体产品

获取报价

样品试用

万种样品免费试用

去申请
AOT9N50 相关产品

AUIRF540Z

品牌:Infineon Technologies

价格:

STF18N60M2

品牌:STMicroelectronics

价格:¥14.73-¥14.73

IRF3709S

品牌:Infineon Technologies

价格:

RRH040P03TB1

品牌:Rohm Semiconductor

价格:¥2.22-¥5.66

CZDM1003N TR

品牌:Central Semiconductor Corp

价格:

IXFX44N50Q

品牌:IXYS

价格:

IRLR3714TRPBF

品牌:Infineon Technologies

价格:

ZVP3310FTA

品牌:Diodes Incorporated

价格:

PDF Datasheet 数据手册内容提取

AOT9N50/AOTF9N50 500V, 9A N-Channel MOSFET General Description Product Summary The AOT9N50 & AOTF9N50 have been fabricated using VDS 600V@150℃ an advanced high voltage MOSFET process that is I (at V =10V) 9A D GS designed to deliver high levels of performance and R (at V =10V) < 0.85W robustness in popular AC-DC applications. DS(ON) GS By providing low R , C and C along with DS(on) iss rss guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs. 100% UIS Tested 100% R Tested g For Halogen Free add "L" suffix to part number: AOT9N50L & AOTF9N50L TO-220 Top View TO-220F D G G G D D S S S Absolute Maximum Ratings T =25°C unless otherwise noted A Parameter Symbol AOT9N50 AOTF9N50 Units Drain-Source Voltage V 500 V DS Gate-Source Voltage V ±30 V GS Continuous Drain TC=25°C I 9 9* Current T =100°C D 6.0 6* A C Pulsed Drain Current C I 30 DM Avalanche Current C I 3.2 A AR Repetitive avalanche energy C E 154 mJ AR Single plused avalanche energy G E 307 mJ AS Peak diode recovery dv/dt dv/dt 5 V/ns T =25°C 192 38.5 W C P Power Dissipation B Derate above 25oC D 1.5 0.3 W/ oC Junction and Storage Temperature Range T, T -55 to 150 °C J STG Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds TL 300 °C Thermal Characteristics Parameter Symbol AOT9N50 AOTF9N50 Units Maximum Junction-to-Ambient A,D RqJA 65 65 °C/W Maximum Case-to-sink A RqCS 0.5 -- °C/W Maximum Junction-to-Case RqJC 0.65 3.25 °C/W * Drain current limited by maximum junction temperature. Rev3: July 2010 www.aosmd.com Page 1 of 6

AOT9N50/AOTF9N50 Electrical Characteristics (T=25°C unless otherwise noted) J Symbol Parameter Conditions Min Typ Max Units STATIC PARAMETERS I =250µA, V =0V, T=25°C 500 BV Drain-Source Breakdown Voltage D GS J DSS I =250µA, V =0V, T=150°C 600 V D GS J BV Breakdown Voltage Temperature /∆TDJSS Coefficient ID=250µA, VGS=0V 0.56 V/ oC V =500V, V =0V 1 IDSS Zero Gate Voltage Drain Current VDS=400V, TG=S125°C 10 m A DS J I Gate-Body leakage current V =0V, V =±30V ±100 nA GSS DS GS V Gate Threshold Voltage V =5V I =250m A 3.4 4 4.5 V GS(th) DS D R Static Drain-Source On-Resistance V =10V, I =4.5A 0.66 0.85 W DS(ON) GS D g Forward Transconductance V =40V, I =4.5A 10 S FS DS D V Diode Forward Voltage I =1A,V =0V 0.74 1 V SD S GS I Maximum Body-Diode Continuous Current 9 A S I Maximum Body-Diode Pulsed Current 30 A SM DYNAMIC PARAMETERS C Input Capacitance 694 868 1042 pF iss C Output Capacitance V =0V, V =25V, f=1MHz 74 93 112 pF oss GS DS C Reverse Transfer Capacitance 6.2 7.8 9.4 pF rss R Gate resistance V =0V, V =0V, f=1MHz 2 4 6 W g GS DS SWITCHING PARAMETERS Q Total Gate Charge 15 23.6 28 nC g Q Gate Source Charge V =10V, V =400V, I =9A 4 5.2 6.2 nC gs GS DS D Q Gate Drain Charge 8.5 10.6 12.7 nC gd t Turn-On DelayTime 19.5 ns D(on) t Turn-On Rise Time V =10V, V =250V, I =9A, 47 ns r GS DS D tD(off) Turn-Off DelayTime RG=25W 51.5 ns t Turn-Off Fall Time 38.5 ns f trr Body Diode Reverse Recovery Time IF=9A,dI/dt=100A/m s,VDS=100V 195 248 300 ns Qrr Body Diode Reverse Recovery Charge IF=9A,dI/dt=100A/m s,VDS=100V 2.5 3.5 4.5 m C A. The value of R qJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation P is based on T =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper D J(MAX) dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature T =150°C, Ratings are based on low frequency and duty cycles to keep initial T J(MAX) J =25°C. D. The R qJA is the sum of the thermal impedence from junction to case R qJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 m s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T =150°C. The SOA curve provides a single pulse rating. J(MAX) G. L=60mH, I =3.2A, V =150V, R =25Ω, Starting T=25°C AS DD G J THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev3: July 2010 www.aosmd.com Page 2 of 6

AOT9N50/AOTF9N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 18 100 10V -55°C V =40V 15 DS 6.5V 12 10 6V I (A)D 9 I(A)D 125°C 6 1 V =5.5V GS 25°C 3 0 0.1 0 5 10 15 20 25 30 2 4 6 8 10 VDS (Volts) VGS(Volts) Fig 1: On-Region Characteristics Figure 2: Transfer Characteristics 2.0 3 e 2.5 V =10V 1.5 stanc 2 IDG=S4.5A ) si WR (DS(ON) 1.0 d On-Re 1.5 e z 0.5 VGS=10V mali 1 or N 0.5 0.0 0 4 8 12 16 20 0 -100 -50 0 50 100 150 200 I (A) D Temperature (°C) Figure 3: On-Resistance vs. Drain Current and Gate Figure 4: On-Resistance vs. Junction Temperature Voltage 1.2 1.0E+02 1.0E+01 d) 1.1 1.0E+4000 e z 125°C mali A) 1.0E-01 Nor 1 I (S 1.0E-02 25°C V (DSS 1.0E-03 B 0.9 1.0E-04 1.0E-05 0.8 0.0 0.2 0.4 0.6 0.8 1.0 -100 -50 0 50 100 150 200 V (Volts) T (°C) SD J Figure 6: Body-Diode Characteristics (Note E) Figure 5:Break Down vs. Junction Temperature Rev3: July 2010 www.aosmd.com Page 3 of 6

AOT9N50/AOTF9N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15 10000 VDS=400V Ciss I =9A 12 D 1000 F) p C olts) 9 nce ( oss V a 100 (S cit VG 6 pa a C 10 3 C rss 0 1 0 5 10 15 20 25 30 35 0.1 1 10 100 Qg (nC) VDS (Volts) Figure 7: Gate-Charge Characteristics Figure 8: Capacitance Characteristics 100 100 10m s 10 RDS(ON) 10 RDS(ON) 10m s limited limited mps) 1 11m00sm s mps) 1 11m00sm s A A I (D 10ms I (D 10ms DC DC 0.1s 0.1 TJ(Max)=150°C 0.1 TJ(Max)=150°C 1s TC=25°C TC=25°C 0.01 0.01 1 10 100 1000 1 10 100 1000 VDS (Volts) VDS (Volts) Figure 9: Maximum Forward Biased Safe Figure 10: Maximum Forward Biased Safe Operating Operating Area for AOT9N50 (Note F) Area for AOTF9N50 (Note F) 10 8 A) (D g I 6 n ati nt r 4 e urr C 2 0 0 25 50 75 100 125 150 T (°C) CASE Figure 11: Current De-rating (Note B) Rev3: July 2010 www.aosmd.com Page 4 of 6

AOT9N50/AOTF9N50 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 D=T /T on In descending order ent TJ,PK=TC+PDM.ZqJC.RqJC D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse nsi nce 1 RqJC=0.65°C/W Tra sta d si e e maliz mal R 0.1 PD NorJCTher0.01 Ton T Zq Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOT9N50 (Note F) 10 D=T /T In descending order on ent TJ,PK=TC+PDM.ZqJC.RqJC D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse nsi nce 1 RqJC=3.25°C/W Tra sta d si e e z R 0.1 mali mal PD Nor her CT 0.01 T J on Zq T Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF9N50 (Note F) Rev3: July 2010 www.aosmd.com Page 5 of 6

AOT9N50/AOTF9N50 Gate Charge Test Circuit & Waveform Vgs Qg + 10V + VDC Qgs Qgd - Vds VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vgs DUT Vdd VDC Rg - 10% Vgs Vgs td(on) tr td(off) tf ton toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 Vds E A R= 1/2 LI AR BVDSS Id Vds + Vgs Vgs VDC Vdd IAR Rg - Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Vds + Q r r = - Idt DUT Vgs Vds - L Isd I t Isd F dI/dt rr + I Vgs VDC Vdd RM Vdd - Vds Ig Rev3: July 2010 www.aosmd.com Page 6 of 6