ICGOO在线商城 > 集成电路(IC) > 嵌入式 - FPGA(现场可编程门阵列) > AGL030V5-VQG100
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
AGL030V5-VQG100产品简介:
ICGOO电子元器件商城为您提供AGL030V5-VQG100由MICRO-SEMI设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 AGL030V5-VQG100价格参考。MICRO-SEMIAGL030V5-VQG100封装/规格:嵌入式 - FPGA(现场可编程门阵列), 。您可以下载AGL030V5-VQG100参考资料、Datasheet数据手册功能说明书,资料中有AGL030V5-VQG100 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC) |
描述 | IC FPGA 77 I/O 100VQFP |
产品分类 | |
I/O数 | 77 |
LAB/CLB数 | - |
品牌 | Microsemi SoC |
数据手册 | http://www.microsemi.com/document-portal/doc_download/130694-igloo-low-power-flash-fpgas-datasheet |
产品图片 | |
产品型号 | AGL030V5-VQG100 |
rohs | 无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | IGLOO |
供应商器件封装 | 100-VQFP(14x14) |
其它名称 | 1100-1083 |
安装类型 | 表面贴装 |
封装/外壳 | 100-TQFP |
工作温度 | 0°C ~ 70°C |
总RAM位数 | - |
栅极数 | 30000 |
标准包装 | 90 |
电压-电源 | 1.425 V ~ 1.575 V |
逻辑元件/单元数 | 768 |
Revision 27 DS0095 IGLOO Low Power Flash FPGAs with Flash*Freeze Technology Features and Benefits Low Power • Bank-Selectable I/O Voltages—up to 4 Banks per Chip • Single-Ended I/O Standards: LVTTL, LVCMOS • 1.2V to 1.5V Core Voltage Support for Low Power 3.3V/2.5V/1.8V/1.5V/1.2 V, 3.3V PCI / 3.3V PCI-X†, • Supports Single-Voltage System Operation and LVCMOS 2.5V/5.0V Input† • 5 µW Power Consumption in Flash*Freeze Mode • Differential I/O Standards: LVPECL, LVDS, B-LVDS, and M- • Low Power Active FPGA Operation LVDS (AGL250 and above) • Flash*Freeze Technology Enables Ultra-Low Power • Wide Range Power Supply Voltage Support per JESD8-B, Consumption while Maintaining FPGA Content Allowing I/Os to Operate from 2.7V to 3.6V • Easy Entry to / Exit from Ultra-Low Power Flash*Freeze Mode • Wide Range Power Supply Voltage Support per JESD8-12, High Capacity Allowing I/Os to Operate from 1.14V to 1.575V • 15K to 1 Million System Gates • I/O Registers on Input, Output, and Enable Paths • Up to 144 Kbits of True Dual-Port SRAM • Hot-Swappable and Cold-Sparing I/Os‡ • Up to 300 User I/Os • Programmable Output Slew Rate† and Drive Strength Reprogrammable Flash Technology • Weak Pull-Up/-Down • IEEE1149.1 (JTAG) Boundary Scan Test • 130-nm, 7-Layer Metal, Flash-Based CMOS Process • Pin-Compatible Packages across the IGLOO Family • Instant On Level 0 Support Clock Conditioning Circuit (CCC) and PLL† • Single-Chip Solution • Retains Programmed Design When Powered Off • Six CCC Blocks, One with an Integrated PLL • 250MHz (1.5V systems) and 160MHz (1.2V systems) System • Configurable Phase Shift, Multiply/Divide, Delay Capabilities, Performance and External Feedback In-System Programming (ISP) and Security • Wide Input Frequency Range (1.5MHz up to 250MHz) Embedded Memory • ISP Using On-Chip 128-Bit Advanced Encryption Standard (AES) Decryption (except ARM®-enabled IGLOO® devices) via • 1 kbit of FlashROM User Nonvolatile Memory JTAG (IEEE1532–compliant)† • SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit† RAM • FlashLock® Designed to Secure FPGA Contents Blocks (×1, ×2, ×4, ×9, and ×18 organizations) High-Performance Routing Hierarchy • True Dual-Port SRAM (except ×18)† ARM Processor Support in IGLOO FPGAs • Segmented, Hierarchical Routing and Clock Structure Advanced I/O • M1 IGLOO Devices—Cortex®-M1 Soft Processor Available with or without Debug • 700 Mbps DDR, LVDS-Capable I/Os (AGL250 and above) • 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V Mixed-Voltage Operation IGLOO Devices AGL0151 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 ARM-Enabled IGLOO Devices2 M1AGL250 M1AGL600 M1AGL1000 System Gates 15,000 30,000 60,000 125,000 250,000 400,000 600,000 1,000,000 Typical Equivalent Macrocells 128 256 512 1,024 2,048 – – – VersaTiles (D-flip-flops) 384 768 1,536 3,072 6,144 9,216 13,824 24,576 Flash*Freeze Mode (typical, µW) 5 5 10 16 24 32 36 53 RAM kbits (1,024 bits) – – 18 36 36 54 108 144 4,608-Bit Blocks – – 4 8 8 12 24 32 FlashROM Kbits (1,024 bits) 1 1 1 1 1 1 1 1 AES-Protected ISP2 – – Yes Yes Yes Yes Yes Yes Integrated PLL in CCCs3 – – 1 1 1 1 1 1 VersaNet Globals4 6 6 18 18 18 18 18 18 I/O Banks 2 2 2 2 4 4 4 4 Maximum User I/Os 49 81 96 133 143 194 235 300 Package Pins UC/CS UC81, CS81 CS1213 CS196 CS1965 CS196 CS281 CS281 QFN QN68 QNQ4N8,1 Q32N668, QN1326 QN1326 QN1326 VQFP VQ100 VQ100 VQ100 VQ100 FG144, FG256, FG144, FG256, FG144, FG256, FBGA FG144 FG144 FG484 FG484 FG484 Notes: 1. AGL015 is not recommended for new designs 2. AES is not available for ARM-enabled IGLOO devices. 3. AGL060 in CS121 does not support the PLL. 4. Six chip (main) and twelve quadrant global networks are available for AGL060 and above. 5. The M1AGL250 device does not support this package. 6. Package not available. 7. The IGLOOe datasheet and IGLOOe FPGA Fabric User Guide provide information on higher densities and additional features. † AGL015 and AGL030 devices do not support this feature. ‡ Supported only by AGL015 and AGL030 devices. May 2016 I © 2016 Microsemi Corporation
IGLOO Low Power Flash FPGAs 1 I/Os Per Package IGLOO Devices AGL0152 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 ARM-Enabled IGLOO Devices M1AGL250 M1AGL600 M1AGL1000 I/O Type3 s s s s O O O O 4O Pair 4O Pair 4O Pair 4O Pair d I/ d I/ d I/ d I/ d I/ O d I/ O d I/ O d I/ O Ende Ende Ende Ende Ende ntial I/ Ende ntial I/ Ende ntial I/ Ende ntial I/ e- e- e- e- e- e e- e e- e e- e gl gl gl gl gl er gl er gl er gl er Package Sin Sin Sin Sin Sin Diff Sin Diff Sin Diff Sin Diff QN48 – 34 – – – – – – – – – – QN68 49 49 – – – – – – – – – – UC81 – 66 – – – – – – – – – – CS81 – 66 – – – – – – – – – – CS121 – – 96 96 – – – – – – – – VQ100 – 77 71 71 68 13 – – – – – – QN1326 – 81 80 84 – – – – – – – – CS196 – – – 133 1435 355 143 35 – – – – FG144 – – – 97 97 24 97 25 97 25 97 25 FG2567 – – – – – – 178 38 177 43 177 44 CS281 – – – – – – – – 215 53 215 53 FG4847 – – – – – – 194 38 235 60 300 74 Notes: 1. When considering migrating your design to a lower- or higher-density device, refer to the IGLOO FPGA Fabric User Guide to ensure compliance with design and board migration requirements. 2. AGL015 is not recommended for new designs. 3. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of single- ended user I/Os available is reduced by one. 4. Each used differential I/O pair reduces the number of single-ended I/Os available by two. 5. The M1AGL250 device does not support QN132 or CS196 packages. 6. Package not available. 7. FG256 and FG484 are footprint-compatible packages. Table 1 • IGLOO FPGAs Package Sizes Dimensions Package UC81 CS81 CS121 QN48 QN68 QN132* CS196 CS281 FG144 VQ100 FG256 FG484 Length × Width 4 × 4 5 × 5 6 × 6 6 × 6 8 × 8 8 × 8 8 × 8 10 × 10 13 × 13 14 × 14 17 × 17 23 × 23 (mm\mm) Nominal Area 16 25 36 36 64 64 64 100 169 196 289 529 (mm2) Pitch (mm) 0.4 0.5 0.5 0.4 0.4 0.5 0.5 0.5 1.0 0.5 1.0 1.0 Height (mm) 0.80 0.80 0.99 0.90 0.90 0.75 1.20 1.05 1.45 1.00 1.60 2.23 Note: * Package not available. II Revision 27
IGLOO Low Power Flash FPGAs IGLOO Ordering Information AGL1000 V2 _ FG G 144 Y I Application (Temperature Range) Blank = Commercial (0°C to +85°C Junction Temperature) I= Industrial (–40°C to +100°C Junction Temperature) PP= Pre-Production ES = Engineering Sample (Room Temperature Only) Security Feature Y = Device Includes License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio Blank = Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio Package Lead Count Lead-Free Packaging Blank= Standard Packaging G= RoHS-Compliant Packaging (some packages also halogen-free) Package Type UC = Micro Chip Scale Package (0.4 mm pitch) CS = Chip Scale Package (0.4 mm and 0.5 mm pitches) QN = Quad Flat Pack No Leads (0.4 mm and 0.5 mm pitch) VQ = Very Thin Quad Flat Pack (0.5 mm pitch) FG = Fine Pitch Ball Grid Array (1.0 mm pitch) Supply Voltage 2 = 1.2 V to 1.5 V Part Number 5 = 1.5 V only IGLOO Devices AGL015= 15,000 System Gates AGL030= 30,000 System Gates AGL060= 60,000 System Gates AGL125= 125,000 System Gates AGL250= 250,000 System Gates AGL400= 400,000 System Gates AGL600= 600,000 System Gates AGL1000= 1,000,000 System Gates IGLOO Devices with Cortex-M1 M1AGL250= 250,000 System Gates M1AGL600= 600,000 System Gates M1AGL1000= 1,000,000 System Gates Note: Marking Information: IGLOO V2 devices do not have V2 marking, but IGLOO V5 devices are marked accordingly. Revision 27 III
IGLOO Low Power Flash FPGAs Temperature Grade Offerings AGL0151 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 Package M1AGL250 M1AGL600 M1AGL1000 QN48 – C, I – – – – – – QN68 C, I – – – – – – – UC81 – C, I – – – – – – CS81 – C, I – – – – – – CS121 – – C, I C, I – – – – VQ100 – C, I C, I C, I C, I – – – QN1322 – C, I C, I2 C, I – – – – CS196 – – – C, I C, I C, I – – FG144 – – – C, I C, I C, I C, I C, I FG256 – – – – – C, I C, I C, I CS281 – – – – – – C, I C, I FG484 – – – – – C, I C, I C, I Notes: 1. AGL015 is not recommended for new designs. 2. Package not available. C = Commercial temperature range: 0°C to 85°C junction temperature. I = Industrial temperature range: –40°C to 100°C junction temperature. IGLOO Device Status IGLOO Devices Status M1 IGLOO Devices Status AGL015 Not recommended for new designs. AGL030 Production AGL060 Production AGL125 Production AGL250 Production M1AGL250 Production AGL400 Production AGL600 Production M1AGL600 Production AGL1000 Production M1AGL1000 Production References made to IGLOO devices also apply to ARM-enabled IGLOOe devices. The ARM-enabled part numbers start with M1 (Cortex-M1). Contact your local Microsemi SoC Products Group representative for device availability: www.microsemi.com/soc/contact/default.aspx. AGL015 and AGL030 The AGL015 and AGL030 are architecturally compatible; there are no RAM or PLL features. Devices Not Recommended For New Designs AGL015 is not recommended for new designs. IV Revision 27
IGLOO Low Power Flash FPGAs IGLOO Device Family Overview General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 IGLOO DC and Switching Characteristics General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Power Calculation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-100 Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-106 Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-115 Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-118 Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-132 JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-133 Pin Descriptions Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Package Pin Assignments UC81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 CS81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 CS121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 CS196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 CS281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 QN48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23 QN68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25 QN132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37 FG144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42 FG256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-53 FG484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-63 Datasheet Information List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 Revision 27 V
1 – IGLOO Device Family Overview General Description The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features. The Flash*Freeze technology used in IGLOO devices enables entering and exiting an ultra-low power mode that consumes as little as 5 µW while retaining SRAM and register data. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode. The Low Power Active capability (static idle) allows for ultra-low power consumption (from 12 µW) while the IGLOO device is completely functional in the system. This allows the IGLOO device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power. Nonvolatile flash technology gives IGLOO devices the advantage of being a secure, low power, single- chip solution that is Instant On. IGLOO is reprogrammable and offers time-to-market benefits at an ASIC- level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools. IGLOO devices offer 1kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The AGL015 and AGL030 devices have no PLL or RAM support. IGLOO devices have up to 1 million system gates, supported with up to 144kbits of true dual-port SRAM and up to 300 user I/Os. M1 IGLOO devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers a good balance between low power consumption and speed when implemented in an M1 IGLOO device. The processor runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. Cortex- M1 is available for free from Microsemi for use in M1 IGLOO FPGAs. The ARM-enabled devices have ordering numbers that begin with M1AGL and do not support AES decryption. Flash*Freeze Technology The IGLOO device offers unique Flash*Freeze technology, allowing the device to enter and exit ultra-low power Flash*Freeze mode. IGLOO devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOO V2 devices to support a wide range of core voltage (1.2V to 1.5V) allows further reduction in power consumption, thus achieving the lowest total system power. When the IGLOO device enters Flash*Freeze mode, the device automatically shuts off the clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is retained. The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and availability of small-footprint, high pin-count packages, make IGLOO devices the best fit for portable electronics. Revision 27 1-1
IGLOO Low Power Flash FPGAs Flash Advantages Low Power Flash-based IGLOO devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOO devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs. IGLOO devices also have low dynamic power consumption to further maximize power savings; power is even further reduced by the use of a 1.2V core voltage. Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOO device the lowest total system power offered by any FPGA. Security Nonvolatile, flash-based IGLOO devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOO devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer. IGLOO devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in IGLOO devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOO devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. Security, built into the FPGA fabric, is an inherent component of the IGLOO family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The IGLOO family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOO device provides the best available security for programmable logic designs. Single Chip Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power- up (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability. Instant On Flash-based IGLOO devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOO devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOO device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOO devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time. IGLOO flash FPGAs allow the user to quickly enter and exit Flash*Freeze mode. This is done almost instantly (within 1 µs) and the device retains configuration and data in registers and RAM. Unlike SRAM-based FPGAs the device does not need to reload configuration and design state from external memory components; instead it retains all necessary information to resume operation immediately. Reduced Cost of Ownership Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, Flash-based IGLOO devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and Revision 27 1-2
IGLOO Device Family Overview field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the IGLOO family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/communications, computing, and avionics markets. Firm-Error Immunity Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric. Advanced Flash Technology The IGLOO family offers many benefits, including nonvolatility and reprogrammability, through an advanced flash- based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy. IGLOO family FPGAs utilize design and process techniques to minimize power consumption in all modes of operation. Advanced Architecture The proprietary IGLOO architecture provides granularity comparable to standard-cell ASICs. The IGLOO device consists of five distinct and programmable architectural features (Figure1-1 on page1-4 and Figure1-2 on page1-4): • Flash*Freeze technology • FPGA VersaTiles • Dedicated FlashROM • Dedicated SRAM/FIFO memory† • Extensive CCCs and PLLs† • Advanced I/O structure The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D- flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC® family of third- generation-architecture flash FPGAs. † The AGL015 and AGL030 do not support PLL or SRAM. 1-3 Revision 27
IGLOO Low Power Flash FPGAs VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design. Bank 0 CCC RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block* 1 B k a n n a k B 0 I/Os VersaTile 1 B k a n n a k B ISP AES User Nonvolatile Flash*Freeze Charge 0 Decryption* FlashRom Technology Pumps Bank 1 Note: *Not supported by AGL015 and AGL030 devices Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks (AGL015, AGL030, AGL060, and AGL125) Bank 0 CCC RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block 3 B k a n n a k B 1 I/Os VersaTile 3 B k a n n a k B 1 RAM Block 4,608-Bit Dual-Port ISP AES User Nonvolatile Flash*Freeze Charge Decryption* FlashRom Technology Pumps SRAM or FIFO Block (AGL600 and AGL1000) Bank 2 Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and AGL1000) Revision 27 1-4
IGLOO Device Family Overview Flash*Freeze Technology The IGLOO device has an ultra-low power static mode, called Flash*Freeze mode, which retains all SRAM and register information and can still quickly return to normal operation. Flash*Freeze technology enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by activating the Flash*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and global I/Os can still be driven and can be toggling without impact on power consumption, clocks can still be driven or can be toggling without impact on power consumption, and the device retains all core registers, SRAM information, and states. I/O states are tristated during Flash*Freeze mode or can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLL, and the device consumes as little as 5µW in this mode. Flash*Freeze technology allows the user to switch to active mode on demand, thus simplifying the power management of the device. The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. It is also possible to use the Flash*Freeze pin as a regular I/O if Flash*Freeze mode usage is not planned, which is advantageous because of the inherent low power static (as low as 12 µW) and dynamic capabilities of the IGLOO device. Refer to Figure1-3 for an illustration of entering/exiting Flash*Freeze mode. IGLOO FPGA Flash*Freeze Mode Control Flash*Freeze Pin Figure 1-3 • IGLOO Flash*Freeze Mode VersaTiles The IGLOO core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core tiles. The IGLOO VersaTile supports the following: • All 3-input logic functions—LUT-3 equivalent • Latch with clear or set • D-flip-flop with clear or set • Enable D-flip-flop with clear or set Refer to Figure1-4 for VersaTile configurations. LUT-3 Equivalent D-Flip-Flop with Clear or Set Enable D-Flip-Flop with Clear or Set Data Y X1 Data Y X2 LUT-3 Y CLK D-FF CLK D-FF X3 CLR Enable CLR Figure 1-4 • VersaTile Configurations 1-5 Revision 27
IGLOO Low Power Flash FPGAs User Nonvolatile FlashROM IGLOO devices have 1kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications: • Internet protocol addressing (wireless or fixed) • System calibration settings • Device serialization and/or inventory control • Subscription-based business models (for example, set-top boxes) • Secure key storage for secure communications algorithms • Asset management/tracking • Date stamping • Version management The FlashROM is written using the standard IGLOO IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the AGL015 and AGL030 devices), as in security keys stored in the FlashROM for a user design. The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array. The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte. The Microsemi development software solutions, Libero® System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents. SRAM and FIFO IGLOO devices (except the AGL015 and AGL030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in the AGL015 and AGL030 devices). In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations. PLL and CCC IGLOO devices provide designers with very flexible clock conditioning circuit (CCC) capabilities. Each member of the IGLOO family contains six CCCs. One CCC (center west side) has a PLL. The AGL015 and AGL030 do not have a PLL. The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL. All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access. The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block. The CCC block has these key features: Revision 27 1-6
IGLOO Device Family Overview • Wide input frequency range (f ) = 1.5 MHz up to 250 MHz IN_CCC • Output frequency range (f ) = 0.75 MHz up to 250MHz OUT_CCC • 2 programmable delay types for clock skew minimization • Clock frequency synthesis (for PLL only) Additional CCC specifications: • Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only). • Output duty cycle = 50% ± 1.5% or better (for PLL only) • Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only) • Maximum acquisition time is 300 µs (for PLL only) • Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns (for PLL only) • Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz / f (for OUT_CCC PLL only) Global Clocking IGLOO devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network. Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets. I/Os with Advanced I/O Standards The IGLOO family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2V, 1.5V, 1.8V, 2.5V, 3.0V wide range, and 3.3V). IGLOO FPGAs support many different I/O standards—single-ended and differential. The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table1-1). Table1-1 • I/O Standards Supported I/O Standards Supported LVTTL/ PCI/PCI-X LVPECL, LVDS, I/O Bank Type Device and Bank Location LVCMOS B-LVDS, M-LVDS Advanced East and west banks of AGL250 and larger devices Standard Plus North and south banks of AGL250 and larger devices Not supported All banks of AGL060 and AGL125K Standard All banks of AGL015 and AGL030 Not supported Not supported Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following: • Single-Data-Rate applications • Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications IGLOO banks for the AGL250 device and above support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads. Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered- up system. Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating. 1-7 Revision 27
IGLOO Low Power Flash FPGAs Wide Range I/O Support IGLOO devices support JEDEC-defined wide range I/O operation. IGLOO devices support both the JESD8-B specification, covering 3V and 3.3 V supplies, for an effective operating range of 2.7V to 3.6V, and JESD8-12 with its 1.2V nominal, supporting an effective operating range of 1.14V to 1.575V. Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications. Specifying I/O States During Programming You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the FlashPro User Guide for more information. Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only. 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming. 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator window appears. 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box. 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure1-5 on page1-9). 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings: 1 – I/O is set to drive out logic High 0 – I/O is set to drive out logic Low Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming Z -Tri-State: I/O is tristated Revision 27 1-8
IGLOO Device Family Overview Figure 1-5 • I/O States During Programming Window 6. Click OK to return to the FlashPoint – Programming File Generator window. Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation. 1-9 Revision 27
2 – IGLOO DC and Switching Characteristics General Specifications Operating Conditions Stresses beyond those listed in Table2-1 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table2- 2 on page2-2 is not implied. Table 2-1 • Absolute Maximum Ratings Symbol Parameter Limits1 Units VCC DC core supply voltage –0.3 to 1.65 V VJTAG JTAG DC voltage –0.3 to 3.75 V VPUMP Programming voltage –0.3 to 3.75 V VCCPLL Analog power supply (PLL) –0.3 to 1.65 V VCCI and VMV2 DC I/O buffer supply voltage –0.3 to 3.75 V VI I/O input voltage –0.3 V to 3.6 V (when I/O hot insertion mode is enabled) V –0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled) T 3 Storage Temperature –65 to +150 °C STG T 3 Junction Temperature +125 °C J Notes: 1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table2-4 on page2-3. 2. VMV pins must be connected to the corresponding VCCI pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User Guide for further information. 3. For flash programming and retention, maximum limits refer to Table2-3 on page2-3, and for recommended operating limits, refer to Table2-2 on page2-2. Revision 27 2-1
IGLOO DC and Switching Characteristics Table 2-2 • Recommended Operating Conditions1 Symbol Parameter Commercial Industrial Units T Junction Temperature2 0 to +85 –40 to +100 °C J VCC3 1.5 V DC core supply voltage5 1.425 to 1.575 1.425 to 1.575 V 1.2V–1.5V wide range DC core 1.14 to 1.575 1.14 to 1.575 V supply voltage4,6 VJTAG JTAG DC voltage 1.4 to 3.6 1.4 to 3.6 V VPUMP Programming voltage Programming Mode 3.15 to 3.45 3.15 to 3.45 V Operation7 0 to 3.6 0 to 3.6 V VCCPLL8 Analog power supply (PLL) 1.5 V DC core supply voltage5 1.425 to 1.575 1.425 to 1.575 V 1.2V – 1.5V DC core supply 1.14 to 1.575 1.14 to 1.575 V voltage4,6 VCCI and 1.2 V DC core supply voltage6 1.14 to 1.26 1.14 to 1.26 V VMV9 1.2V DC wide range DC supply 1.14 to 1.575 1.14 to 1.575 V voltage6 1.5 V DC supply voltage 1.425 to 1.575 1.425 to 1.575 V 1.8 V DC supply voltage 1.7 to 1.9 1.7 to 1.9 V 2.5 V DC supply voltage 2.3 to 2.7 2.3 to 2.7 V 3.0 V DC supply voltage10 2.7 to 3.6 2.7 to 3.6 V 3.3 V DC supply voltage 3.0 to 3.6 3.0 to 3.6 V LVDS differential I/O 2.375 to 2.625 2.375 to 2.625 V LVPECL differential I/O 3.0 to 3.6 3.0 to 3.6 V Notes: 1. All parameters representing voltages are measured with respect to GND unless otherwise specified. 2. Software Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information on custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help. 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table2-25 on page2-24. VCCI should be at the same voltage within a given I/O bank. 4. All IGLOO devices (V5 and V2) must be programmed with the VCC core voltage at 1.5V. Applications using the V2 devices powered by 1.2V supply must switch the core supply to 1.5V for in-system programming. 5. For IGLOO® V5 devices 6. For IGLOO V2 devices only, operating at VCCI VCC. 7. VPUMP can be left floating during operation (not programming mode). 8. VCCPLL pins should be tied to VCC pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User Guide for further information. 9. VMV and VCCI must be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" on page3-1 for further information. 10.3.3 V wide range is compliant to the JESD-8B specification and supports 3.0 V VCCI operation. 2-2 Revision 27
IGLOO Low Power Flash FPGAs Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature1 Program Retention Maximum Storage Maximum Operating Junction Product Grade Programming Cycles (biased/unbiased) Temperature T (°C)2 Temperature T (°C)2 STG J Commercial 500 20 years 110 100 Industrial 500 20 years 110 100 Notes: 1. This is a stress rating only; functional operation at any condition other than those indicated is not implied. 2. These limits apply for program/data retention only. Refer to Table2-1 on page2-1 and Table2-2 on page2-2 for device operating conditions and absolute limits. Table 2-4 • Overshoot and Undershoot Limits1 Average VCCI–GND Overshoot or Undershoot Duration Maximum Overshoot/ VCCI as a Percentage of Clock Cycle2 Undershoot2 2.7 V or less 10% 1.4 V 5% 1.49 V 3 V 10% 1.1 V 5% 1.19 V 3.3 V 10% 0.79 V 5% 0.88 V 3.6 V 10% 0.45 V 5% 0.54 V Notes: 1. Based on reliability requirements at junction temperature at 85°C. 2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15V. 3. This table does not provide PCI overshoot/undershoot limits. I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial) Sophisticated power-up management circuitry is designed into every IGLOO device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure2-1 on page2-4 and Figure2-2 on page2-5. There are five regions to consider during power-up. IGLOO I/Os are activated only if ALL of the following three conditions are met: 1. VCC and VCCI are above the minimum specified trip points (Figure2-1 on page2-4 and Figure2-2 on page2-5). 2. VCCI > VCC – 0.75 V (typical) 3. Chip is in the operating mode. VCCI Trip Point: Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V Ramping down (V5 Devices): 0.5 V < trip_point_down < 1.1 V Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V VCC Trip Point: Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V Revision 27 2-3
IGLOO DC and Switching Characteristics Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V VCC and VCCI ramp-up trip points are about 100mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following: • During programming, I/Os become tristated and weakly pulled up to VCCI. • JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior. PLL Behavior at Brownout Condition Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels (see Figure2- 1 and Figure2-2 on page2-5 for more details). When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± 0.25 V for V5 devices, and 0.75 V ± 0.2 V for V2 devices), the PLL output lock signal goes low and/or the output clock is lost. Refer to the Brownout Voltage section in the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the ProASIC®3 and ProASIC3E FPGA fabric user guides for information on clock and lock recovery. Internal Power-Up Activation Sequence 1. Core 2. Input buffers 3. Output buffers, after 200ns delay from input buffer activation To make sure the transition from input buffers to output buffers is clean, ensure that there is no path longer than 100 ns from input buffer to output buffer in your design. VCC = VCCI + VT where VT can be from 0.58 V to 0.9 V (typically 0.75 V) VCC VCC = 1.575 V Region 4: I/O Region 5: I/O buffers are ON Region 1: I/O Buffers are OFF buffers are ON. and power supplies are within I/Os are functional specification. (except differential inputs) I/Os meet the entire datasheet but slower because VCCI and timer specifications for is below specification. For the speed, VIH / VIL, VOH / VOL, etc. same reason, input buffers do not meet VIH / VIL levels, and output buffers do not meet VOH / VOL levels. VCC = 1.425 V Region 2: I/O buffers are ON. Region 3: I/O buffers are ON. I/Os are functional (except differential inputs) I/Os are functional; I/O DC but slower because VCCI / VCC are below specifications are met, specification. For the same reason, input but I/Os are slower because buffers do not meet VIH / VIL levels, and the VCC is below specification. Activation trip point: output buffers do not meet VOH / VOL levels. V = 0.85 V ± 0.25 V a Deactivation trip point: V = 0.75 V ± 0.25 V Region 1: I/O buffers are OFF d Activation trip point: Min VCCI datasheet specification VCCI V = 0.9 V ± 0.3 V voltage at a selected I/O a Deactivation trip point: standard; i.e., 1.425 V or 1.7 V V = 0.8 V ± 0.3 V or 2.3 V or 3.0 V d Figure 2-1 • V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels 2-4 Revision 27
IGLOO Low Power Flash FPGAs VCC = VCCI + VT VCC where VT can be from 0.58 V to 0.9 V (typically 0.75 V) VCC = 1.575 V Region 4: I/O Region 5: I/O buffers are ON Region 1: I/O Buffers are OFF buffers are ON. and power supplies are within I/Os are functional specification. (except differential inputs) I/Os meet the entire datasheet but slower because VCCI is and timer specifications for below specification. For the speed, VIH / VIL , VOH / VOL , etc. same reason, input buffers do not meet VIH / VIL levels, and output buffers do not meet VOH / VOL levels. VCC = 1.14 V Region 2: I/O buffers are ON. Region 3: I/O buffers are ON. I/Os are functional (except differential inputs) I/Os are functional; I/O DC but slower because VCCI/VCC are below specifications are met, specification. For the same reason, input but I/Os are slower because buffers do not meet VIH/VIL levels, and the VCC is below specification. Activation trip point: output buffers do not meet VOH/VOL levels. V = 0.85 V ± 0.2 V a Deactivation trip point: V = 0.75 V ± 0.2 V Region 1: I/O buffers are OFF d Activation trip point: Min VCCI datasheet specification VCCI V = 0.9 V ± 0.15 V voltage at a selected I/O a Deactivation trip point: standard; i.e., 1.14 V,1.425 V, 1.7 V, V = 0.8 V ± 0.15 V 2.3 V, or 3.0 V d Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels Thermal Characteristics Introduction The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature. EQ1 can be used to calculate junction temperature. T = Junction Temperature = T + T J A EQ 1 where: T = Ambient Temperature A T = Temperature gradient between junction (silicon) and ambient T = * P ja = Junction-to-ambient of the package. numbers are located in Table2-5 on page2-6. ja ja P = Power dissipation Revision 27 2-5
IGLOO DC and Switching Characteristics Package Thermal Characteristics The device junction-to-case thermal resistivity is and the junction-to-ambient air thermal resistivity is . The jc ja thermal characteristics for are shown for two air flow rates. The absolute maximum junction temperature is 100°C. ja EQ2 shows a sample calculation of the absolute maximum power dissipation allowed for the AGL1000-FG484 package at commercial temperature and in still air. Max. junction temp. (C)–Max. ambient temp. (C) 100C–70C Maximum Power Allowed = ------------------------------------------------------------------------------------------------------------------------------------------ = ------------------------------------- = 1.28 W (C/W) 23.3°C/W ja EQ 2 Table 2-5 • Package Thermal Resistivities ja Package Type Device Pin Count j Still Air 1 m/s 2.5 m/s Unit c Quad Flat No Lead (QN) AGL030 132 13.1 21.4 16.8 15.3 C/W AGL060 132 11.0 21.2 16.6 15.0 C/W AGL125 132 9.2 21.1 16.5 14.9 C/W AGL250 132 8.9 21.0 16.4 14.8 C/W AGL030 68 13.4 68.4 45.8 43.1 C/W Very Thin Quad Flat Pack (VQ)* 100 10.0 35.3 29.4 27.1 C/W Chip Scale Package (CS) AGL1000 281 6.0 28.0 22.8 21.5 C/W AGL400 196 7.2 37.1 31.1 28.9 C/W AGL250 196 7.6 38.3 32.2 30.0 C/W AGL125 196 8.0 39.5 33.4 31.1 C/W AGL030 81 12.4 32.8 28.5 27.2 C/W AGL060 81 11.1 28.8 24.8 23.5 C/W AGL250 81 10.4 26.9 22.3 20.9 C/W Micro Chip Scale Package (UC) AGL030 81 16.9 40.6 35.2 33.7 C/W Fine Pitch Ball Grid Array (FG) AGL060 144 18.6 55.2 49.4 47.2 C/W AGL1000 144 6.3 31.6 26.2 24.2 C/W AGL400 144 6.8 37.6 31.2 29.0 C/W AGL250 256 12.0 38.6 34.7 33.0 C/W AGL1000 256 6.6 28.1 24.4 22.7 C/W AGL1000 484 8.0 23.3 19.0 16.7 C/W Note: *Thermal resistances for other device-package combinations will be posted in a later revision. Disclaimer: The simulation for determining the junction-to-air thermal resistance is based on JEDEC standards (JESD51) and assumptions made in building the model. Junction-to-case is based on SEMI G38-88. JESD51 is only used for comparing one package to another package, provided the two tests uses the same condition. They have little relevance in actual application and therefore should be used with a degree of caution. 2-6 Revision 27
IGLOO Low Power Flash FPGAs Temperature and Voltage Derating Factors Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T = 70°C, VCC=1.425V) J For IGLOO V2 or V5 devices, 1.5 V DC Core Supply Voltage Junction Temperature (°C) Array Voltage VCC (V) –40°C 0°C 25°C 70°C 85°C 100°C 1.425 0.934 0.953 0.971 1.000 1.007 1.013 1.500 0.855 0.874 0.891 0.917 0.924 0.929 1.575 0.799 0.816 0.832 0.857 0.864 0.868 Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T = 70°C, VCC=1.14V) J For IGLOO V2, 1.2 V DC Core Supply Voltage Junction Temperature (°C) Array Voltage VCC (V) –40°C 0°C 25°C 70°C 85°C 100°C 1.14 0.967 0.978 0.991 1.000 1.006 1.010 1.20 0.864 0.874 0.885 0.894 0.899 0.902 1.26 0.794 0.803 0.814 0.821 0.827 0.830 Calculating Power Dissipation Quiescent Supply Current Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power modes usage. Microsemi recommends using the PowerCalculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature. Table 2-8 • Power Supply State per Mode Power Supply Configurations Modes/power supplies VCC VCCPLL VCCI VJTAG VPUMP Flash*Freeze On On On On On/off/floating Sleep Off Off On Off Off Shutdown Off Off Off Off Off No Flash*Freeze On On On On On/off/floating Note: Off: Power supply level = 0V Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO Flash*Freeze Mode* Core Voltage AGL015 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 Units Typical 1.2 V 4 4 8 13 20 27 30 44 µA (25°C) 1.5 V 6 6 10 18 34 51 72 127 µA Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table2-13 on page2-10 through Table2-15 on page2-11 and Table2-16 on page2-11 through Table2-18 on page2-12 (PDC6 and PDC7). Revision 27 2-7
IGLOO DC and Switching Characteristics Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode* Core Voltage AGL015 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 Units VCCI/VJTAG=1.2V 1.2 V 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 µA (per bank) Typical (25°C) VCCI/VJTAG=1.5V 1.2 V / 1.5 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 µA (per bank) Typical (25°C) V VCCI/VJTAG=1.8V 1.2 V / 1.5 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 µA (per bank) Typical (25°C) V VCCI/VJTAG=2.5V 1.2 V / 1.5 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 µA (per bank) Typical (25°C) V VCCI/VJTAG=3.3V 1.2 V / 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 µA (per bank) Typical (25°C) V Note: IDD=N ×ICCI. Values do not include I/O static contribution, which is shown in Table2-13 on page2-10 through BANKS Table2-15 on page2-11 and Table2-16 on page2-11 through Table2-18 on page2-12 (PDC6 and PDC7). Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode Core Voltage AGL015 AGL030 Units Typical (25°C) 1.2 V / 1.5 V 0 0 µA Table 2-12 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze Mode1 Core Voltage AGL015 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 Units ICCA Current2 Typical (25°C) 1.2 V 5 6 10 13 18 25 28 42 µA 1.5 V 14 16 20 28 44 66 82 137 µA ICCI or IJTAG Current3 VCCI/VJTAG=1.2V 1.2 V 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 µA (per bank) Typical (25°C) VCCI/VJTAG=1.5V (per 1.2 V / 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 µA bank) Typical (25°C) 1.5 V VCCI/VJTAG=1.8V (per 1.2 V / 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 µA bank) Typical (25°C) 1.5 V VCCI/VJTAG=2.5V (per 1.2 V / 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 µA bank) Typical (25°C) 1.5 V VCCI/VJTAG=3.3V (per 1.2 V / 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 µA bank) Typical (25°C) 1.5 V Notes: 1. IDD=N ×ICCI + ICCA. JTAG counts as one bank when powered. BANKS 2. Includes VCC, VPUMP, and VCCPLL currents. 3. Values do not include I/O static contribution (PDC6 and PDC7). 2-8 Revision 27
IGLOO Low Power Flash FPGAs Power per I/O Pin Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Advanced I/O Banks Static Power Dynamic Power VCCI (V) PDC6 (mW)1 PAC9 (µW/MHz)2 Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 16.27 3.3 V LVCMOS Wide Range3 3.3 – 16.27 2.5 V LVCMOS 2.5 – 4.65 1.8 V LVCMOS 1.8 – 1.61 1.5 V LVCMOS (JESD8-11) 1.5 – 0.96 1.2 V LVCMOS4 1.2 – 0.58 1.2 V LVCMOS Wide Range4 1.2 – 0.58 3.3 V PCI 3.3 – 17.67 3.3 V PCI-X 3.3 – 17.67 Differential LVDS 2.5 2.26 23.39 LVPECL 3.3 5.72 59.05 Notes: 1. P is the static power (where applicable) measured on VCCI. DC6 2. P is the total dynamic power measured on VCCI. AC9 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 4. Applicable for IGLOO V2 devices only Table 2-14 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks Static Power Dynamic Power VCCI (V) PDC6 (mW)1 PAC9 (µW/MHz)2 Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 16.41 3.3 V LVCMOS Wide Range3 3.3 – 16.41 2.5 V LVCMOS 2.5 – 4.75 1.8 V LVCMOS 1.8 – 1.66 1.5 V LVCMOS (JESD8-11) 1.5 – 1.00 1.2 V LVCMOS4 1.2 – 0.61 1.2 V LVCMOS Wide Range4 1.2 – 0.61 3.3 V PCI 3.3 – 17.78 3.3 V PCI-X 3.3 – 17.78 Notes: 1. PDC6 is the static power (where applicable) measured on VCCI. 2. PAC9 is the total dynamic power measured on VCCI. 3. Applicable for IGLOO V2 devices only. 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. Revision 27 2-9
IGLOO DC and Switching Characteristics Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard I/O Banks Static Power Dynamic Power VCCI (V) PDC6 (mW)1 PAC9 (µW/MHz)2 Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 17.24 3.3 V LVCMOS Wide Range3 3.3 – 17.24 2.5 V LVCMOS 2.5 – 5.64 1.8 V LVCMOS 1.8 – 2.63 1.5 V LVCMOS (JESD8-11) 1.5 – 1.97 1.2 V LVCMOS4 1.2 – 0.57 1.2 V LVCMOS Wide Range4 1.2 – 0.57 Notes: 1. PDC6 is the static power (where applicable) measured on VCCI. 2. PAC9 is the total dynamic power measured on VCCI. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 4. Applicable for IGLOO V2 devices only. Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 Applicable to Advanced I/O Banks Static Power Dynamic Power C (pF) VCCI (V) PDC7 (mW)2 PAC10 (µW/MHz)3 LOAD Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 5 3.3 – 136.95 3.3 V LVCMOS Wide Range4 5 3.3 – 136.95 2.5 V LVCMOS 5 2.5 – 76.84 1.8 V LVCMOS 5 1.8 – 49.31 1.5 V LVCMOS (JESD8-11) 5 1.5 – 33.36 1.2 V LVCMOS5 5 1.2 – 16.24 1.2 V LVCMOS Wide Range5 5 1.2 – 16.24 3.3 V PCI 10 3.3 – 194.05 3.3 V PCI-X 10 3.3 – 194.05 Differential LVDS – 2.5 7.74 156.22 LVPECL – 3.3 19.54 339.35 Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. PDC7 is the static power (where applicable) measured on VCCI. 3. PAC10 is the total dynamic power measured on VCCI. 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 5. Applicable for IGLOO V2 devices only. 2-10 Revision 27
IGLOO Low Power Flash FPGAs Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 Applicable to Standard Plus I/O Banks Static Power Dynamic Power C (pF) VCCI (V) PDC7 (mW)2 PAC10 (µW/MHz)3 LOAD Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 5 3.3 – 122.16 3.3 V LVCMOS Wide Range4 5 3.3 – 122.16 2.5 V LVCMOS 5 2.5 – 68.37 1.8 V LVCMOS 5 1.8 – 34.53 1.5 V LVCMOS (JESD8-11) 5 1.5 – 23.66 1.2 V LVCMOS5 5 1.2 – 14.90 1.2 V LVCMOS Wide Range5 5 1.2 – 14.90 3.3 V PCI 10 3.3 – 181.06 3.3 V PCI-X 10 3.3 – 181.06 Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. P is the static power (where applicable) measured on VCCI. DC7 3. P is the total dynamic power measured on VCCI. AC10 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3V wide range as specified in the JESD-8B specification. 5. Applicable for IGLOO V2 devices only. Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 Applicable to Standard I/O Banks Static Power Dynamic Power C (pF) VCCI (V) PDC7 (mW)2 PAC10 (µW/MHz)3 LOAD Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 5 3.3 – 104.38 3.3 V LVCMOS Wide Range4 5 3.3 – 104.38 2.5 V LVCMOS 5 2.5 – 59.86 1.8 V LVCMOS 5 1.8 – 31.26 1.5 V LVCMOS (JESD8-11) 5 1.5 – 21.96 1.2 V LVCMOS5 5 1.2 – 13.49 1.2 V LVCMOS Wide Range5 5 1.2 – 13.49 Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. PDC7 is the static power (where applicable) measured on VCCI. 3. PAC10 is the total dynamic power measured on VCCI. 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3V wide range as specified in the JESD-8B specification. 5. Applicable for IGLOO V2 devices only. Revision 27 2-11
IGLOO DC and Switching Characteristics Power Consumption of Various Internal Resources Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage Device Specific Dynamic Power (µW/MHz) Parameter Definition AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015 PAC1 Clock contribution of a 7.778 6.221 6.082 4.460 4.446 2.736 0.000 0.000 Global Rib PAC2 Clock contribution of a 4.334 3.512 2.759 2.718 1.753 1.971 3.483 3.483 Global Spine PAC3 Clock contribution of a 1.379 1.445 1.377 1.483 1.467 1.503 1.472 1.472 VersaTile row PAC4 Clock contribution of a 0.151 0.149 0.151 0.149 0.149 0.151 0.146 0.146 VersaTile used as a sequential module PAC5 First contribution of a 0.057 VersaTile used as a sequential module PAC6 Second contribution of a 0.207 VersaTile used as a sequential module PAC7 Contribution of a VersaTile 0.276 0.262 0.279 0.277 0.280 0.300 0.281 0.273 used as a combinatorial module PAC8 Average contribution of a 1.161 1.147 1.193 1.273 1.076 1.088 1.134 1.153 routing net PAC9 Contribution of an I/O input See Table2-13 on page2-10 through Table2-15 on page2-11. pin (standard-dependent) PAC10 Contribution of an I/O output See Table2-16 on page2-11 through Table2-18 on page2-12. pin (standard-dependent) PAC11 Average contribution of a 25.00 RAM block during a read operation PAC12 Average contribution of a 30.00 RAM block during a write operation PAC13 Dynamic PLL contribution 2.70 Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC. 2-12 Revision 27
IGLOO Low Power Flash FPGAs Table 2-20 • Different Components Contributing to the Static Power Consumption in IGLOO Devices For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage Device-Specific Static Power (mW) Parameter Definition AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015 PDC1 Array static power in Active See Table2-12 on page2-9. mode PDC2 Array static power in Static See Table2-11 on page2-8. (Idle) mode PDC3 Array static power in See Table2-9 on page2-7. Flash*Freeze mode PDC4 Static PLL contribution 1.84 PDC5 Bank quiescent power See Table2-12 on page2-9. (V -dependent) CCI PDC6 I/O input pin static power See Table2-13 on page2-10 through Table2-15 on page2-11. (standard-dependent) PDC7 I/O output pin static power See Table2-16 on page2-11 through Table2-18 on page2-12. (standard-dependent) Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC. Revision 27 2-13
IGLOO DC and Switching Characteristics Table 2-21 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage Device Specific Dynamic Power (µW/MHz) Parameter Definition AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015 PAC1 Clock contribution of a 4.978 3.982 3.892 2.854 2.845 1.751 0.000 0.000 Global Rib PAC2 Clock contribution of a 2.773 2.248 1.765 1.740 1.122 1.261 2.229 2.229 Global Spine PAC3 Clock contribution of a 0.883 0.924 0.881 0.949 0.939 0.962 0.942 0.942 VersaTile row PAC4 Clock contribution of a 0.096 0.095 0.096 0.095 0.095 0.096 0.094 0.094 VersaTile used as a sequential module PAC5 First contribution of a 0.045 VersaTile used as a sequential module PAC6 Second contribution of a 0.186 VersaTile used as a sequential module PAC7 Contribution of a VersaTile 0.158 0.149 0.158 0.157 0.160 0.170 0.160 0.155 used as a combinatorial module PAC8 Average contribution of a 0.756 0.729 0.753 0.817 0.678 0.692 0.738 0.721 routing net PAC9 Contribution of an I/O input See Table2-13 on page2-10 through Table2-15 on page2-11. pin (standard-dependent) PAC10 Contribution of an I/O output See Table2-16 on page2-11 through Table2-18 on page2-12. pin (standard-dependent) PAC11 Average contribution of a 25.00 RAM block during a read operation PAC12 Average contribution of a 30.00 RAM block during a write operation PAC13 Dynamic PLL contribution 2.10 Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC. 2-14 Revision 27
IGLOO Low Power Flash FPGAs Table 2-22 • Different Components Contributing to the Static Power Consumption in IGLOO Device For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage Device Specific Static Power (mW) Parameter Definition AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015 PDC1 Array static power in Active See Table2-12 on page2-9. mode PDC2 Array static power in Static See Table2-11 on page2-8. (Idle) mode PDC3 Array static power in See Table2-9 on page2-7. Flash*Freeze mode PDC4 Static PLL contribution 0.90 PDC5 Bank quiescent power See Table2-12 on page2-9. (VCCI-Dependent) PDC6 I/O input pin static power See Table2-13 on page2-10 through Table2-15 on page2-11. (standard-dependent) PDC7 I/O output pin static power See Table2-16 on page2-11 through Table2-18 on page2-12. (standard-dependent) Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC. Revision 27 2-15
IGLOO DC and Switching Characteristics Power Calculation Methodology This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Microsemi Libero SoC software. The power calculation methodology described below uses the following variables: • The number of PLLs as well as the number and the frequency of each output clock generated • The number of combinatorial and sequential cells used in the design • The internal clock frequencies • The number and the standard of I/O pins used in the design • The number of RAM blocks used in the design • Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table2-23 on page2-19. • Enable rates of output buffers—guidelines are provided for typical applications in Table2-24 on page2-19. • Read rate and write rate to the memory—guidelines are provided for typical applications in Table2-24 on page2-19. The calculation should be repeated for each clock domain defined in the design. Methodology Total Power Consumption—P TOTAL P = P + P TOTAL STAT DYN P is the total static power consumption. STAT P is the total dynamic power consumption. DYN Total Static Power Consumption—P STAT P = (P or P or P ) + N * P + N * P + N * P STAT DC1 DC2 DC3 BANKS DC5 INPUTS DC6 OUTPUTS DC7 N is the number of I/O input buffers used in the design. INPUTS N is the number of I/O output buffers used in the design. OUTPUTS N is the number of I/O banks powered in the design. BANKS Total Dynamic Power Consumption—P DYN P = P + P + P + P + P + P + P + P DYN CLOCK S-CELL C-CELL NET INPUTS OUTPUTS MEMORY PLL Global Clock Contribution—P CLOCK P = (P + N * P + N * P + N * P ) * F CLOCK AC1 SPINE AC2 ROW AC3 S-CELL AC4 CLK N is the number of global spines used in the user design—guidelines are provided in the "Spine SPINE Architecture" section of the IGLOO FPGA Fabric User Guide. N is the number of VersaTile rows used in the design—guidelines are provided in the "Spine ROW Architecture" section of the IGLOO FPGA Fabric User Guide. F is the global clock signal frequency. CLK N is the number of VersaTiles used as sequential modules in the design. S-CELL P , P , P , and P are device-dependent. AC1 AC2 AC3 AC4 Sequential Cells Contribution—P S-CELL P = N * (P + / 2 * P ) * F S-CELL S-CELL AC5 1 AC6 CLK N is the number of VersaTiles used as sequential modules in the design. When a multi-tile S-CELL sequential cell is used, it should be accounted for as 1. is the toggle rate of VersaTile outputs—guidelines are provided in Table2-23 on page2-19. 1 F is the global clock signal frequency. CLK 2-16 Revision 27
IGLOO Low Power Flash FPGAs Combinatorial Cells Contribution—P C-CELL P = N * / 2 * P * F C-CELL C-CELL 1 AC7 CLK N is the number of VersaTiles used as combinatorial modules in the design. C-CELL is the toggle rate of VersaTile outputs—guidelines are provided in Table2-23 on page2-19. 1 F is the global clock signal frequency. CLK Routing Net Contribution—P NET P = (N + N ) * / 2 * P * F NET S-CELL C-CELL 1 AC8 CLK N is the number of VersaTiles used as sequential modules in the design. S-CELL N is the number of VersaTiles used as combinatorial modules in the design. C-CELL is the toggle rate of VersaTile outputs—guidelines are provided in Table2-23 on page2-19. 1 F is the global clock signal frequency. CLK I/O Input Buffer Contribution—P INPUTS P = N * / 2 * P * F INPUTS INPUTS 2 AC9 CLK N is the number of I/O input buffers used in the design. INPUTS is the I/O buffer toggle rate—guidelines are provided in Table2-23 on page2-19. 2 F is the global clock signal frequency. CLK I/O Output Buffer Contribution—P OUTPUTS P = N * / 2 * * P * F OUTPUTS OUTPUTS 2 1 AC10 CLK N is the number of I/O output buffers used in the design. OUTPUTS is the I/O buffer toggle rate—guidelines are provided in Table2-23 on page2-19. 2 is the I/O buffer enable rate—guidelines are provided in Table2-24 on page2-19. 1 F is the global clock signal frequency. CLK RAM Contribution—P MEMORY P = P * N * F * + P * N * F * MEMORY AC11 BLOCKS READ-CLOCK 2 AC12 BLOCK WRITE-CLOCK 3 N is the number of RAM blocks used in the design. BLOCKS F is the memory read clock frequency. READ-CLOCK is the RAM enable rate for read operations. 2 F is the memory write clock frequency. WRITE-CLOCK is the RAM enable rate for write operations—guidelines are provided in Table2-24 on page2-19. 3 PLL Contribution—P PLL P = P + P *F PLL DC4 AC13 CLKOUT F is the output clock frequency.† CLKOUT † If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P * F product) to the total PLL contribution. AC13 CLKOUT Revision 27 2-17
IGLOO DC and Switching Characteristics Guidelines Toggle Rate Definition A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples: • The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency. • The average toggle rate of an 8-bit counter is 25%: – Bit 0 (LSB) = 100% – Bit 1 = 50% – Bit 2 = 25% – … – Bit 7 (MSB) = 0.78125% – Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8 Enable Rate Definition Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%. Table 2-23 • Toggle Rate Guidelines Recommended for Power Calculation Component Definition Guideline Toggle rate of VersaTile outputs 10% 1 I/O buffer toggle rate 10% 2 Table 2-24 • Enable Rate Guidelines Recommended for Power Calculation Component Definition Guideline I/O output buffer enable rate 100% 1 RAM enable rate for read operations 12.5% 2 RAM enable rate for write operations 12.5% 3 2-18 Revision 27
IGLOO Low Power Flash FPGAs User I/O Characteristics Timing Model I/O Module (Non-Registered) Combinational Cell Combinational Cell LVPECL (Applicable to Y Y Advanced I/O Banks Only)L tPD = 1.22 ns tPD = 1.20 ns tDP = 1.72 ns I/O Module (Non-Registered) Combinational Cell Y LVTTLOutput drive strength = 12 mA High slew rate tPD = 1.80 ns tDP = 3.05 ns (Advanced I/O Banks) I/O Module Combinational Cell (Non-Registered) I/O Module Y (Registered) LVTTLOutput drive strength = 8 mA tPY = 1.20 ns High slew rate tDP = 4.12 ns (Advanced I/O Banks) (ApLpVliPcEabCleL D Q tPD = 1.49 ns I/O Module (Non-Registered) to Advanced Combinational Cell I/O Banks only) Y LVCMOS 1.5 VOutput drive strength = 4 mA ttIISCULKDQ = = 0 0.4.473 n nss tPD = 0.86 ns tDP = 4.42 ns (Advanced I/O BankHsi)gh slew rate Input LVTTL Clock I/O Module Register Cell Register Cell (Registered) Combinational Cell tPY = 0.87 ns (Advanced I/O Banks) D Q Y D Q D Q LVTTL 3.3 V Output drive (NoI/nO- RMeogdisutleered) tPD = 0.92 ns tDP = 3.05 ns strength = 12 mA High slew rate (Advanced I/O Banks) BLLVVDDSS,, ttCSLUKDQ = = 0 0.8.920 n nss ttCSLUKDQ = = 0 0.8.920 n nss ttOOSCULKDQ = = 0 1.5.022 n nss M-LVDS Input LVTTL Input LVTTL (Applicable for tPY = 1.35 ns Clock Clock Advanced I/O Banks only) tPY = 0.87 ns tPY = 0.87 ns (Advanced I/O Banks) (Advanced I/O Banks) Figure 2-3 • Timing Model Operating Conditions: Std. Speed, Commercial Temperature Range (T = 70°C), Worst-Case VCC=1.425 V, J for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices Revision 27 2-19
IGLOO DC and Switching Characteristics t t PY DIN D Q PAD DIN Y CLK To Array t = MAX(t (R), t (F)) I/O Interface PY PY PY t = MAX(t (R), t (F)) DIN DIN DIN VIH V V PAD trip trip VIL VCC 50% 50% Y GND t t PY PY (R) (F) VCC 50% 50% DIN GND t t DIN DIN (R) (F) Figure 2-4 • Input Buffer Timing Model and Delays (example) 2-20 Revision 27
IGLOO Low Power Flash FPGAs tDOUT tDP D Q PAD DOUT D CLK Std Load From Array t = MAX(t (R), t (F)) DP DP DP I/O Interface t = MAX(t (R), t (F)) DOUT DOUT DOUT t t DOUT DOUT (R) VCC (F) 50% 50% D 0 V VCC 50% 50% DOUT 0 V VOH Vtrip Vtrip V PAD OL t t DP DP (R) (F) Figure 2-5 • Output Buffer Model and Delays (example) Revision 27 2-21
IGLOO DC and Switching Characteristics t EOUT D Q E CLK t , t , t , t , t , t ZL ZH HZ LZ ZLS ZHS EOUT D Q PAD DOUT D CLK I/O Interface tEOUT = MAX(tEOUT(r), tEOUT(f)) VCC D VCC 50% 50% E t t EOUT (F) EOUT (R) VCC 50% 50% 50% 50% t EOUT t LZ ZH tZL tHZ VCCI PAD 90% VCCI Vtrip Vtrip VOL 10% VCCI VCC D VCC E 50% t 50% t EOUT (R) EOUT (F) VCC 50% 50% EOUT 50% t t ZHS ZLS VOH PAD Vtrip Vtrip VOL Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example) 2-22 Revision 27
IGLOO Low Power Flash FPGAs Overview of I/O Performance Summary of I/O DC Input and Output Levels – Default I/O Software Settings Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Advanced I/O Banks Equivalent VIL VIH VOL VOH IOL1 IOH1 Software Default Drive I/O Drive Strength Slew Max. Min. Max. Min. Standard Strength Option2 Rate Min.V V V Max.V V V mA mA 3.3 V 12 mA 12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12 LVTTL / 3.3 V LVCMOS 3.3 V 100 µA 12 mA High –0.3 0.8 2 3.6 0.2 VCCI – 0.2 0.1 0.1 LVCMOS Wide Range3 2.5 V 12 mA 12 mA High –0.3 0.7 1.7 2.7 0.7 1.7 12 12 LVCMOS 1.8 V 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 LVCMOS 1.5 V 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 LVCMOS 1.2 V 2 mA 2 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 2 2 LVCMOS4 1.2 V 100 µA 2 mA High –0.3 0.3 * VCCI 0.7 * VCCI 1.575 0.1 VCCI – 0.1 0.1 0.1 LVCMOS Wide Range4,5 3.3 V PCI Per PCI specifications 3.3 V Per PCI-X specifications PCI-X Notes: 1. Currents are measured at 85°C junction temperature. 2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 4. Applicable to V2 Devices operating at VCCIVCC. 5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification. Revision 27 2-23
IGLOO DC and Switching Characteristics Table 2-26 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard Plus I/O Banks Equivalent VIL VIH VOL VOH I I OL OH Software Default Drive I/O Drive Strength Slew Min. Max. Min. Max. Min. Standard Strength Option2 Rate V V V Max. V V V mA mA 3.3 V 12 mA 12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12 LVTTL / 3.3 V LVCMOS 3.3 V 100 µA 12 mA High –0.3 0.8 2 3.6 0.2 VDD-0.2 0.1 0.1 LVCMOS Wide Range3 2.5 V 12 mA 12 mA High –0.3 0.7 1.7 2.7 0.7 1.7 12 12 LVCMOS 1.8 V 8 mA 8 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 LVCMOS 1.5 V 4 mA 4 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 LVCMOS 1.2 V 2 mA 2 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 2 2 LVCMOS4 1.2 V 100 µA 2 mA High –0.3 0.3 * VCCI 0.7 * VCCI 1.575 0.1 VCCI – 0.1 0.1 0.1 LVCMOS Wide Range4 3.3 V PCI Per PCI specifications 3.3 V Per PCI-X specifications PCI-X Notes: 1. Currents are measured at 85°C junction temperature. 2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 4. Applicable to V2 Devices operating at VCCI VCC. 5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification. 2-24 Revision 27
IGLOO Low Power Flash FPGAs Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks Equivalent VIL V VOL V I 1 I 1 IH OH OL OH Software Default Drive I/O Drive Strength Slew Min. Max. Min. Max. Max. Min. Standard Strength Option2 Rate V V V V V V mA mA 3.3 V 8 mA 8 mA High –0.3 0.8 2 3.6 0.4 2.4 8 8 LVTTL / 3.3 V LVCMOS 3.3 V 100 µA 8 mA High –0.3 0.8 2 3.6 0.2 VDD-0.2 0.1 0.1 LVCMOS Wide Range3 2.5 V 8 mA 8 mA High –0.3 0.7 1.7 3.6 0.7 1.7 8 8 LVCMOS 1.8 V 4 mA 4 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 LVCMOS 1.5 V 2 mA 2 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 LVCMOS 1.2 V 1 mA 1 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 1 1 LVCMOS4 1.2 V 100 µA 1 mA High –0.3 0.3 * VCCI 0.7 * VCCI 3.6 0.1 VCCI – 0.1 0.1 0.1 LVCMOS Wide Range4,5 Notes: 1. Currents are measured at 85°C junction temperature. 2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 4. Applicable to V2 Devices operating at VCCI VCC. 5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification. Revision 27 2-25
IGLOO DC and Switching Characteristics Table 2-28 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions Commercial1 Industrial2 IIL4 IIH5 IIL4 IIH5 DC I/O Standards µA µA µA µA 3.3 V LVTTL / 3.3 V LVCMOS 10 10 15 15 3.3 V LVCMOS Wide Range 10 10 15 15 2.5 V LVCMOS 10 10 15 15 1.8 V LVCMOS 10 10 15 15 1.5 V LVCMOS 10 10 15 15 1.2 V LVCMOS3 10 10 15 15 1.2 V LVCMOS Wide Range3 10 10 15 15 3.3 V PCI 10 10 15 15 3.3 V PCI-X 10 10 15 15 Notes: 1. Commercial range (0°C < T < 70°C) A 2. Industrial range (–40°C < T < 85°C) A 3. Applicable to V2 Devices operating at VCCI VCC. 4. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 5. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 2-26 Revision 27
IGLOO Low Power Flash FPGAs Summary of I/O Timing Characteristics – Default I/O Software Settings Table 2-29 • Summary of AC Measuring Points Standard Measuring Trip Point (Vtrip) 3.3 V LVTTL / 3.3 V LVCMOS 1.4 V 3.3 V VCMOS Wide Range 1.4 V 2.5 V LVCMOS 1.2 V 1.8 V LVCMOS 0.90 V 1.5 V LVCMOS 0.75 V 1.2 V LVCMOS 0.60 V 1.2 V LVCMOS Wide Range 0.60 V 3.3 V PCI 0.285 * VCCI (RR) 0.615 * VCCI (FF) 3.3 V PCI-X 0.285 * VCCI (RR) 0.615 * VCCI (FF) Table 2-30 • I/O AC Parameter Definitions Parameter Parameter Definition t Data to Pad delay through the Output Buffer DP t Pad to Data delay through the Input Buffer PY t Data to Output Buffer delay through the I/O interface DOUT t Enable to Output Buffer Tristate Control delay through the I/O interface EOUT t Input Buffer to Data delay through the I/O interface DIN t Enable to Pad delay through the Output Buffer—High to Z HZ t Enable to Pad delay through the Output Buffer—Z to High ZH t Enable to Pad delay through the Output Buffer—Low to Z LZ t Enable to Pad delay through the Output Buffer—Z to Low ZL t Enable to Pad delay through the Output Buffer with delayed enable—Z to High ZHS t Enable to Pad delay through the Output Buffer with delayed enable—Z to Low ZLS Revision 27 2-27
IGLOO DC and Switching Characteristics Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard) J Applicable to Advanced I/O Banks ault mA) Def1 (n ware Optio d (pF) or () d gth Softgth Loa sist I/O Standar Drive Stren Equivalent Drive Stren Slew Rate Capacitive External Re (ns)tDOUT t (ns)DP t (ns)DIN t (ns)PY t (ns)EOUT t (ns)ZL t (ns)ZH t (ns)LZ t (ns)HZ t (ns)ZLS t (ns)ZHS Units 3.3 V 12 mA 12 High 5 – 0.97 2.09 0.18 0.85 0.66 2.14 1.68 2.67 3.05 5.73 5.27 ns LVTTL / 3.3 V LVCMOS 3.3 V 100 µA 12 High 5 – 0.97 2.93 0.18 1.19 0.66 2.95 2.27 3.81 4.30 6.54 5.87 ns LVCMOS Wide Range2 2.5 V 12 mA 12 High 5 – 0.97 2.09 0.18 1.08 0.66 2.14 1.83 2.73 2.93 5.73 5.43 ns LVCMOS 1.8 V 12 mA 12 High 5 – 0.97 2.24 0.18 1.01 0.66 2.29 2.00 3.02 3.40 5.88 5.60 ns LVCMOS 1.5 V 12 mA 12 High 5 – 0.97 2.50 0.18 1.17 0.66 2.56 2.27 3.21 3.48 6.15 5.86 ns LVCMOS 3.3 V PCI Per PCI – High 10 25 2 0.97 2.32 0.18 0.74 0.66 2.37 1.78 2.67 3.05 5.96 5.38 ns spec 3.3 V Per PCI- – High 10 25 2 0.97 2.32 0.19 0.70 0.66 2.37 1.78 2.67 3.05 5.96 5.38 ns PCI-X X spec LVDS 24 mA – High – – 0.97 1.74 0.19 1.35 – – – – – – – ns LVPECL 24 mA – High – – 0.97 1.68 0.19 1.16 – – – – – – – ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure2-12 on page2-79 for connectivity. This resistor is not required during normal operation. 4. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-28 Revision 27
IGLOO Low Power Flash FPGAs Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard) J Applicable to Standard Plus I/O Banks ault )mA Def1 n( ware Optio d (pF) or () d gth Softgth Loa sist I/O Standar Drive Stren Equivalent Drive Stren Slew Rate Capacitive External Re t (ns)DOUT t (ns)DP t (ns)DIN t (ns)PY t (ns)EOUT t (ns)ZL t (ns)ZH t (ns)LZ t (ns)HZ t (ns)ZLS t (ns)ZHS Units 3.3 V 12 mA 12 High 5 – 0.97 1.75 0.18 0.85 0.66 1.79 1.40 2.36 2.79 5.38 4.99 ns LVTTL / 3.3 V LVCMOS 3.3 V 100 µA 12 High 5 – 0.97 2.45 0.18 1.20 0.66 2.47 1.92 3.33 3.90 6.06 5.51 ns LVCMOS Wide Range2 2.5 V 12 mA 12 High 5 – 0.97 1.75 0.18 1.08 0.66 1.79 1.52 2.38 2.70 5.39 5.11 ns LVCMOS 1.8 V 8 mA 8 High 5 – 0.97 1.97 0.18 1.01 0.66 2.02 1.76 2.46 2.66 5.61 5.36 ns LVCMOS 1.5 V 4 mA 4 High 5 – 0.97 2.25 0.18 1.18 0.66 2.30 2.00 2.53 2.68 5.89 5.59 ns LVCMOS 3.3 V PCI Per PCI – High 10 25 2 0.97 1.97 0.18 0.73 0.66 2.01 1.50 2.36 2.79 5.61 5.10 ns spec 3.3 V Per PCI- – High 10 25 2 0.97 1.97 0.19 0.70 0.66 2.01 1.50 2.36 2.79 5.61 5.10 ns PCI-X X spec Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure2-12 on page2-79 for connectivity. This resistor is not required during normal operation. 4. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-29
IGLOO DC and Switching Characteristics Table 2-33 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard) J Applicable to Standard I/O Banks ault mA) Def1 n( ware Optio d (pF) or () d gth) Softgth Loa sist I/O Standar Drive Stren Equivalent Drive Stren Slew Rate Capacitive External Re t (ns)DOUT t (ns)DP t (ns)DIN t (ns)PY t (ns)EOUT t (ns)ZL t (ns)ZH t (ns)LZ t (ns)HZ Units 3.3 V 8 mA 8 High 5 – 0.97 1.85 0.18 0.83 0.66 1.89 1.46 1.96 2.26 ns LVTTL / 3.3 V LVCMOS 3.3 V 100 µA 8 High 5 – 0.97 2.62 0.18 1.17 0.66 2.63 2.02 2.79 3.17 ns LVCMOS Wide Range2 2.5 V 8 mA 8 High 5 – 0.97 1.88 0.18 1.04 0.66 1.92 1.63 1.95 2.15 ns LVCMOS 1.8 V 4 mA 4 High 5 – 0.97 2.18 0.18 0.98 0.66 2.22 1.93 1.97 2.06 ns LVCMOS 1.5 V 2 mA 2 High 5 – 0.97 2.51 0.18 1.14 0.66 2.56 2.21 1.99 2.03 ns LVCMOS Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-30 Revision 27
IGLOO Low Power Flash FPGAs Table 2-34 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI (per standard) J Applicable to Advanced I/O Banks ult a Def1n ware Optio d (pF) or () d gth Softgth Loa sist I/O Standar Drive Stren Equivalent Drive Stren Slew Rate Capacitive External Re t (ns)DOUT t (ns)DP t (ns)DIN t (ns)PY t (ns)EOUT t (ns)ZL t (ns)ZH t (ns)LZ t (ns)HZ t (ns)ZLS t (ns)ZHS Units 3.3 V 12 mA 12 mA High 5 – 1.55 2.67 0.26 0.98 1.10 2.71 2.18 3.25 3.93 8.50 7.97 ns LVTTL / 3.3 V LVCMOS 3.3 V 100 µA 12 mA High 5 – 1.55 3.73 0.26 1.32 1.10 3.73 2.91 4.51 5.43 9.52 8.69 ns LVCMOS Wide Range2 2.5 V 12 mA 12 mA High 5 – 1.55 2.64 0.26 1.20 1.10 2.67 2.29 3.30 3.79 8.46 8.08 ns LVCMOS 1.8 V 12 mA 12 mA High 5 – 1.55 2.72 0.26 1.11 1.10 2.76 2.43 3.58 4.19 8.55 8.22 ns LVCMOS 1.5 V 12 mA 12 mA High 5 – 1.55 2.96 0.26 1.27 1.10 3.00 2.70 3.75 4.23 8.78 8.48 ns LVCMOS 1.2 V 2 mA 2 mA High 5 – 1.55 3.60 0.26 1.60 1.10 3.47 3.36 3.93 3.65 9.26 9.14 ns LVCMOS 1.2 V 100 µA 2 mA High 5 – 1.55 3.60 0.26 1.60 1.10 3.47 3.36 3.93 3.65 9.26 9.14 ns LVCMOS Wide Range3 3.3 V PCI Per PCI – High 10 252 1.55 2.91 0.26 0.86 1.10 2.95 2.29 3.25 3.93 8.74 8.08 ns spec 3.3 V Per PCI- – High 10 252 1.55 2.91 0.25 0.86 1.10 2.95 2.29 3.25 3.93 8.74 8.08 ns PCI-X X spec LVDS 24 mA – High – – 1.55 2.27 0.25 1.57 – – – – – – – ns LVPECL 24 mA – High – – 1.55 2.24 0.25 1.38 – – – – – – – ns Notes: 1. The minimum drive strength for any LVCMOS 1.2V or LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure2-12 on page2-79 for connectivity. This resistor is not required during normal operation. 5. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-31
IGLOO DC and Switching Characteristics Table 2-35 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI (per standard) J Applicable to Standard Plus I/O Banks ult mA) a Def1n ( ware Optio d (pF) or () d gth Softgth Loa sist I/O Standar Drive Stren Equivalent Drive Stren Slew Rate Capacitive External Re t (ns)DOUT t (ns)DP t (ns)DIN t (ns)PY t (ns)EOUT t (ns)ZL t (ns)ZH t (ns)LZ t (ns)HZ t (ns)ZLS t (ns)ZHS Units 3.3 V 12 mA 12 High 5 – 1.55 2.31 0.26 0.97 1.10 2.34 1.86 2.93 3.64 8.12 7.65 ns LVTTL / 3.3 V LVCMOS 3.3 V 100 µA 12 High 5 – 1.55 3.20 0.26 1.32 1.10 3.20 2.52 4.01 4.97 8.99 8.31 ns LVCMOS Wide Range2 2.5 V 12 mA 12 High 5 – 1.55 2.29 0.26 1.19 1.10 2.32 1.94 2.94 3.52 8.10 7.73 ns LVCMOS 1.8 V 8 mA 8 High 5 – 1.55 2.43 0.26 1.11 1.10 2.47 2.16 2.99 3.39 8.25 7.94 ns LVCMOS 1.5 V 4 mA 4 High 5 – 1.55 2.68 0.26 1.27 1.10 2.72 2.39 3.07 3.37 8.50 8.18 ns LVCMOS 1.2 V 2 mA 2 High 5 – 1.55 3.22 0.26 1.59 1.10 3.11 2.78 3.29 3.48 8.90 8.57 ns LVCMOS 1.2 V 100 µA 2 High 5 – 1.55 3.22 0.26 1.59 1.10 3.11 2.78 3.29 3.48 8.90 8.57 ns LVCMOS Wide Range3 3.3 V PCI Per PCI – High 10 252 1.55 2.53 0.26 0.84 1.10 2.57 1.98 2.93 3.64 8.35 7.76 ns spec 3.3 V Per – High 10 252 1.55 2.53 0.25 0.85 1.10 2.57 1.98 2.93 3.64 8.35 7.76 ns PCI-X PCI-X spec Notes: 1. The minimum drive strength for any LVCMOS 1.2V or LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure2-12 on page2-79 for connectivity. This resistor is not required during normal operation. 5. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-32 Revision 27
IGLOO Low Power Flash FPGAs Table 2-36 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: T = 70°C, Worst-Case V = 1.14 V, Worst-Case VCCI (per standard) J CC Applicable to Standard I/O Banks ault mA) Def1 n( ware Optio d (pF) or () d gth Softgth Loa sist I/O Standar Drive Stren Equivalent Drive Stren Slew Rate Capacitive External Re t (ns)DOUT t (ns)DP t (ns)DIN t (ns)PY t (ns)EOUT t (ns)ZL t (ns)ZH t (ns)LZ t (ns)HZ Units 3.3 V 8 mA 8 High 5 – 1.55 2.38 0.26 0.94 1.10 2.41 1.92 2.40 2.96 ns LVTTL / 3.3 V LVCMOS 3.3 V 100 µA 8 High 5 – 1.55 3.33 0.26 1.29 1.10 3.33 2.62 3.34 4.07 ns LVCMOS Wide Range3 2.5 V 8 mA 8 High 5 – 1.55 2.39 0.26 1.15 1.10 2.42 2.05 2.38 2.80 ns LVCMOS 1.8 V 4 mA 4 High 5 – 1.55 2.60 0.26 1.08 1.10 2.64 2.33 2.38 2.62 ns LVCMOS 1.5 V 2 mA 2 High 5 – 1.55 2.92 0.26 1.22 1.10 2.96 2.60 2.40 2.56 ns LVCMOS 1.2 V 1 mA 1 High 5 – 1.55 3.59 0.26 1.53 1.10 3.47 3.06 2.51 2.49 ns LVCMOS 1.2 V 100 µA 1 High 5 – 1.55 3.59 0.26 1.53 1.10 3.47 3.06 2.51 2.49 ns LVCMOS Wide Range3 Notes: 1. The minimum drive strength for any LVCMOS 1.2V or LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification 4. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-33
IGLOO DC and Switching Characteristics Detailed I/O DC Characteristics Table 2-37 • Input Capacitance Symbol Definition Conditions Min. Max. Units C Input capacitance VIN = 0, f = 1.0 MHz 8 pF IN C Input capacitance on the clock pin VIN = 0, f = 1.0 MHz 8 pF INCLK Table 2-38 • I/O Output Buffer Maximum Resistances1 Applicable to Advanced I/O Banks R R PULL-DOWN PULL-UP Standard Drive Strength ()2 ()3 3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300 4 mA 100 300 6 mA 50 150 8 mA 50 150 12 mA 25 75 16 mA 17 50 24 mA 11 33 3.3 V LVCMOS Wide Range 100 A Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 2.5 V LVCMOS 2 mA 100 200 4 mA 100 200 6 mA 50 100 8 mA 50 100 12 mA 25 50 16 mA 20 40 1.5 V LVCMOS 2 mA 200 224 4 mA 100 112 6 mA 67 75 8 mA 33 37 12 mA 33 37 1.2 V LVCMOS4 2 mA 158 164 1.2 V LVCMOS Wide Range4 100 A Same as regular 1.2 V LVCMOS Same as regular 1.2 V LVCMOS 3.3 V PCI/PCI-X Per PCI/PCI-X 25 75 specification Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx. 2. R = (VOLspec) / I (PULL-DOWN-MAX) OLspec 3. R = (VCCImax – VOHspec) / I (PULL-UP-MAX) OHspec 4. Applicable to IGLOO V2 Devices operating at VCCI VCC 2-34 Revision 27
IGLOO Low Power Flash FPGAs Table 2-39 • I/O Output Buffer Maximum Resistances1 Applicable to Standard Plus I/O Banks R R PULL-DOWN PULL-UP Standard Drive Strength ()2 ()3 3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300 4 mA 100 300 6 mA 50 150 8 mA 50 150 12 mA 25 75 16 mA 25 75 3.3 V LVCMOS Wide Range 100 A Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 2.5 V LVCMOS 2 mA 100 200 4 mA 100 200 6 mA 50 100 8 mA 50 100 12 mA 25 50 1.8 V LVCMOS 2 mA 200 225 4 mA 100 112 6 mA 50 56 8 mA 50 56 1.5 V LVCMOS 2 mA 200 224 4 mA 100 112 1.2 V LVCMOS4 2 mA 158 164 1.2 V LVCMOS Wide Range4 100 A Same as regular 1.2 V LVCMOS Same as regular 1.2 V LVCMOS 3.3 V PCI/PCI-X Per PCI/PCI-X 25 75 specification Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx. 2. R = (VOLspec) / I (PULL-DOWN-MAX) OLspec 3. R = (VCCImax – VOHspec) / I (PULL-UP-MAX) OHspec 4. Applicable to IGLOO V2 Devices operating at VCCI VCC Revision 27 2-35
IGLOO DC and Switching Characteristics Table 2-40 • I/O Output Buffer Maximum Resistances1 Applicable to Standard I/O Banks R R PULL-DOWN PULL-UP Standard Drive Strength ()2 ()3 3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300 4 mA 100 300 6 mA 50 150 8 mA 50 150 3.3 V LVCMOS Wide Range 100 A Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 2.5 V LVCMOS 2 mA 100 200 4 mA 100 200 6 mA 50 100 8 mA 50 100 1.8 V LVCMOS 2 mA 200 225 4 mA 100 112 1.5 V LVCMOS 2 mA 200 224 1.2 V LVCMOS 1 mA 158 164 1.2 V LVCMOS Wide Range4 100 A Same as regular 1.2 V LVCMOS Same as regular 1.2 V LVCMOS Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx. 2. R = (VOLspec) / I (PULL-DOWN-MAX) OLspec 3. R = (VCCImax – VOHspec) / I (PULL-UP-MAX) OHspec Table 2-41 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values R 1 R 2 (WEAK PULL-UP) (WEAK PULL-DOWN) () () VCCI Min. Max. Min. Max. 3.3 V 10 K 45 K 10 K 45 K 3.3 V Wide Range I/Os 10 K 45 K 10 K 45 K 2.5 V 11 K 55 K 12 K 74 K 1.8 V 18 K 70 K 17 K 110 K 1.5 V 19 K 90 K 19 K 140 K 1.2 V 25 K 110 K 25 K 150 K 1.2 V Wide Range I/Os 19 K 110 K 19 K 150 K Notes: 1. R = (VCCImax – VOHspec) / I (WEAK PULL-UP-MAX) (WEAK PULL-UP-MIN) 2. R = (VOLspec) / I (WEAK PULLDOWN-MAX) (WEAK PULLDOWN-MIN) 2-36 Revision 27
IGLOO Low Power Flash FPGAs Table 2-42 • I/O Short Currents IOSH/IOSL Applicable to Advanced I/O Banks Drive Strength IOSL (mA)* IOSH (mA)* 3.3 V LVTTL / 3.3 V LVCMOS 2 mA 25 27 4 mA 25 27 6 mA 51 54 8 mA 51 54 12 mA 103 109 16 mA 132 127 24 mA 268 181 3.3 V LVCMOS Wide Range 100 A Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 2.5 V LVCMOS 2 mA 16 18 4 mA 16 18 6 mA 32 37 8 mA 32 37 12 mA 65 74 16 mA 83 87 24 mA 169 124 1.8 V LVCMOS 2 mA 9 11 4 mA 17 22 6 mA 35 44 8 mA 45 51 12 mA 91 74 16 mA 91 74 1.5 V LVCMOS 2 mA 13 16 4 mA 25 33 6 mA 32 39 8 mA 66 55 12 mA 66 55 1.2 V LVCMOS 2 mA 20 26 1.2 V LVCMOS Wide Range 100 A 20 26 3.3 V PCI/PCI-X Per PCI/PCI-X 103 109 specification Note: *T = 100°C J Revision 27 2-37
IGLOO DC and Switching Characteristics Table 2-43 • I/O Short Currents IOSH/IOSL Applicable to Standard Plus I/O Banks Drive Strength IOSL (mA)* IOSH (mA)* 3.3 V LVTTL / 3.3 V LVCMOS 2 mA 25 27 4 mA 25 27 6 mA 51 54 8 mA 51 54 12 mA 103 109 16 mA 103 109 3.3 V LVCMOS Wide Range 100 A Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 2.5 V LVCMOS 2 mA 16 18 4 mA 16 18 6 mA 32 37 8 mA 32 37 12 mA 65 74 1.8 V LVCMOS 2 mA 9 11 4 mA 17 22 6 mA 35 44 8 mA 35 44 1.5 V LVCMOS 2 mA 13 16 4 mA 25 33 1.2 V LVCMOS 2 mA 20 26 1.2 V LVCMOS Wide Range 100 A 20 26 3.3 V PCI/PCI-X Per PCI/PCI-X 103 109 specification Note: *T = 100°C J 2-38 Revision 27
IGLOO Low Power Flash FPGAs Table 2-44 • I/O Short Currents IOSH/IOSL Applicable to Standard I/O Banks Drive Strength IOSL (mA)* IOSH (mA)* 3.3 V LVTTL / 3.3 V LVCMOS 2 mA 25 27 4 mA 25 27 6 mA 51 54 8 mA 51 54 3.3 V LVCMOS Wide Range 100 A Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 2.5 V LVCMOS 2 mA 16 18 4 mA 16 18 6 mA 32 37 8 mA 32 37 1.8 V LVCMOS 2 mA 9 11 4 mA 17 22 1.5 V LVCMOS 2 mA 13 16 1.2 V LVCMOS 1 mA 20 26 1.2 V LVCMOS Wide Range 100 A 20 26 Note: *T = 100°C J The length of time an I/O can withstand I /I events depends on the junction temperature. The reliability data OSH OSL below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis. For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions. Table 2-45 • Duration of Short Circuit Event before Failure Temperature Time before Failure –40°C > 20 years –20°C > 20 years 0°C > 20 years 25°C > 20 years 70°C 5 years 85°C 2 years 100°C 6 months Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1 Input Buffer Input Rise/Fall Time (min.) Input Rise/Fall Time (max.) Reliability LVTTL/LVCMOS No requirement 10 ns * 20 years (100°C) LVDS/B-LVDS/M-LVDS/ No requirement 10 ns * 10 years (100°C) LVPECL Note: The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals. Revision 27 2-39
IGLOO DC and Switching Characteristics Single-Ended I/O Characteristics 3.3 V LVTTL / 3.3 V LVCMOS Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3V applications. It uses an LVTTL input buffer and push-pull output buffer. Furthermore, all LVCMOS 3.3 V software macros comply with LVCMOS 3.3 V wide range as specified in the JESD8a specification. Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 103 109 10 10 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 132 127 10 10 24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 268 181 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table 2-48 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH V VOH IOL IOH IOSL IOSH IIL1 IIH2 OL Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 103 109 10 10 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 103 109 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. 2-40 Revision 27
IGLOO Low Power Flash FPGAs Table 2-49 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH V VOH IOL IOH IOSL IOSH IIL1 IIH2 OL Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. R to VCCI for t / t / t LZ ZL ZLS R = 1 k Test Point R to GND for t / t / t HZ ZH ZHS Test Point Datapath 5 pF Enable Path 5 pF for t / t / t / t ZH ZHS ZL ZLS 5 pF for t / t HZ LZ Figure 2-7 • AC Loading Table 2-50 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 0 3.3 1.4 5 Note: *Measuring point = Vtrip. See Table2-29 on page2-28 for a complete table of trip points. Revision 27 2-41
IGLOO DC and Switching Characteristics Timing Characteristics Applies to 1.5 V DC Core Voltage Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 4.47 0.18 0.85 0.66 4.56 3.89 2.24 2.19 8.15 7.48 ns 4 mA Std. 0.97 4.47 0.18 0.85 0.66 4.56 3.89 2.24 2.19 8.15 7.48 ns 6 mA Std. 0.97 3.74 0.18 0.85 0.66 3.82 3.37 2.49 2.63 7.42 6.96 ns 8 mA Std. 0.97 3.74 0.18 0.85 0.66 3.82 3.37 2.49 2.63 7.42 6.96 ns 12 mA Std. 0.97 3.23 0.18 0.85 0.66 3.30 2.98 2.66 2.91 6.89 6.57 ns 16 mA Std. 0.97 3.08 0.18 0.85 0.66 3.14 2.89 2.70 2.99 6.74 6.48 ns 24 mA Std. 0.97 3.00 0.18 0.85 0.66 3.06 2.91 2.74 3.27 6.66 6.50 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 2.73 0.18 0.85 0.66 2.79 2.22 2.25 2.32 6.38 5.82 ns 4 mA Std. 0.97 2.73 0.18 0.85 0.66 2.79 2.22 2.25 2.32 6.38 5.82 ns 6 mA Std. 0.97 2.32 0.18 0.85 0.66 2.37 1.85 2.50 2.76 5.96 5.45 ns 8 mA Std. 0.97 2.32 0.18 0.85 0.66 2.37 1.85 2.50 2.76 5.96 5.45 ns 12 mA Std. 0.97 2.09 0.18 0.85 0.66 2.14 1.68 2.67 3.05 5.73 5.27 ns 16 mA Std. 0.97 2.05 0.18 0.85 0.66 2.10 1.64 2.70 3.12 5.69 5.24 ns 24 mA Std. 0.97 2.07 0.18 0.85 0.66 2.12 1.60 2.75 3.41 5.71 5.20 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 3.94 0.18 0.85 0.66 4.02 3.46 1.98 2.03 7.62 7.05 ns 4 mA Std. 0.97 3.94 0.18 0.85 0.66 4.02 3.46 1.98 2.03 7.62 7.05 ns 6 mA Std. 0.97 3.24 0.18 0.85 0.66 3.31 2.99 2.21 2.42 6.90 6.59 ns 8 mA Std. 0.97 3.24 0.18 0.85 0.66 3.31 2.99 2.21 2.42 6.90 6.59 ns 12 mA Std. 0.97 2.76 0.18 0.85 0.66 2.82 2.63 2.36 2.68 6.42 6.22 ns 16 mA Std. 0.97 2.76 0.18 0.85 0.66 2.82 2.63 2.36 2.68 6.42 6.22 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-42 Revision 27
IGLOO Low Power Flash FPGAs Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 2.32 0.18 0.85 0.66 2.37 1.90 1.98 2.13 5.96 5.49 ns 4 mA Std. 0.97 2.32 0.18 0.85 0.66 2.37 1.90 1.98 2.13 5.96 5.49 ns 6 mA Std. 0.97 1.94 0.18 0.85 0.66 1.99 1.57 2.20 2.53 5.58 5.16 ns 8 mA Std. 0.97 1.94 0.18 0.85 0.66 1.99 1.57 2.20 2.53 5.58 5.16 ns 12 mA Std. 0.97 1.75 0.18 0.85 0.66 1.79 1.40 2.36 2.79 5.38 4.99 ns 16 mA Std. 0.97 1.75 0.18 0.85 0.66 1.79 1.40 2.36 2.79 5.38 4.99 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.97 3.80 0.18 0.83 0.66 3.88 3.41 1.74 1.78 ns 4 mA Std. 0.97 3.80 0.18 0.83 0.66 3.88 3.41 1.74 1.78 ns 6 mA Std. 0.97 3.15 0.18 0.83 0.66 3.21 2.94 1.96 2.17 ns 8 mA Std. 0.97 3.15 0.18 0.83 0.66 3.21 2.94 1.96 2.17 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-56 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.97 2.19 0.18 0.83 0.66 2.24 1.79 1.74 1.87 ns 4 mA Std. 0.97 2.19 0.18 0.83 0.66 2.24 1.79 1.74 1.87 ns 6 mA Std. 0.97 1.85 0.18 0.83 0.66 1.89 1.46 1.96 2.26 ns 8 mA Std. 0.97 1.85 0.18 0.83 0.66 1.89 1.46 1.96 2.26 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-43
IGLOO DC and Switching Characteristics Applies to 1.2 V DC Core Voltage Table 2-57 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 5.12 0.26 0.98 1.10 5.20 4.46 2.81 3.02 10.99 10.25 ns 4 mA Std. 1.55 5.12 0.26 0.98 1.10 5.20 4.46 2.81 3.02 10.99 10.25 ns 6 mA Std. 1.55 4.38 0.26 0.98 1.10 4.45 3.93 3.07 3.48 10.23 9.72 ns 8 mA Std. 1.55 4.38 0.26 0.98 1.10 4.45 3.93 3.07 3.48 10.23 9.72 ns 12 mA Std. 1.55 3.85 0.26 0.98 1.10 3.91 3.53 3.24 3.77 9.69 9.32 ns 16 mA Std. 1.55 3.69 0.26 0.98 1.10 3.75 3.44 3.28 3.84 9.54 9.23 ns 24 mA Std. 1.55 3.61 0.26 0.98 1.10 3.67 3.46 3.33 4.13 9.45 9.24 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-58 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 3.33 0.26 0.98 1.10 3.38 2.75 2.82 3.18 9.17 8.54 ns 4 mA Std. 1.55 3.33 0.26 0.98 1.10 3.38 2.75 2.82 3.18 9.17 8.54 ns 6 mA Std. 1.55 2.91 0.26 0.98 1.10 2.95 2.37 3.07 3.64 8.73 8.15 ns 8 mA Std. 1.55 2.91 0.26 0.98 1.10 2.95 2.37 3.07 3.64 8.73 8.15 ns 12 mA Std. 1.55 2.67 0.26 0.98 1.10 2.71 2.18 3.25 3.93 8.50 7.97 ns 16 mA Std. 1.55 2.63 0.26 0.98 1.10 2.67 2.14 3.28 4.01 8.45 7.93 ns 24 mA Std. 1.55 2.65 0.26 0.98 1.10 2.69 2.10 3.33 4.31 8.47 7.89 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-59 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 4.56 0.26 0.97 1.10 4.63 3.98 2.54 2.83 10.42 9.76 ns 4 mA Std. 1.55 4.56 0.26 0.97 1.10 4.63 3.98 2.54 2.83 10.42 9.76 ns 6 mA Std. 1.55 3.84 0.26 0.97 1.10 3.90 3.50 2.77 3.24 9.69 9.29 ns 8 mA Std. 1.55 3.84 0.26 0.97 1.10 3.90 3.50 2.77 3.24 9.69 9.29 ns 12 mA Std. 1.55 3.35 0.26 0.97 1.10 3.40 3.13 2.93 3.51 9.19 8.91 ns 16 mA Std. 1.55 3.35 0.26 0.97 1.10 3.40 3.13 2.93 3.51 9.19 8.91 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. 2-44 Revision 27
IGLOO Low Power Flash FPGAs Table 2-60 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 2.89 0.26 0.97 1.10 2.93 2.38 2.53 2.96 8.72 8.17 ns 4 mA Std. 1.55 2.89 0.26 0.97 1.10 2.93 2.38 2.53 2.96 8.72 8.17 ns 6 mA Std. 1.55 2.50 0.26 0.97 1.10 2.54 2.04 2.77 3.37 8.33 7.82 ns 8 mA Std. 1.55 2.50 0.26 0.97 1.10 2.54 2.04 2.77 3.37 8.33 7.82 ns 12 mA Std. 1.55 2.31 0.26 0.97 1.10 2.34 1.86 2.93 3.64 8.12 7.65 ns 16 mA Std. 1.55 2.31 0.26 0.97 1.10 2.34 1.86 2.93 3.64 8.12 7.65 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-61 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 1.55 4.39 0.26 0.94 1.10 4.46 3.91 2.17 2.44 ns 4 mA Std. 1.55 4.39 0.26 0.94 1.10 4.46 3.91 2.17 2.44 ns 6 mA Std. 1.55 3.72 0.26 0.94 1.10 3.78 3.43 2.40 2.85 ns 8 mA Std. 1.55 3.72 0.26 0.94 1.10 3.78 3.43 2.40 2.85 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-62 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 1.55 2.74 0.26 0.94 1.10 2.78 2.26 2.17 2.55 ns 4 mA Std. 1.55 2.74 0.26 0.94 1.10 2.78 2.26 2.17 2.55 ns 6 mA Std. 1.55 2.38 0.26 0.94 1.10 2.41 1.92 2.40 2.96 ns 8 mA Std. 1.55 2.38 0.26 0.94 1.10 2.41 1.92 2.40 2.96 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Revision 27 2-45
IGLOO DC and Switching Characteristics 3.3 V LVCMOS Wide Range Table 2-63 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Advanced I/O Banks 3.3 V LVCMOS Wide Range VIL VIH VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Equivalent Software Default Drive Drive Strength Min. Min. Max. Max. Min. Max. Max. Strength Option1 V Max. V V V V V µA µA mA4 mA4 µA5 µA5 100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 12 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10 100 µA 16 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 132 127 10 10 100 µA 24 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 268 181 10 10 Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 100°C junction temperature and maximum voltage. 5. Currents are measured at 85°C junction temperature. 6. Software default selection highlighted in gray. 2-46 Revision 27
IGLOO Low Power Flash FPGAs Table 2-64 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Standard Plus I/O Banks 3.3 V LVCMOS Wide Range VIL VIH VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Equivalent Software Default Drive Drive Strength Min. Max. Min. Max. Max. Min. Max. Max. Strength Option1 V V V V V V µA µA mA4 mA4 µA5 µA5 100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 12 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10 100 µA 16 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10 Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 100°C junction temperature and maximum voltage. 5. Currents are measured at 85°C junction temperature. 6. Software default selection highlighted in gray. Revision 27 2-47
IGLOO DC and Switching Characteristics Table 2-65 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Standard I/O Banks 3.3 V LVCMOS Wide Range VIL VIH VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Equivalent Software Default Drive Drive Strength Min. Max. Min. Max. Max. Min. Max. Max. Strength Option1 V V V V V V µA µA mA4 mA4 µA5 µA5 100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 100°C junction temperature and maximum voltage. 5. Currents are measured at 85°C junction temperature. 6. Software default selection highlighted in gray. Table 2-66 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 0 3.3 1.4 5 Note: *Measuring point = Vtrip. See Table2-29 on page2-28 for a complete table of trip points. 2-48 Revision 27
IGLOO Low Power Flash FPGAs Timing Characteristics Applies to 1.5 V DC Core Voltage Table 2-67 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V J Applicable to Advanced Banks Equivalent Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 0.97 6.61 0.18 1.19 0.66 6.63 5.63 3.15 2.98 10.22 9.23 ns 100 µA 4 mA Std. 0.97 6.61 0.18 1.19 0.66 6.63 5.63 3.15 2.98 10.22 9.23 ns 100 µA 6 mA Std. 0.97 5.49 0.18 1.19 0.66 5.51 4.84 3.54 3.66 9.10 8.44 ns 100 µA 8 mA Std. 0.97 5.49 0.18 1.19 0.66 5.51 4.84 3.54 3.66 9.10 8.44 ns 100 µA 12 mA Std. 0.97 4.69 0.18 1.19 0.66 4.71 4.25 3.80 4.10 8.31 7.85 ns 100 µA 16 mA Std. 0.97 4.46 0.18 1.19 0.66 4.48 4.11 3.86 4.21 8.07 7.71 ns 100 µA 24 mA Std. 0.97 4.34 0.18 1.19 0.66 4.36 4.14 3.93 4.64 7.95 7.74 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-68 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V J Applicable to Advanced Banks Equivalent Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 0.97 3.92 0.18 1.19 0.66 3.94 3.10 3.16 3.17 7.54 6.70 ns 100 µA 4 mA Std. 0.97 3.92 0.18 1.19 0.66 3.94 3.10 3.16 3.17 7.54 6.70 ns 100 µA 6 mA Std. 0.97 3.28 0.18 1.19 0.66 3.30 2.54 3.54 3.86 6.90 6.14 ns 100 µA 8 mA Std. 0.97 3.28 0.18 1.19 0.66 3.30 2.54 3.54 3.86 6.90 6.14 ns 100 µA 12 mA Std. 0.97 2.93 0.18 1.19 0.66 2.95 2.27 3.81 4.30 6.54 5.87 ns 100 µA 16 mA Std. 0.97 2.87 0.18 1.19 0.66 2.89 2.22 3.86 4.41 6.49 5.82 ns 100 µA 24 mA Std. 0.97 2.90 0.18 1.19 0.66 2.92 2.16 3.94 4.86 6.51 5.75 ns Notes: 1. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2. Software default selection highlighted in gray. 3. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. Revision 27 2-49
IGLOO DC and Switching Characteristics Table 2-69 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V J Applicable to Standard Plus Banks Equivalent Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 0.97 5.84 0.18 1.20 0.66 5.86 5.04 2.74 2.71 9.46 8.64 ns 100 µA 4 mA Std. 0.97 5.84 0.18 1.20 0.66 5.86 5.04 2.74 2.71 9.46 8.64 ns 100 µA 6 mA Std. 0.97 4.76 0.18 1.20 0.66 4.78 4.33 3.09 3.33 8.37 7.93 ns 100 µA 8 mA Std. 0.97 4.76 0.18 1.20 0.66 4.78 4.33 3.09 3.33 8.37 7.93 ns 100 µA 12 mA Std. 0.97 4.02 0.18 1.20 0.66 4.04 3.78 3.33 3.73 7.64 7.37 ns 100 µA 16 mA Std. 0.97 4.02 0.18 1.20 0.66 4.04 3.78 3.33 3.73 7.64 7.37 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-70 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V J Applicable to Standard Plus Banks Equivalent Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 0.97 3.33 0.18 1.20 0.66 3.35 2.68 2.73 2.88 6.94 6.27 ns 100 µA 4 mA Std. 0.97 3.33 0.18 1.20 0.66 3.35 2.68 2.73 2.88 6.94 6.27 ns 100 µA 6 mA Std. 0.97 2.75 0.18 1.20 0.66 2.77 2.17 3.08 3.50 6.36 5.77 ns 100 µA 8 mA Std. 0.97 2.75 0.18 1.20 0.66 2.77 2.17 3.08 3.50 6.36 5.77 ns 100 µA 12 mA Std. 0.97 2.45 0.18 1.20 0.66 2.47 1.92 3.33 3.90 6.06 5.51 ns 100 µA 16 mA Std. 0.97 2.45 0.18 1.20 0.66 2.47 1.92 3.33 3.90 6.06 5.51 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 3. Software default selection highlighted in gray. 2-50 Revision 27
IGLOO Low Power Flash FPGAs Table 2-71 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V J Applicable to Standard Banks Equivalent Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 100 µA 2 mA Std. 0.97 5.64 0.18 1.17 0.66 5.65 4.98 2.45 2.42 ns 100 µA 4 mA Std. 0.97 5.64 0.18 1.17 0.66 5.65 4.98 2.45 2.42 ns 100 µA 6 mA Std. 0.97 4.63 0.18 1.17 0.66 4.64 4.26 2.80 3.02 ns 100 µA 8 mA Std. 0.97 4.63 0.18 1.17 0.66 4.64 4.26 2.80 3.02 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-72 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V J Applicable to Standard Banks Equivalent Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 100 µA 2 mA 0.97 3.16 0.18 1.17 0.66 3.17 2.53 2.45 2.56 0.97 ns 100 µA 4 mA 0.97 3.16 0.18 1.17 0.66 3.17 2.53 2.45 2.56 0.97 ns 100 µA 6 mA 0.97 2.62 0.18 1.17 0.66 2.63 2.02 2.79 3.17 0.97 ns 100 µA 8 mA 0.97 2.62 0.18 1.17 0.66 2.63 2.02 2.79 3.17 0.97 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 3. Software default selection highlighted in gray. Revision 27 2-51
IGLOO DC and Switching Characteristics Applies to 1.2 V DC Core Voltage Table 2-73 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V J Applicable to Advanced Banks Equivalent Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 1.55 7.52 0.26 1.32 1.10 7.52 6.38 3.84 4.02 13.31 12.16 ns 100 µA 4 mA Std. 1.55 7.52 0.26 1.32 1.10 7.52 6.38 3.84 4.02 13.31 12.16 ns 100 µA 6 mA Std. 1.55 6.37 0.26 1.32 1.10 6.37 5.57 4.23 4.73 12.16 11.35 ns 100 µA 8 mA Std. 1.55 6.37 0.26 1.32 1.10 6.37 5.57 4.23 4.73 12.16 11.35 ns 100 µA 12 mA Std. 1.55 5.55 0.26 1.32 1.10 5.55 4.96 4.50 5.18 11.34 10.75 ns 100 µA 16 mA Std. 1.55 5.32 0.26 1.32 1.10 5.32 4.82 4.56 5.29 11.10 10.61 ns 100 µA 24 mA Std. 1.55 5.19 0.26 1.32 1.10 5.19 4.85 4.63 5.74 10.98 10.63 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-74 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 J Applicable to Advanced Banks Equivalent Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 1.55 4.75 0.26 1.32 1.10 4.75 3.77 3.84 4.27 10.54 9.56 ns 100 µA 4 mA Std. 1.55 4.75 0.26 1.32 1.10 4.75 3.77 3.84 4.27 10.54 9.56 ns 100 µA 6 mA Std. 1.55 4.10 0.26 1.32 1.10 4.10 3.19 4.24 4.98 9.88 8.98 ns 100 µA 8 mA Std. 1.55 4.10 0.26 1.32 1.10 4.10 3.19 4.24 4.98 9.88 8.98 ns 100 µA 12 mA Std. 1.55 3.73 0.26 1.32 1.10 3.73 2.91 4.51 5.43 9.52 8.69 ns 100 µA 16 mA Std. 1.55 3.67 0.26 1.32 1.10 3.67 2.85 4.57 5.55 9.46 8.64 ns 100 µA 24 mA Std. 1.55 3.70 0.26 1.32 1.10 3.70 2.79 4.65 6.01 9.49 8.58 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 3. Software default selection highlighted in gray. 2-52 Revision 27
IGLOO Low Power Flash FPGAs Table 2-75 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 J Applicable to Standard Plus Banks Equivalent Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 1.55 6.69 0.26 1.32 1.10 6.69 5.73 3.41 3.72 12.48 11.52 ns 100 µA 4 mA Std. 1.55 6.69 0.26 1.32 1.10 6.69 5.73 3.41 3.72 12.48 11.52 ns 100 µA 6 mA Std. 1.55 5.58 0.26 1.32 1.10 5.58 5.01 3.77 4.35 11.36 10.79 ns 100 µA 8 mA Std. 1.55 5.58 0.26 1.32 1.10 5.58 5.01 3.77 4.35 11.36 10.79 ns 100 µA 12 mA Std. 1.55 4.82 0.26 1.32 1.10 4.82 4.44 4.02 4.76 10.61 10.23 ns 100 µA 16 mA Std. 1.55 4.82 0.26 1.32 1.10 4.82 4.44 4.02 4.76 10.61 10.23 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-76 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 J Applicable to Standard Plus Banks Equivalent Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 1.55 4.10 0.26 1.32 1.10 4.10 3.30 3.40 3.92 9.89 9.09 ns 100 µA 4 mA Std. 1.55 4.10 0.26 1.32 1.10 4.10 3.30 3.40 3.92 9.89 9.09 ns 100 µA 6 mA Std. 1.55 3.51 0.26 1.32 1.10 3.51 2.79 3.76 4.56 9.30 8.57 ns 100 µA 8 mA Std. 1.55 3.51 0.26 1.32 1.10 3.51 2.79 3.76 4.56 9.30 8.57 ns 100 µA 12 mA Std. 1.55 3.20 0.26 1.32 1.10 3.20 2.52 4.01 4.97 8.99 8.31 ns 100 µA 16 mA Std. 1.55 3.20 0.26 1.32 1.10 3.20 2.52 4.01 4.97 8.99 8.31 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 3. Software default selection highlighted in gray. Revision 27 2-53
IGLOO DC and Switching Characteristics Table 2-77 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case V = 1.14 V, Worst-Case VCCI = 2.7 J CC Applicable to Standard Banks Equivalent Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 100 µA 2 mA Std. 1.55 6.44 0.26 1.29 1.10 6.44 5.64 2.99 3.28 ns 100 µA 4 mA Std. 1.55 6.44 0.26 1.29 1.10 6.44 5.64 2.99 3.28 ns 100 µA 6 mA Std. 1.55 5.41 0.26 1.29 1.10 5.41 4.91 3.35 3.89 ns 100 µA 8 mA Std. 1.55 5.41 0.26 1.29 1.10 5.41 4.91 3.35 3.89 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-78 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 J Applicable to Standard Banks Equivalent Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 100 µA 2 mA Std. 1.55 3.89 0.26 1.29 1.10 3.89 3.13 2.99 3.45 ns 100 µA 4 mA Std. 1.55 3.89 0.26 1.29 1.10 3.89 3.13 2.99 3.45 ns 100 µA 6 mA Std. 1.55 3.33 0.26 1.29 1.10 3.33 2.62 3.34 4.07 ns 100 µA 8 mA Std. 1.55 3.33 0.26 1.29 1.10 3.33 2.62 3.34 4.07 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ± 100µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 3. Software default selection highlighted in gray. 2-54 Revision 27
IGLOO Low Power Flash FPGAs 2.5 V LVCMOS Low-Voltage CMOS for 2.5V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5V applications. Table 2-79 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 16 18 10 10 4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 16 18 10 10 6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 32 37 10 10 8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 32 37 10 10 12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 65 74 10 10 16 mA –0.3 0.7 1.7 2.7 0.7 1.7 16 16 83 87 10 10 24 mA –0.3 0.7 1.7 2.7 0.7 1.7 24 24 169 124 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table 2-80 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 16 18 10 10 4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 16 18 10 10 6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 32 37 10 10 8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 32 37 10 10 12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 65 74 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Revision 27 2-55
IGLOO DC and Switching Characteristics Table 2-81 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.7 1.7 3.6 0.7 1.7 2 2 16 18 10 10 4 mA –0.3 0.7 1.7 3.6 0.7 1.7 4 4 16 18 10 10 6 mA –0.3 0.7 1.7 3.6 0.7 1.7 6 6 32 37 10 10 8 mA –0.3 0.7 1.7 3.6 0.7 1.7 8 8 32 37 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. R to VCCI for t / t / t LZ ZL ZLS R = 1 k Test Point R to GND for t / t / t HZ ZH ZHS Test Point Datapath 5 pF Enable Path 5 pF for t / t / t / t ZH ZHS ZL ZLS 5 pF for t / t HZ LZ Figure 2-8 • AC Loading Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 0 2.5 1.2 5 Note: *Measuring point = Vtrip. See Table2-29 on page2-28 for a complete table of trip points. 2-56 Revision 27
IGLOO Low Power Flash FPGAs Timing Characteristics Applies to 1.5 V DC Core Voltage Table 2-83 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 4.96 0.18 1.08 0.66 5.06 4.59 2.26 2.00 8.66 8.19 ns 4 mA Std. 0.97 4.96 0.18 1.08 0.66 5.06 4.59 2.26 2.00 8.66 8.19 ns 6 mA Std. 0.97 4.15 0.18 1.08 0.66 4.24 3.94 2.54 2.51 7.83 7.53 ns 8 mA Std. 0.97 4.15 0.18 1.08 0.66 4.24 3.94 2.54 2.51 7.83 7.53 ns 12 mA Std. 0.97 3.57 0.18 1.08 0.66 3.65 3.47 2.73 2.84 7.24 7.06 ns 16 mA Std. 0.97 3.39 0.18 1.08 0.66 3.46 3.36 2.78 2.92 7.06 6.95 ns 24 mA Std. 0.97 3.38 0.18 1.08 0.66 3.38 3.38 2.83 3.25 6.98 6.98 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-84 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 2.77 0.18 1.08 0.66 2.83 2.60 2.26 2.08 6.42 6.19 ns 4 mA Std. 0.97 2.77 0.18 1.08 0.66 2.83 2.60 2.26 2.08 6.42 6.19 ns 6 mA Std. 0.97 2.34 0.18 1.08 0.66 2.39 2.08 2.54 2.60 5.99 5.68 ns 8 mA Std. 0.97 2.34 0.18 1.08 0.66 2.39 2.08 2.54 2.60 5.99 5.68 ns 12 mA Std. 0.97 2.09 0.18 1.08 0.66 2.14 1.83 2.73 2.93 5.73 5.43 ns 16 mA Std. 0.97 2.05 0.18 1.08 0.66 2.09 1.78 2.78 3.02 5.69 5.38 ns 24 mA Std. 0.97 2.06 0.18 1.08 0.66 2.10 1.72 2.83 3.35 5.70 5.32 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-85 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 4.42 0.18 1.08 0.66 4.51 4.10 1.96 1.85 8.10 7.69 ns 4 mA Std. 0.97 4.42 0.18 1.08 0.66 4.51 4.10 1.96 1.85 8.10 7.69 ns 6 mA Std. 0.97 3.62 0.18 1.08 0.66 3.70 3.52 2.21 2.32 7.29 7.11 ns 8 mA Std. 0.97 3.62 0.18 1.08 0.66 3.70 3.52 2.21 2.32 7.29 7.11 ns 12 mA Std. 0.97 3.09 0.18 1.08 0.66 3.15 3.09 2.39 2.61 6.74 6.68 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-57
IGLOO DC and Switching Characteristics Table 2-86 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 2.36 0.18 1.08 0.66 2.41 2.21 1.96 1.92 6.01 5.81 ns 4 mA Std. 0.97 2.36 0.18 1.08 0.66 2.41 2.21 1.96 1.92 6.01 5.81 ns 6 mA Std. 0.97 1.97 0.18 1.08 0.66 2.01 1.75 2.21 2.40 5.61 5.34 ns 8 mA Std. 0.97 1.97 0.18 1.08 0.66 2.01 1.75 2.21 2.40 5.61 5.34 ns 12 mA Std. 0.97 1.75 0.18 1.08 0.66 1.79 1.52 2.38 2.70 5.39 5.11 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-87 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.97 4.27 0.18 1.04 0.66 4.36 4.06 1.71 1.62 ns 4 mA Std. 0.97 4.27 0.18 1.04 0.66 4.36 4.06 1.71 1.62 ns 6 mA Std. 0.97 3.54 0.18 1.04 0.66 3.61 3.48 1.95 2.08 ns 8 mA Std. 0.97 3.54 0.18 1.04 0.66 3.61 3.48 1.95 2.08 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-88 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.97 2.24 0.18 1.04 0.66 2.29 2.09 1.71 1.68 ns 4 mA Std. 0.97 2.24 0.18 1.04 0.66 2.29 2.09 1.71 1.68 ns 6 mA Std. 0.97 1.88 0.18 1.04 0.66 1.92 1.63 1.95 2.15 ns 8 mA Std. 0.97 1.88 0.18 1.04 0.66 1.92 1.63 1.95 2.15 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-58 Revision 27
IGLOO Low Power Flash FPGAs Applies to 1.2 V Core Voltage Table 2-89 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 5.59 0.26 1.20 1.10 5.68 5.14 2.82 2.80 11.47 10.93 ns 4 mA Std. 1.55 5.59 0.26 1.20 1.10 5.68 5.14 2.82 2.80 11.47 10.93 ns 6 mA Std. 1.55 4.76 0.26 1.20 1.10 4.84 4.47 3.10 3.33 10.62 10.26 ns 8 mA Std. 1.55 4.76 0.26 1.20 1.10 4.84 4.47 3.10 3.33 10.62 10.26 ns 12 mA Std. 1.55 4.17 0.26 1.20 1.10 4.23 3.99 3.30 3.67 10.02 9.77 ns 16 mA Std. 1.55 3.98 0.26 1.20 1.10 4.04 3.88 3.34 3.76 9.83 9.66 ns 24 mA Std. 1.55 3.90 0.26 1.20 1.10 3.96 3.90 3.40 4.09 9.75 9.68 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-90 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 3.33 0.26 1.20 1.10 3.38 3.09 2.82 2.91 9.17 8.88 ns 4 mA Std. 1.55 3.33 0.26 1.20 1.10 3.38 3.09 2.82 2.91 9.17 8.88 ns 6 mA Std. 1.55 2.89 0.26 1.20 1.10 2.93 2.56 3.10 3.45 8.72 8.34 ns 8 mA Std. 1.55 2.89 0.26 1.20 1.10 2.93 2.56 3.10 3.45 8.72 8.34 ns 12 mA Std. 1.55 2.64 0.26 1.20 1.10 2.67 2.29 3.30 3.79 8.46 8.08 ns 16 mA Std. 1.55 2.59 0.26 1.20 1.10 2.63 2.24 3.34 3.88 8.41 8.03 ns 24 mA Std. 1.55 2.60 0.26 1.20 1.10 2.64 2.18 3.40 4.22 8.42 7.97 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-91 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 5.02 0.26 1.19 1.10 5.11 4.60 2.50 2.62 10.89 10.38 ns 4 mA Std. 1.55 5.02 0.26 1.19 1.10 5.11 4.60 2.50 2.62 10.89 10.38 ns 6 mA Std. 1.55 4.21 0.26 1.19 1.10 4.27 4.00 2.76 3.10 10.06 9.79 ns 8 mA Std. 1.55 4.21 0.26 1.19 1.10 4.27 4.00 2.76 3.10 10.06 9.79 ns 12 mA Std. 1.55 3.66 0.26 1.19 1.10 3.71 3.55 2.94 3.41 9.50 9.34 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Revision 27 2-59
IGLOO DC and Switching Characteristics Table 2-92 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 2.91 0.26 1.19 1.10 2.95 2.66 2.50 2.72 8.74 8.45 ns 4 mA Std. 1.55 2.91 0.26 1.19 1.10 2.95 2.66 2.50 2.72 8.74 8.45 ns 6 mA Std. 1.55 2.51 0.26 1.19 1.10 2.54 2.18 2.75 3.21 8.33 7.97 ns 8 mA Std. 1.55 2.51 0.26 1.19 1.10 2.54 2.18 2.75 3.21 8.33 7.97 ns 12 mA Std. 1.55 2.29 0.26 1.19 1.10 2.32 1.94 2.94 3.52 8.10 7.73 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-93 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 1.55 4.85 0.26 1.15 1.10 4.93 4.55 2.13 2.24 ns 4 mA Std. 1.55 4.85 0.26 1.15 1.10 4.93 4.55 2.13 2.24 ns 6 mA Std. 1.55 4.09 0.26 1.15 1.10 4.16 3.95 2.38 2.71 ns 8 mA Std. 1.55 4.09 0.26 1.15 1.10 4.16 3.95 2.38 2.71 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-94 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 1.55 2.76 0.26 1.15 1.10 2.80 2.52 2.13 2.32 ns 4 mA Std. 1.55 2.76 0.26 1.15 1.10 2.80 2.52 2.13 2.32 ns 6 mA Std. 1.55 2.39 0.26 1.15 1.10 2.42 2.05 2.38 2.80 ns 8 mA Std. 1.55 2.39 0.26 1.15 1.10 2.42 2.05 2.38 2.80 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. 2-60 Revision 27
IGLOO Low Power Flash FPGAs 1.8 V LVCMOS Low-voltage CMOS for 1.8V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8V applications. It uses a 1.8V input buffer and a push-pull output buffer. Table 2-95 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 1.8 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 2 2 9 11 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 4 4 17 22 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 6 6 35 44 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 45 51 10 10 12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 91 74 10 10 16 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 16 16 91 74 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table 2-96 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 1.8 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 2 2 9 11 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 4 4 17 22 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 6 6 35 44 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 35 44 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Revision 27 2-61
IGLOO DC and Switching Characteristics Table 2-97 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 1.8 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 9 11 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 17 22 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. R to VCCI for t / t / t LZ ZL ZLS R = 1 k Test Point R to GND for t / t / t HZ ZH ZHS Test Point Datapath 5 pF Enable Path 5 pF for t / t / t / t ZH ZHS ZL ZLS 5 pF for t / t HZ LZ Figure 2-9 • AC Loading Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 0 1.8 0.9 5 Note: *Measuring point = Vtrip. See Table2-29 on page2-28 for a complete table of trip points. Timing Characteristics 1.5 V DC Core Voltage Table 2-99 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 6.38 0.18 1.01 0.66 6.51 5.93 2.33 1.56 10.10 9.53 ns 4 mA Std. 0.97 5.35 0.18 1.01 0.66 5.46 5.04 2.67 2.38 9.05 8.64 ns 6 mA Std. 0.97 4.62 0.18 1.01 0.66 4.71 4.44 2.90 2.79 8.31 8.04 ns 8 mA Std. 0.97 4.37 0.18 1.01 0.66 4.46 4.31 2.95 2.89 8.05 7.90 ns 12 mA Std. 0.97 4.32 0.18 1.01 0.66 4.37 4.32 3.03 3.30 7.97 7.92 ns 16 mA Std. 0.97 4.32 0.18 1.01 0.66 4.37 4.32 3.03 3.30 7.97 7.92 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-62 Revision 27
IGLOO Low Power Flash FPGAs Table 2-100 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 3.25 0.18 1.01 0.66 3.21 3.25 2.33 1.61 6.80 6.85 ns 4 mA Std. 0.97 2.62 0.18 1.01 0.66 2.68 2.51 2.66 2.46 6.27 6.11 ns 6 mA Std. 0.97 2.31 0.18 1.01 0.66 2.36 2.15 2.90 2.87 5.95 5.75 ns 8 mA Std. 0.97 2.25 0.18 1.01 0.66 2.30 2.08 2.95 2.98 5.89 5.68 ns 12 mA Std. 0.97 2.24 0.18 1.01 0.66 2.29 2.00 3.02 3.40 5.88 5.60 ns 16 mA Std. 0.97 2.24 0.18 1.01 0.66 2.29 2.00 3.02 3.40 5.88 5.60 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-101 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 5.78 0.18 1.01 0.66 5.90 5.32 1.95 1.47 9.49 8.91 ns 4 mA Std. 0.97 4.75 0.18 1.01 0.66 4.85 4.54 2.25 2.21 8.44 8.13 ns 6 mA Std. 0.97 4.07 0.18 1.01 0.66 4.15 3.98 2.46 2.58 7.75 7.57 ns 8 mA Std. 0.97 4.07 0.18 1.01 0.66 4.15 3.98 2.46 2.58 7.75 7.57 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-102 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 2.76 0.18 1.01 0.66 2.79 2.76 1.94 1.51 6.39 6.35 ns 4 mA Std. 0.97 2.25 0.18 1.01 0.66 2.30 2.09 2.24 2.29 5.89 5.69 ns 6 mA Std. 0.97 1.97 0.18 1.01 0.66 2.02 1.76 2.46 2.66 5.61 5.36 ns 8 mA Std. 0.97 1.97 0.18 1.01 0.66 2.02 1.76 2.46 2.66 5.61 5.36 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-103 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.97 5.63 0.18 0.98 0.66 5.74 5.30 1.68 1.24 ns 4 mA Std. 0.97 4.69 0.18 0.98 0.66 4.79 4.52 1.97 1.98 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-63
IGLOO DC and Switching Characteristics Table 2-104 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 2.62 0.18 0.98 0.66 2.67 2.59 1.67 1.29 2.62 ns 4 mA Std. 2.18 0.18 0.98 0.66 2.22 1.93 1.97 2.06 2.18 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 1.2 V DC Core Voltage Table 2-105 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 6.97 0.26 1.11 1.10 7.08 6.48 2.87 2.29 12.87 12.27 ns 4 mA Std. 1.55 5.91 0.26 1.11 1.10 6.01 5.57 3.21 3.14 11.79 11.36 ns 6 mA Std. 1.55 5.16 0.26 1.11 1.10 5.24 4.95 3.45 3.55 11.03 10.74 ns 8 mA Std. 1.55 4.90 0.26 1.11 1.10 4.98 4.81 3.50 3.66 10.77 10.60 ns 12 mA Std. 1.55 4.83 0.26 1.11 1.10 4.90 4.83 3.58 4.08 10.68 10.61 ns 16 mA Std. 1.55 4.83 0.26 1.11 1.10 4.90 4.83 3.58 4.08 10.68 10.61 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-106 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 3.73 0.26 1.11 1.10 3.71 3.73 2.86 2.34 9.49 9.51 ns 4 mA Std. 1.55 3.12 0.26 1.11 1.10 3.16 2.97 3.21 3.22 8.95 8.75 ns 6 mA Std. 1.55 2.79 0.26 1.11 1.10 2.83 2.59 3.45 3.65 8.62 8.38 ns 8 mA Std. 1.55 2.73 0.26 1.11 1.10 2.77 2.52 3.50 3.75 8.56 8.30 ns 12 mA Std. 1.55 2.72 0.26 1.11 1.10 2.76 2.43 3.58 4.19 8.55 8.22 ns 16 mA Std. 1.55 2.72 0.26 1.11 1.10 2.76 2.43 3.58 4.19 8.55 8.22 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. 2-64 Revision 27
IGLOO Low Power Flash FPGAs Table 2-107 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 6.32 0.26 1.11 1.10 6.43 5.81 2.47 2.16 12.22 11.60 ns 4 mA Std. 1.55 5.27 0.26 1.11 1.10 5.35 5.01 2.78 2.92 11.14 10.79 ns 6 mA Std. 1.55 4.56 0.26 1.11 1.10 4.64 4.44 3.00 3.30 10.42 10.22 ns 8 mA Std. 1.55 4.56 0.26 1.11 1.10 4.64 4.44 3.00 3.30 10.42 10.22 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-108 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 3.22 0.26 1.11 1.10 3.26 3.18 2.47 2.20 9.05 8.97 ns 4 mA Std. 1.55 2.72 0.26 1.11 1.10 2.75 2.50 2.78 3.01 8.54 8.29 ns 6 mA Std. 1.55 2.43 0.26 1.11 1.10 2.47 2.16 2.99 3.39 8.25 7.94 ns 8 mA Std. 1.55 2.43 0.26 1.11 1.10 2.47 2.16 2.99 3.39 8.25 7.94 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-109 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 1.55 6.13 0.26 1.08 1.10 6.24 5.79 2.08 1.78 ns 4 mA Std. 1.55 5.17 0.26 1.08 1.10 5.26 4.98 2.38 2.54 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-110 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 3.06 0.26 1.08 1.10 3.10 3.01 2.08 1.83 3.06 ns 4 mA Std. 2.60 0.26 1.08 1.10 2.64 2.33 2.38 2.62 2.60 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Revision 27 2-65
IGLOO DC and Switching Characteristics 1.5 V LVCMOS (JESD8-11) Low-Voltage CMOS for 1.5V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5V applications. It uses a 1.5V input buffer and a push-pull output buffer. Table 2-111 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 1.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 13 16 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 25 33 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6 6 32 39 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8 8 66 55 10 10 12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 66 55 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table 2-112 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 1.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 13 16 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 25 33 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. 2-66 Revision 27
IGLOO Low Power Flash FPGAs Table 2-113 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 1.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 13 16 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <V CCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. R to VCCI for t / t / t LZ ZL ZLS R = 1 k Test Point R to GND for t / t / t HZ ZH ZHS Test Point Datapath 5 pF Enable Path 5 pF for t / t / t / t ZH ZHS ZL ZLS 5 pF for t / t HZ LZ Figure 2-10 • AC Loading Table 2-114 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 0 1.5 0.75 5 Note: *Measuring point = Vtrip. See Table2-29 on page2-28 for a complete table of trip points. Revision 27 2-67
IGLOO DC and Switching Characteristics Timing Characteristics 1.5 V DC Core Voltage Table 2-115 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 6.62 0.18 1.17 0.66 6.75 6.06 2.79 2.31 10.35 9.66 ns 4 mA Std. 0.97 5.75 0.18 1.17 0.66 5.86 5.34 3.06 2.78 9.46 8.93 ns 6 mA Std. 0.97 5.43 0.18 1.17 0.66 5.54 5.19 3.12 2.90 9.13 8.78 ns 8 mA Std. 0.97 5.35 0.18 1.17 0.66 5.46 5.20 2.63 3.36 9.06 8.79 ns 12 mA Std. 0.97 5.35 0.18 1.17 0.66 5.46 5.20 2.63 3.36 9.06 8.79 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-116 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 2.97 0.18 1.17 0.66 3.04 2.90 2.78 2.40 6.63 6.50 ns 4 mA Std. 0.97 2.60 0.18 1.17 0.66 2.65 2.45 3.05 2.88 6.25 6.05 ns 6 mA Std. 0.97 2.53 0.18 1.17 0.66 2.58 2.37 3.11 3.00 6.18 5.96 ns 8 mA Std. 0.97 2.50 0.18 1.17 0.66 2.56 2.27 3.21 3.48 6.15 5.86 ns 12 mA Std. 0.97 2.50 0.18 1.17 0.66 2.56 2.27 3.21 3.48 6.15 5.86 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-117 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 5.93 0.18 1.18 0.66 6.04 5.46 2.30 2.15 9.64 9.06 ns 4 mA Std. 0.97 5.11 0.18 1.18 0.66 5.21 4.80 2.54 2.58 8.80 8.39 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-118 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.97 2.58 0.18 1.18 0.66 2.64 2.41 2.29 2.24 6.23 6.01 ns 4 mA Std. 0.97 2.25 0.18 1.18 0.66 2.30 2.00 2.53 2.68 5.89 5.59 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-68 Revision 27
IGLOO Low Power Flash FPGAs Table 2-119 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.97 5.88 0.18 1.14 0.66 6.00 5.45 2.00 1.94 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-120 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.97 2.51 0.18 1.14 0.66 2.56 2.21 1.99 2.03 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 1.2 V DC Core Voltage Table 2-121 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 7.17 0.26 1.27 1.10 7.29 6.60 3.33 3.03 13.07 12.39 ns 4 mA Std. 1.55 6.27 0.26 1.27 1.10 6.37 5.86 3.61 3.51 12.16 11.64 ns 6 mA Std. 1.55 5.94 0.26 1.27 1.10 6.04 5.70 3.67 3.64 11.82 11.48 ns 8 mA Std. 1.55 5.86 0.26 1.27 1.10 5.96 5.71 2.83 4.11 11.74 11.50 ns 12 mA Std. 1.55 5.86 0.26 1.27 1.10 5.96 5.71 2.83 4.11 11.74 11.50 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-122 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 3.44 0.26 1.27 1.10 3.49 3.35 3.32 3.12 9.28 9.14 ns 4 mA Std. 1.55 3.06 0.26 1.27 1.10 3.10 2.89 3.60 3.61 8.89 8.67 ns 6 mA Std. 1.55 2.98 0.26 1.27 1.10 3.02 2.80 3.66 3.74 8.81 8.58 ns 8 mA Std. 1.55 2.96 0.26 1.27 1.10 3.00 2.70 3.75 4.23 8.78 8.48 ns 12 mA Std. 1.55 2.96 0.26 1.27 1.10 3.00 2.70 3.75 4.23 8.78 8.48 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Revision 27 2-69
IGLOO DC and Switching Characteristics Table 2-123 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 6.43 0.26 1.27 1.10 6.54 5.95 2.82 2.83 12.32 11.74 ns 4 mA Std. 1.55 5.59 0.26 1.27 1.10 5.68 5.27 3.07 3.27 11.47 11.05 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-124 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V J Applicable to Standard Plus Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 3.02 0.26 1.27 1.10 3.07 2.81 2.82 2.92 8.85 8.59 ns 4 mA Std. 1.55 2.68 0.26 1.27 1.10 2.72 2.39 3.07 3.37 8.50 8.18 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-125 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 1.55 6.35 0.26 1.22 1.10 6.46 5.93 2.40 2.46 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-126 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 1.55 2.92 0.26 1.22 1.10 2.96 2.60 2.40 2.56 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. 2-70 Revision 27
IGLOO Low Power Flash FPGAs 1.2 V LVCMOS (JESD8-12A) Low-Voltage CMOS for 1.2V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer. Furthermore, all LVCMOS 1.2 V software macros comply with LVCMOS 1.2V wide range as specified in the JESD8-12A specification. Table 2-127 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 1.2 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 2 2 20 26 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table 2-128 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 1.2 V LVCMOS VIL VIH VOL VOH I IOH IOSH IOSL IIL1 IIH2 OL Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 2 2 20 26 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table 2-129 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 1.2 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 1 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 1 1 20 26 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Revision 27 2-71
IGLOO DC and Switching Characteristics R to VCCI for t / t / t LZ ZL ZLS R = 1 k Test Point R to GND for t / t / t HZ ZH ZHS Test Point Datapath 5 pF Enable Path 5 pF for t / t / t / t ZH ZHS ZL ZLS 5 pF for t / t HZ LZ Figure 2-11 • AC Loading Table 2-130 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 0 1.2 0.6 5 Note: *Measuring point = Vtrip. See Table2-29 on page2-28 for a complete table of trip points. Timing Characteristics 1.2 V DC Core Voltage Table 2-131 • 1.2 V LVCMOS Low Slew Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 8.37 0.26 1.60 1.10 8.04 7.17 3.94 3.52 13.82 12.95 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-132 • 1.2 V LVCMOS High Slew Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V J Applicable to Advanced I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 3.60 0.26 1.60 1.10 3.47 3.36 3.93 3.65 9.26 9.14 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-133 • 1.2 V LVCMOS High Slew Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V J Applicable to Standard Plus I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 7.59 0.26 1.59 1.10 7.29 6.54 3.30 3.35 13.08 12.33 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-134 • 1.2 V LVCMOS High Slew Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V J Applicable to Standard Plus I/O Banks Drive Strength Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 1.55 3.22 0.26 1.59 1.10 3.11 2.78 3.29 3.48 8.90 8.57 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-72 Revision 27
IGLOO Low Power Flash FPGAs Table 2-135 • 1.2 V LVCMOS High Slew Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 1 mA Std. 1.55 8.57 0.26 1.53 1.10 8.23 7.38 2.51 2.39 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-136 • 1.2 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T =70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V J Applicable to Standard Banks Drive Strength Speed Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 1 mA Std. 1.55 3.59 0.26 1.53 1.10 3.47 3.06 2.51 2.49 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. 1.2 V LVCMOS Wide Range Table 2-137 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range Applicable to Advanced I/O Banks 1.2 V LVCMOS Wide Range VIL VIH VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Equivalent Software Default Drive Drive Strength Min. Max. Min. Max. Max. Min. Max. Max. Strength Option1 V V V V V V mA mA mA4 mA4 µA5 µA5 100 µA 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 100 100 20 26 10 10 Notes: 1. The minimum drive strength for the default LVCMOS 1.2V software configuration when run in wide range is ± 100µA. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 4. Currents are measured at 100°C junction temperature and maximum voltage. 5. Currents are measured at 85°C junction temperature. 6. Software default selection highlighted in gray. Revision 27 2-73
IGLOO DC and Switching Characteristics Table 2-138 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range Applicable to Standard Plus I/O Banks 1.2 V LVCMOS Wide Range VIL VIH VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Equivalent Software Default Drive Drive Strength Min. Max. Min. Max. Max. Min. Max. Max. Strength Option1 V V V V V V mA mA mA4 mA4 µA5 µA5 100 µA 2mA –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 100 100 20 26 10 10 Notes: 1. The minimum drive strength for the default LVCMOS 1.2V software configuration when run in wide range is ± 100µA. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 100°C junction temperature and maximum voltage. 5. Currents are measured at 85°C junction temperature. 6. Software default selection highlighted in gray. Table 2-139 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range Applicable to Standard I/O Banks 1.2 V LVCMOS Wide Range VIL VIH VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Equivalent Software Default Drive Drive Strength Min. Max. Min. Max. Max. Min. Max. Max. Strength Option1 V V V V V V mA mA mA4 mA4 µA5 µA5 100 µA 1 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 100 100 20 26 10 10 Notes: 1. The minimum drive strength for the default LVCMOS 1.2V software configuration when run in wide range is ± 100µA. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 100°C junction temperature and maximum voltage. 5. Currents are measured at 85°C junction temperature. 6. Software default selection highlighted in gray. Table 2-140 • 1.2 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 0 1.2 0.6 5 Note: *Measuring point = Vtrip. See Table2-29 on page2-28 for a complete table of trip points. Timing Characteristics Refer to LVCMOS 1.2 V (normal range) "Timing Characteristics" on page2-75 for worst-case timing. 2-74 Revision 27
IGLOO Low Power Flash FPGAs 3.3 V PCI, 3.3 V PCI-X Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications. Table 2-141 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced and Standard Plus I/Os 3.3 V PCI/PCI-X VIL VIH VOL VOH IOL IOH IOSH IOSL IIL IIH Min. Max. Min. Max. Max. Min. Max. Max. Drive Strength V V V V V V mA mA mA1 mA1 µA2 µA2 Per PCI Per PCI curves 10 10 specification Notes: 1. Currents are measured at 100°C junction temperature and maximum voltage. 2. Currents are measured at 85°C junction temperature. AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure2-12. R to VCCI for t (F) R to VCCI for t / t / t R = 25 DP R = 1 k LZ ZL ZLS Test Point R to GND for tDP (R) Test Point R to GND for tHZ / tZH / tZHS Datapath Enable Path 10 pF for t / t / t / t ZH ZHS ZL ZLS 5 pF for t / t HZ LZ Figure 2-12 • AC Loading AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table2-142. Table 2-142 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 0 3.3 0.285 * VCCI for t 10 DP(R) 0.615 * VCCI for t DP(F) Note: *Measuring point = Vtrip. See Table2-29 on page2-28 for a complete table of trip points. Timing Characteristics 1.5 V DC Core Voltage Table 2-143 • 3.3 V PCI/PCI-X Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Advanced I/O Banks Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS Std. 0.97 2.32 0.19 0.70 0.66 2.37 1.78 2.67 3.05 5.96 5.38 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-144 • 3.3 V PCI/PCI-X Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus I/O Banks Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS Std. 0.97 1.97 0.19 0.70 0.66 2.01 1.50 2.36 2.79 5.61 5.10 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-75
IGLOO DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-145 • 3.3 V PCI/PCI-X Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V J Applicable to Advanced I/O Banks Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS Std. 1.55 2.91 0.25 0.86 1.10 2.95 2.29 3.25 3.93 8.74 8.08 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Table 2-146 • 3.3 V PCI/PCI-X Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus I/O Banks Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS Std. 1.55 2.53 0.25 0.85 1.10 2.57 1.98 2.93 3.64 8.35 7.76 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Differential I/O Characteristics Physical Implementation Configuration of the I/O modules as a differential pair is handled by Microsemi Designer software when the user instantiates a differential I/O macro in the design. Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards. LVDS Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure2-13. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different. Along with LVDS I/O, IGLOO also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes). Bourns Part Number: CAT16-LV4F12 FPGA FPGA OUTBUF_LVDS P P 165 Z = 50 0 + INBUF_LVDS 140 100 – 165 Z0 = 50 N N Figure 2-13 • LVDS Circuit Diagram and Board-Level Implementation 2-76 Revision 27
IGLOO Low Power Flash FPGAs Table 2-147 • Minimum and Maximum DC Input and Output Levels DC Parameter Description Min. Typ. Max. Units VCCI Supply Voltage 2.375 2.5 2.625 V VOL Output Low Voltage 0.9 1.075 1.25 V VOH Output High Voltage 1.25 1.425 1.6 V IOL1 Output Lower Current 0.65 0.91 1.16 mA IOH1 Output High Current 0.65 0.91 1.16 mA VI Input Voltage 0 2.925 V IIH2 Input High Leakage Current 10 µA IIL2 Input Low Leakage Current 10 µA VODIFF Differential Output Voltage 250 350 450 mV VOCM Output Common-Mode Voltage 1.125 1.25 1.375 V VICM Input Common-Mode Voltage 0.05 1.25 2.35 V VIDIFF4 Input Differential Voltage 100 350 mV Notes: 1. IOL/IOH is defined by VODIFF/(resistor network) 2. Currents are measured at 85°C junction temperature. Table 2-148 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) 1.075 1.325 Cross point Note: *Measuring point = Vtrip. See Table2-29 on page2-28 for a complete table of trip points. Timing Characteristics 1.5 V DC Core Voltage Table 2-149 • LVDS – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC=1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Banks Speed Grade t t t t Units DOUT DP DIN PY Std. 0.97 1.67 0.19 1.31 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 and Table2-7 on page2-7 for derating values. 1.2 V DC Core Voltage Table 2-150 • LVDS – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC=1.14 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Banks Speed Grade t t t t Units DOUT DP DIN PY Std. 1.55 2.19 0.25 1.52 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 and Table2-7 on page2-7 for derating values. Revision 27 2-77
IGLOO DC and Switching Characteristics B-LVDS/M-LVDS Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high- performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200MHz with a maximum of 20 loads. A sample application is given in Figure2-14. The input and output buffer delays are available in the LVDS section in Table2-149 on page2-81 and Table2-150 on page2-81. Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: R =60 and R =70, given S T Z =50 (2") and Z =50 (~1.5"). 0 stub Receiver Transceiver Driver Receiver Transceiver D EN EN EN EN EN BIBUF_LVDS R T R T + - + - + - + - + - R R R R R R R R R R S S S S S S S S S S Zstub Zstub Zstub Zstub Zstub Zstub Zstub Zstub ... Z Z Z Z Z Z 0 0 0 0 0 0 RTZ0 Z0 Z0 Z0 Z0 Z0 RT Figure 2-14 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers LVPECL Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure2-15. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different. Bourns Part Number: CAT16-PC4F12 FPGA FPGA OUTBUF_LVPECL P P 100 Z = 50 0 + INBUF_LVPECL 187 W 100 – 100 Z0 = 50 N N Figure 2-15 • LVPECL Circuit Diagram and Board-Level Implementation 2-78 Revision 27
IGLOO Low Power Flash FPGAs Table 2-151 • Minimum and Maximum DC Input and Output Levels DC Parameter Description Min. Max. Min. Max. Min. Max. Units VCCI Supply Voltage 3.0 3.3 3.6 V VOL Output Low Voltage 0.96 1.27 1.06 1.43 1.30 1.57 V VOH Output High Voltage 1.8 2.11 1.92 2.28 2.13 2.41 V VIL, VIH Input Low, Input High Voltages 0 3.6 0 3.6 0 3.6 V V Differential Output Voltage 0.625 0.97 0.625 0.97 0.625 0.97 V ODIFF V Output Common-Mode Voltage 1.762 1.98 1.762 1.98 1.762 1.98 V OCM V Input Common-Mode Voltage 1.01 2.57 1.01 2.57 1.01 2.57 V ICM V Input Differential Voltage 300 300 300 mV IDIFF Table 2-152 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) 1.64 1.94 Cross point Note: *Measuring point = Vtrip. See Table2-28 on page2-104 for a complete table of trip points. Timing Characteristics 1.5 V DC Core Voltage Table 2-153 • LVPECL – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Banks Speed Grade t t t t Units DOUT DP DIN PY Std. 0.97 1.67 0.19 1.16 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 1.2 V DC Core Voltage Table 2-154 • LVPECL – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Banks Speed Grade t t t t Units DOUT DP DIN PY Std. 1.55 2.24 0.25 1.37 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Revision 27 2-79
IGLOO DC and Switching Characteristics I/O Register Specifications Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset NI Preset B L U F D P a DOUT d O Data_out u NI PRE E Y F PRE RT t Data B D Q Core D Q BI FU C DFN1E1P1 Array G DFN1E1P1 FU NI E E Enable B FU B EOUT H C L CLK BK I U A F J PRE D Q K DFN1E1P1 Data Input I/O Register with: E Active High Enable Active High Preset Positive-Edge Triggered Data Output Register and Enable Output Register with: Active High Enable CLKBUF INBUF INBUF Active High Preset Postive-Edge Triggered K e e CL abl abl n n E E _ D Figure 2-16 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset 2-80 Revision 27
IGLOO Low Power Flash FPGAs Table 2-155 • Parameter Definition and Measuring Nodes Measuring Nodes Parameter Name Parameter Definition (from, to)* t Clock-to-Q of the Output Data Register H, DOUT OCLKQ t Data Setup Time for the Output Data Register F, H OSUD t Data Hold Time for the Output Data Register F, H OHD t Enable Setup Time for the Output Data Register G, H OSUE t Enable Hold Time for the Output Data Register G, H OHE t Asynchronous Preset-to-Q of the Output Data Register L, DOUT OPRE2Q t Asynchronous Preset Removal Time for the Output Data Register L, H OREMPRE t Asynchronous Preset Recovery Time for the Output Data Register L, H ORECPRE t Clock-to-Q of the Output Enable Register H, EOUT OECLKQ t Data Setup Time for the Output Enable Register J, H OESUD t Data Hold Time for the Output Enable Register J, H OEHD t Enable Setup Time for the Output Enable Register K, H OESUE t Enable Hold Time for the Output Enable Register K, H OEHE t Asynchronous Preset-to-Q of the Output Enable Register I, EOUT OEPRE2Q t Asynchronous Preset Removal Time for the Output Enable Register I, H OEREMPRE t Asynchronous Preset Recovery Time for the Output Enable Register I, H OERECPRE t Clock-to-Q of the Input Data Register A, E ICLKQ t Data Setup Time for the Input Data Register C, A ISUD t Data Hold Time for the Input Data Register C, A IHD t Enable Setup Time for the Input Data Register B, A ISUE t Enable Hold Time for the Input Data Register B, A IHE t Asynchronous Preset-to-Q of the Input Data Register D, E IPRE2Q t Asynchronous Preset Removal Time for the Input Data Register D, A IREMPRE t Asynchronous Preset Recovery Time for the Input Data Register D, A IRECPRE Note: *See Figure2-16 on page2-84 for more information. Revision 27 2-81
IGLOO DC and Switching Characteristics Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear P a d DOUT O u Data FUBNI CC DDFN1E1CQ1 EEY ACrorarey Data_out FF DDFN1E1CQ1 FUBIRT t GG NI E E EOUT B Enable U F BB CLR CLR LL C L HH CLK K B U AA F CLR BNI JJ D Q U DD F DFN1E1C1 KK E Data Input I/O Register with CLR Active High Enable Active High Clear Positive-Edge Triggered Data Output Register and Enable Output Register with Active High Enable Active High Clear INBUF INBUF CLKBUF Positive-Edge Triggered e e K abl abl CL n n E E _ D Figure 2-17 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear 2-82 Revision 27
IGLOO Low Power Flash FPGAs Table 2-156 • Parameter Definition and Measuring Nodes Measuring Nodes Parameter Name Parameter Definition (from, to)* t Clock-to-Q of the Output Data Register HH, DOUT OCLKQ t Data Setup Time for the Output Data Register FF, HH OSUD t Data Hold Time for the Output Data Register FF, HH OHD t Enable Setup Time for the Output Data Register GG, HH OSUE t Enable Hold Time for the Output Data Register GG, HH OHE t Asynchronous Clear-to-Q of the Output Data Register LL, DOUT OCLR2Q t Asynchronous Clear Removal Time for the Output Data Register LL, HH OREMCLR t Asynchronous Clear Recovery Time for the Output Data Register LL, HH ORECCLR t Clock-to-Q of the Output Enable Register HH, EOUT OECLKQ t Data Setup Time for the Output Enable Register JJ, HH OESUD t Data Hold Time for the Output Enable Register JJ, HH OEHD t Enable Setup Time for the Output Enable Register KK, HH OESUE t Enable Hold Time for the Output Enable Register KK, HH OEHE t Asynchronous Clear-to-Q of the Output Enable Register II, EOUT OECLR2Q t Asynchronous Clear Removal Time for the Output Enable Register II, HH OEREMCLR t Asynchronous Clear Recovery Time for the Output Enable Register II, HH OERECCLR t Clock-to-Q of the Input Data Register AA, EE ICLKQ t Data Setup Time for the Input Data Register CC, AA ISUD t Data Hold Time for the Input Data Register CC, AA IHD t Enable Setup Time for the Input Data Register BB, AA ISUE t Enable Hold Time for the Input Data Register BB, AA IHE t Asynchronous Clear-to-Q of the Input Data Register DD, EE ICLR2Q t Asynchronous Clear Removal Time for the Input Data Register DD, AA IREMCLR t Asynchronous Clear Recovery Time for the Input Data Register DD, AA IRECCLR Note: *See Figure2-17 on page2-86 for more information. Revision 27 2-83
IGLOO DC and Switching Characteristics Input Register t t ICKMPWH ICKMPWL 50% 50% 50% 50% 50% 50% 50% CLK t t IHD ISUD Data 1 50% 0 50% Enable 50% tIWPRE tIRECPRE tIREMPRE t IHE t 50% 50% 50% Preset ISUE t t t IWCLR IRECCLR IREMCLR 50% 50% 50% Clear t IPRE2Q 50% 50% 50% Out_1 t ICLR2Q t ICLKQ Figure 2-18 • Input Register Timing Diagram Timing Characteristics 1.5 V DC Core Voltage Table 2-157 • Input Data Register Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC=1.425 V J Parameter Description Std. Units t Clock-to-Q of the Input Data Register 0.42 ns ICLKQ t Data Setup Time for the Input Data Register 0.47 ns ISUD t Data Hold Time for the Input Data Register 0.00 ns IHD t Enable Setup Time for the Input Data Register 0.67 ns ISUE t Enable Hold Time for the Input Data Register 0.00 ns IHE t Asynchronous Clear-to-Q of the Input Data Register 0.79 ns ICLR2Q t Asynchronous Preset-to-Q of the Input Data Register 0.79 ns IPRE2Q t Asynchronous Clear Removal Time for the Input Data Register 0.00 ns IREMCLR t Asynchronous Clear Recovery Time for the Input Data Register 0.24 ns IRECCLR t Asynchronous Preset Removal Time for the Input Data Register 0.00 ns IREMPRE t Asynchronous Preset Recovery Time for the Input Data Register 0.24 ns IRECPRE t Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.19 ns IWCLR t Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.19 ns IWPRE t Clock Minimum Pulse Width High for the Input Data Register 0.31 ns ICKMPWH t Clock Minimum Pulse Width Low for the Input Data Register 0.28 ns ICKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-84 Revision 27
IGLOO Low Power Flash FPGAs 1.2 V DC Core Voltage Table 2-158 • Input Data Register Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC=1.14 V J Parameter Description Std. Units t Clock-to-Q of the Input Data Register 0.68 ns ICLKQ t Data Setup Time for the Input Data Register 0.97 ns ISUD t Data Hold Time for the Input Data Register 0.00 ns IHD t Enable Setup Time for the Input Data Register 1.02 ns ISUE t Enable Hold Time for the Input Data Register 0.00 ns IHE t Asynchronous Clear-to-Q of the Input Data Register 1.19 ns ICLR2Q t Asynchronous Preset-to-Q of the Input Data Register 1.19 ns IPRE2Q t Asynchronous Clear Removal Time for the Input Data Register 0.00 ns IREMCLR t Asynchronous Clear Recovery Time for the Input Data Register 0.24 ns IRECCLR t Asynchronous Preset Removal Time for the Input Data Register 0.00 ns IREMPRE t Asynchronous Preset Recovery Time for the Input Data Register 0.24 ns IRECPRE t Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.19 ns IWCLR t Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.19 ns IWPRE t Clock Minimum Pulse Width High for the Input Data Register 0.31 ns ICKMPWH t Clock Minimum Pulse Width Low for the Input Data Register 0.28 ns ICKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Output Register t t OCKMPWH OCKMPWL 50% 50% 50% 50% 50% 50% 50% CLK t t OSUD OHD Data_out 1 50% 0 50% Enable 50% tOREMPRE t t t OWPRE ORECPRE OHE 50% 50% 50% Preset tOSUE tOWCLR tORECCLR tOREMCLR 50% 50% 50% Clear t OPRE2Q DOUT 50% 50% t 50% OCLR2Q t OCLKQ Figure 2-19 • Output Register Timing Diagram Revision 27 2-85
IGLOO DC and Switching Characteristics Timing Characteristics 1.5 V DC Core Voltage Table 2-159 • Output Data Register Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description Std. Units t Clock-to-Q of the Output Data Register 1.00 ns OCLKQ t Data Setup Time for the Output Data Register 0.51 ns OSUD t Data Hold Time for the Output Data Register 0.00 ns OHD t Enable Setup Time for the Output Data Register 0.70 ns OSUE t Enable Hold Time for the Output Data Register 0.00 ns OHE t Asynchronous Clear-to-Q of the Output Data Register 1.34 ns OCLR2Q t Asynchronous Preset-to-Q of the Output Data Register 1.34 ns OPRE2Q t Asynchronous Clear Removal Time for the Output Data Register 0.00 ns OREMCLR t Asynchronous Clear Recovery Time for the Output Data Register 0.24 ns ORECCLR t Asynchronous Preset Removal Time for the Output Data Register 0.00 ns OREMPRE t Asynchronous Preset Recovery Time for the Output Data Register 0.24 ns ORECPRE t Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.19 ns OWCLR t Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.19 ns OWPRE t Clock Minimum Pulse Width High for the Output Data Register 0.31 ns OCKMPWH t Clock Minimum Pulse Width Low for the Output Data Register 0.28 ns OCKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 1.2 V DC Core Voltage Table 2-160 • Output Data Register Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V J Parameter Description Std. Units t Clock-to-Q of the Output Data Register 1.52 ns OCLKQ t Data Setup Time for the Output Data Register 1.15 ns OSUD t Data Hold Time for the Output Data Register 0.00 ns OHD t Enable Setup Time for the Output Data Register 1.11 ns OSUE t Enable Hold Time for the Output Data Register 0.00 ns OHE t Asynchronous Clear-to-Q of the Output Data Register 1.96 ns OCLR2Q t Asynchronous Preset-to-Q of the Output Data Register 1.96 ns OPRE2Q t Asynchronous Clear Removal Time for the Output Data Register 0.00 ns OREMCLR t Asynchronous Clear Recovery Time for the Output Data Register 0.24 ns ORECCLR t Asynchronous Preset Removal Time for the Output Data Register 0.00 ns OREMPRE t Asynchronous Preset Recovery Time for the Output Data Register 0.24 ns ORECPRE t Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.19 ns OWCLR t Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.19 ns OWPRE t Clock Minimum Pulse Width High for the Output Data Register 0.31 ns OCKMPWH t Clock Minimum Pulse Width Low for the Output Data Register 0.28 ns OCKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. 2-86 Revision 27
IGLOO Low Power Flash FPGAs Output Enable Register t t OECKMPWH OECKMPWL 50% 50% 50% 50% 50% 50% 50% CLK t t OESUDOEHD 1 50% 0 50% D_Enable 50% Enable tOEWPRE t tOEREMPRE OERECPRE 50% 50% 50% t t Preset OESUEOEHE t t t OEWCLR OERECCLR OEREMCLR 50% 50% 50% Clear tOEPRE2Q tOECLR2Q 50% 50% 50% EOUT t OECLKQ Figure 2-20 • Output Enable Register Timing Diagram Timing Characteristics 1.5 V DC Core Voltage Table 2-161 • Output Enable Register Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description Std. Units t Clock-to-Q of the Output Enable Register 0.75 ns OECLKQ t Data Setup Time for the Output Enable Register 0.51 ns OESUD t Data Hold Time for the Output Enable Register 0.00 ns OEHD t Enable Setup Time for the Output Enable Register 0.73 ns OESUE t Enable Hold Time for the Output Enable Register 0.00 ns OEHE t Asynchronous Clear-to-Q of the Output Enable Register 1.13 ns OECLR2Q t Asynchronous Preset-to-Q of the Output Enable Register 1.13 ns OEPRE2Q t Asynchronous Clear Removal Time for the Output Enable Register 0.00 ns OEREMCLR t Asynchronous Clear Recovery Time for the Output Enable Register 0.24 ns OERECCLR t Asynchronous Preset Removal Time for the Output Enable Register 0.00 ns OEREMPRE t Asynchronous Preset Recovery Time for the Output Enable Register 0.24 ns OERECPRE t Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.19 ns OEWCLR t Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.19 ns OEWPRE t Clock Minimum Pulse Width High for the Output Enable Register 0.31 ns OECKMPWH t Clock Minimum Pulse Width Low for the Output Enable Register 0.28 ns OECKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-87
IGLOO DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-162 • Output Enable Register Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V J Parameter Description Std. Units t Clock-to-Q of the Output Enable Register 1.10 ns OECLKQ t Data Setup Time for the Output Enable Register 1.15 ns OESUD t Data Hold Time for the Output Enable Register 0.00 ns OEHD t Enable Setup Time for the Output Enable Register 1.22 ns OESUE t Enable Hold Time for the Output Enable Register 0.00 ns OEHE t Asynchronous Clear-to-Q of the Output Enable Register 1.65 ns OECLR2Q t Asynchronous Preset-to-Q of the Output Enable Register 1.65 ns OEPRE2Q t Asynchronous Clear Removal Time for the Output Enable Register 0.00 ns OEREMCLR t Asynchronous Clear Recovery Time for the Output Enable Register 0.24 ns OERECCLR t Asynchronous Preset Removal Time for the Output Enable Register 0.00 ns OEREMPRE t Asynchronous Preset Recovery Time for the Output Enable Register 0.24 ns OERECPRE t Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.19 ns OEWCLR t Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.19 ns OEWPRE t Clock Minimum Pulse Width High for the Output Enable Register 0.31 ns OECKMPWH t Clock Minimum Pulse Width Low for the Output Enable Register 0.28 ns OECKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. 2-88 Revision 27
IGLOO Low Power Flash FPGAs DDR Module Specifications Input DDR Module Input DDR INBUF A D Data Out_QF (to core) FF1 B E Out_QR CLK (to core) CLKBUF FF2 C CLR INBUF DDR_IN Figure 2-21 • Input DDR Timing Model Table 2-163 • Parameter Definitions Parameter Name Parameter Definition Measuring Nodes (from, to) t Clock-to-Out Out_QR B, D DDRICLKQ1 t Clock-to-Out Out_QF B, E DDRICLKQ2 t Data Setup Time of DDR input A, B DDRISUD t Data Hold Time of DDR input A, B DDRIHD t Clear-to-Out Out_QR C, D DDRICLR2Q1 t Clear-to-Out Out_QF C, E DDRICLR2Q2 t Clear Removal C, B DDRIREMCLR t Clear Recovery C, B DDRIRECCLR Revision 27 2-89
IGLOO DC and Switching Characteristics CLK tDDRISUD tDDRIHD Data 1 2 3 4 5 6 7 8 9 t DDRIRECCLR CLR t DDRIREMCLR t DDRICLKQ1 t DDRICLR2Q1 Out_QF 2 4 6 t t DDRICLKQ2 DDRICLR2Q2 Out_QR 3 5 7 Figure 2-22 • Input DDR Timing Diagram Timing Characteristics 1.5 V DC Core Voltage Table 2-164 • Input DDR Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description Std. Units t Clock-to-Out Out_QR for Input DDR 0.48 ns DDRICLKQ1 t Clock-to-Out Out_QF for Input DDR 0.65 ns DDRICLKQ2 t Data Setup for Input DDR (negedge) 0.50 ns DDRISUD1 t Data Setup for Input DDR (posedge) 0.40 ns DDRISUD2 t Data Hold for Input DDR (negedge) 0.00 ns DDRIHD1 t Data Hold for Input DDR (posedge) 0.00 ns DDRIHD2 t Asynchronous Clear-to-Out Out_QR for Input DDR 0.82 ns DDRICLR2Q1 t Asynchronous Clear-to-Out Out_QF for Input DDR 0.98 ns DDRICLR2Q2 t Asynchronous Clear Removal Time for Input DDR 0.00 ns DDRIREMCLR t Asynchronous Clear Recovery Time for Input DDR 0.23 ns DDRIRECCLR t Asynchronous Clear Minimum Pulse Width for Input DDR 0.19 ns DDRIWCLR t Clock Minimum Pulse Width High for Input DDR 0.31 ns DDRICKMPWH t Clock Minimum Pulse Width Low for Input DDR 0.28 ns DDRICKMPWL F Maximum Frequency for Input DDR 250.00 MHz DDRIMAX Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. 2-90 Revision 27
IGLOO Low Power Flash FPGAs 1.2 V DC Core Voltage Table 2-165 • Input DDR Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V J Parameter Description Std. Units t Clock-to-Out Out_QR for Input DDR 0.76 ns DDRICLKQ1 t Clock-to-Out Out_QF for Input DDR 0.94 ns DDRICLKQ2 t Data Setup for Input DDR (negedge) 0.93 ns DDRISUD1 t Data Setup for Input DDR (posedge) 0.84 ns DDRISUD2 t Data Hold for Input DDR (negedge) 0.00 ns DDRIHD1 t Data Hold for Input DDR (posedge) 0.00 ns DDRIHD2 t Asynchronous Clear-to-Out Out_QR for Input DDR 1.23 ns DDRICLR2Q1 t Asynchronous Clear-to-Out Out_QF for Input DDR 1.42 ns DDRICLR2Q2 t Asynchronous Clear Removal Time for Input DDR 0.00 ns DDRIREMCLR t Asynchronous Clear Recovery Time for Input DDR 0.24 ns DDRIRECCLR t Asynchronous Clear Minimum Pulse Width for Input DDR 0.19 ns DDRIWCLR t Clock Minimum Pulse Width High for Input DDR 0.31 ns DDRICKMPWH t Clock Minimum Pulse Width Low for Input DDR 0.28 ns DDRICKMPWL F Maximum Frequency for Input DDR 160.00 MHz DDRIMAX Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Revision 27 2-91
IGLOO DC and Switching Characteristics Output DDR Module Output DDR A Data_F X (from core) FF1 B Out CLK X 0 E CLKBUF C X X D 1 OUTBUF Data_R X (from core) FF2 B CLR X INBUF C X DDR_OUT Figure 2-23 • Output DDR Timing Model Table 2-166 • Parameter Definitions Parameter Name Parameter Definition Measuring Nodes (from, to) t Clock-to-Out B, E DDROCLKQ t Asynchronous Clear-to-Out C, E DDROCLR2Q t Clear Removal C, B DDROREMCLR t Clear Recovery C, B DDRORECCLR t Data Setup Data_F A, B DDROSUD1 t Data Setup Data_R D, B DDROSUD2 t Data Hold Data_F A, B DDROHD1 t Data Hold Data_R D, B DDROHD2 2-92 Revision 27
IGLOO Low Power Flash FPGAs CLK t t DDROSUD2 DDROHD2 Data_F 1 2 3 4 5 tDDROREMCLR tDDROHD1 Data_R 6 7 8 9 10 11 t DDRORECCLR CLR tDDROREMCLR t t DDROCLR2Q DDROCLKQ Out 7 2 8 3 9 4 10 Figure 2-24 • Output DDR Timing Diagram Timing Characteristics 1.5 V DC Core Voltage Table 2-167 • Output DDR Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC=1.425V J Parameter Description Std. Units t Clock-to-Out of DDR for Output DDR 1.07 ns DDROCLKQ t Data_F Data Setup for Output DDR 0.67 ns DDROSUD1 t Data_R Data Setup for Output DDR 0.67 ns DDROSUD2 t Data_F Data Hold for Output DDR 0.00 ns DDROHD1 t Data_R Data Hold for Output DDR 0.00 ns DDROHD2 t Asynchronous Clear-to-Out for Output DDR 1.38 ns DDROCLR2Q t Asynchronous Clear Removal Time for Output DDR 0.00 ns DDROREMCLR t Asynchronous Clear Recovery Time for Output DDR 0.23 ns DDRORECCLR t Asynchronous Clear Minimum Pulse Width for Output DDR 0.19 ns DDROWCLR1 t Clock Minimum Pulse Width High for the Output DDR 0.31 ns DDROCKMPWH t Clock Minimum Pulse Width Low for the Output DDR 0.28 ns DDROCKMPWL F Maximum Frequency for the Output DDR 250.00 MHz DDOMAX Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-93
IGLOO DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-168 • Output DDR Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC=1.14V J Parameter Description Std. Units t Clock-to-Out of DDR for Output DDR 1.60 ns DDROCLKQ t Data_F Data Setup for Output DDR 1.09 ns DDROSUD1 t Data_R Data Setup for Output DDR 1.16 ns DDROSUD2 t Data_F Data Hold for Output DDR 0.00 ns DDROHD1 t Data_R Data Hold for Output DDR 0.00 ns DDROHD2 t Asynchronous Clear-to-Out for Output DDR 1.99 ns DDROCLR2Q t Asynchronous Clear Removal Time for Output DDR 0.00 ns DDROREMCLR t Asynchronous Clear Recovery Time for Output DDR 0.24 ns DDRORECCLR t Asynchronous Clear Minimum Pulse Width for Output DDR 0.19 ns DDROWCLR1 t Clock Minimum Pulse Width High for the Output DDR 0.31 ns DDROCKMPWH t Clock Minimum Pulse Width Low for the Output DDR 0.28 ns DDROCKMPWL F Maximum Frequency for the Output DDR 160.00 MHz DDOMAX Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. 2-94 Revision 27
IGLOO Low Power Flash FPGAs VersaTile Characteristics VersaTile Specifications as a Combinatorial Module The IGLOO library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the IGLOO, Fusion, and ProASIC3 Macro Library Guide. A Y INV A A OR2 Y NOR2 Y B B A A AND2 Y Y NAND2 B B A A XOR2 Y B XOR3 Y B C A A MAJ3 0 A MUX2 Y B Y B NAND3 B 1 C C S Figure 2-25 • Sample of Combinatorial Cells Revision 27 2-95
IGLOO DC and Switching Characteristics t PD Fanout = 4 A Net NAND2 or Any Y Length = 1 VersaTile Combinatorial B Logic t = MAX(t , t , PD PD(RR) PD(RF) t , t ) where edges are PD(FF) PD(FR) A applicable for a particular Net combinatorial cell Y NAND2 or Any Length = 1 VersaTile Combinatorial B Logic A Net Y NAND2 or Any Length = 1 VersaTile Combinatorial B Logic A Net Y NAND2 or Any Length = 1 VersaTile Combinatorial B Logic VCC 50% 50% A, B, C GND VCC 50% 50% OUT GND tPD tPD (FF) (RR) VCC OUT tPD 50% (FR) 50% t PD GND (RF) Figure 2-26 • Timing Model and Waveforms 2-96 Revision 27
IGLOO Low Power Flash FPGAs Timing Characteristics 1.5 V DC Core Voltage Table 2-169 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC=1.425 V J Combinatorial Cell Equation Parameter Std. Units INV Y =!A t 0.80 ns PD AND2 Y = A · B t 0.84 ns PD NAND2 Y =!(A · B) t 0.90 ns PD OR2 Y = A + B t 1.19 ns PD NOR2 Y = !(A + B) t 1.10 ns PD XOR2 Y = A B t 1.37 ns PD MAJ3 Y = MAJ(A, B, C) t 1.33 ns PD XOR3 Y = A B C t 1.79 ns PD MUX2 Y = A !S + B S t 1.48 ns PD AND3 Y = A · B · C t 1.21 ns PD Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 1.2 V DC Core Voltage Table 2-170 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC=1.14 V J Combinatorial Cell Equation Parameter Std. Units INV Y = !A t 1.34 ns PD AND2 Y = A · B t 1.43 ns PD NAND2 Y = !(A · B) t 1.59 ns PD OR2 Y = A + B t 2.30 ns PD NOR2 Y = !(A + B) t 2.07 ns PD XOR2 Y = A B t 2.46 ns PD MAJ3 Y = MAJ(A, B, C) t 2.46 ns PD XOR3 Y = A B C t 3.12 ns PD MUX2 Y = A !S + B S t 2.83 ns PD AND3 Y = A · B · C t 2.28 ns PD Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. Revision 27 2-97
IGLOO DC and Switching Characteristics VersaTile Specifications as a Sequential Module The IGLOO library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the IGLOO, Fusion, and ProASIC3 Macro Library Guide. Data Out Data Out D Q D Q En DFN1 DFN1E1 CLK CLK PRE Data Out Data Out D Q D Q En DFN1C1 DFI1E1P1 CLK CLK CLR Figure 2-27 • Sample of Sequential Cells 2-98 Revision 27
IGLOO Low Power Flash FPGAs t t CKMPWH CKMPWL 50% 50% 50% 50% 50% 50% 50% CLK t HD t SUD Data 50% 0 50% EN 50% t t WPRE RECPRE t REMPRE t HE 50% 50% 50% PRE tSUE tWCLR tRECCLR tREMCLR 50% 50% 50% CLR t PRE2Q t CLR2Q 50% 50% 50% Out t CLKQ Figure 2-28 • Timing Model and Waveforms Timing Characteristics 1.5 V DC Core Voltage Table 2-171 • Register Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description Std. Units t Clock-to-Q of the Core Register 0.89 ns CLKQ t Data Setup Time for the Core Register 0.81 ns SUD t Data Hold Time for the Core Register 0.00 ns HD t Enable Setup Time for the Core Register 0.73 ns SUE t Enable Hold Time for the Core Register 0.00 ns HE t Asynchronous Clear-to-Q of the Core Register 0.60 ns CLR2Q t Asynchronous Preset-to-Q of the Core Register 0.62 ns PRE2Q t Asynchronous Clear Removal Time for the Core Register 0.00 ns REMCLR t Asynchronous Clear Recovery Time for the Core Register 0.24 ns RECCLR t Asynchronous Preset Removal Time for the Core Register 0.00 ns REMPRE t Asynchronous Preset Recovery Time for the Core Register 0.23 ns RECPRE t Asynchronous Clear Minimum Pulse Width for the Core Register 0.30 ns WCLR t Asynchronous Preset Minimum Pulse Width for the Core Register 0.30 ns WPRE t Clock Minimum Pulse Width High for the Core Register 0.56 ns CKMPWH t Clock Minimum Pulse Width Low for the Core Register 0.56 ns CKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-99
IGLOO DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-172 • Register Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V J Parameter Description Std. Units t Clock-to-Q of the Core Register 1.61 ns CLKQ t Data Setup Time for the Core Register 1.17 ns SUD t Data Hold Time for the Core Register 0.00 ns HD t Enable Setup Time for the Core Register 1.29 ns SUE t Enable Hold Time for the Core Register 0.00 ns HE t Asynchronous Clear-to-Q of the Core Register 0.87 ns CLR2Q t Asynchronous Preset-to-Q of the Core Register 0.89 ns PRE2Q t Asynchronous Clear Removal Time for the Core Register 0.00 ns REMCLR t Asynchronous Clear Recovery Time for the Core Register 0.24 ns RECCLR t Asynchronous Preset Removal Time for the Core Register 0.00 ns REMPRE t Asynchronous Preset Recovery Time for the Core Register 0.24 ns RECPRE t Asynchronous Clear Minimum Pulse Width for the Core Register 0.46 ns WCLR t Asynchronous Preset Minimum Pulse Width for the Core Register 0.46 ns WPRE t Clock Minimum Pulse Width High for the Core Register 0.95 ns CKMPWH t Clock Minimum Pulse Width Low for the Core Register 0.95 ns CKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. 2-100 Revision 27
IGLOO Low Power Flash FPGAs Global Resource Characteristics AGL250 Clock Tree Topology Clock delays are device-specific. Figure2-29 is an example of a global tree used for clock routing. The global tree presented in Figure2-29 is driven by a CCC located on the west side of the AGL250 device. It is used to drive all D- flip-flops in the device. Central Global Rib CCC VersaTile Rows Global Spine Figure 2-29 • Example of Global Tree Use in an AGL250 Device for Clock Routing Revision 27 2-101
IGLOO DC and Switching Characteristics Global Tree Timing Characteristics Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page2-115. Table2-173 to Table2-188 on page2-114 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading. Timing Characteristics 1.5 V DC Core Voltage Table 2-173 • AGL015 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 1.21 1.42 ns RCKL t Input High Delay for Global Clock 1.23 1.49 ns RCKH t Minimum Pulse Width High for Global Clock 1.18 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.15 ns RCKMPWL t Maximum Skew for Global Clock 0.27 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-174 • AGL030 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 1.21 1.42 ns RCKL t Input High Delay for Global Clock 1.23 1.49 ns RCKH t Minimum Pulse Width High for Global Clock 1.18 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.15 ns RCKMPWL t Maximum Skew for Global Clock 0.27 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-102 Revision 27
IGLOO Low Power Flash FPGAs Table 2-175 • AGL060 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 1.33 1.55 ns RCKL t Input High Delay for Global Clock 1.35 1.62 ns RCKH t Minimum Pulse Width High for Global Clock 1.18 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.15 ns RCKMPWL t Maximum Skew for Global Clock 0.27 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-176 • AGL125 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 1.36 1.71 ns RCKL t Input High Delay for Global Clock 1.39 1.82 ns RCKH t Minimum Pulse Width High for Global Clock 1.18 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.15 ns RCKMPWL t Maximum Skew for Global Clock 0.43 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-103
IGLOO DC and Switching Characteristics Table 2-177 • AGL250 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 1.39 1.73 ns RCKL t Input High Delay for Global Clock 1.41 1.84 ns RCKH t Minimum Pulse Width High for Global Clock 1.18 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.15 ns RCKMPWL t Maximum Skew for Global Clock 0.43 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-178 • AGL400 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 1.45 1.79 ns RCKL t Input High Delay for Global Clock 1.48 1.91 ns RCKH t Minimum Pulse Width High for Global Clock 1.18 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.15 ns RCKMPWL t Maximum Skew for Global Clock 0.43 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage-supply levels, refer to Table2-6 on page2-7 for derating values. 2-104 Revision 27
IGLOO Low Power Flash FPGAs Table 2-179 • AGL600 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 1.48 1.82 ns RCKL t Input High Delay for Global Clock 1.52 1.94 ns RCKH t Minimum Pulse Width High for Global Clock 1.18 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.15 ns RCKMPWL t Maximum Skew for Global Clock 0.42 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-180 • AGL1000 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 1.55 1.89 ns RCKL t Input High Delay for Global Clock 1.60 2.02 ns RCKH t Minimum Pulse Width High for Global Clock 1.18 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.15 ns RCKMPWL t Maximum Skew for Global Clock 0.42 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-105
IGLOO DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-181 • AGL015 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.14 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 1.79 2.09 ns RCKL t Input High Delay for Global Clock 1.87 2.26 ns RCKH t Minimum Pulse Width High for Global Clock 1.40 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.65 ns RCKMPWL t Maximum Skew for Global Clock 0.39 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-182 • AGL030 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.14 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 1.80 2.09 ns RCKL t Input High Delay for Global Clock 1.88 2.27 ns RCKH t Minimum Pulse Width High for Global Clock 1.40 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.65 ns RCKMPWL t Maximum Skew for Global Clock 0.39 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-106 Revision 27
IGLOO Low Power Flash FPGAs Table 2-183 • AGL060 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.14 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 2.04 2.33 ns RCKL t Input High Delay for Global Clock 2.10 2.51 ns RCKH t Minimum Pulse Width High for Global Clock 1.40 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.65 ns RCKMPWL t Maximum Skew for Global Clock 0.40 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-184 • AGL125 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.14 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 2.08 2.54 ns RCKL t Input High Delay for Global Clock 2.15 2.77 ns RCKH t Minimum Pulse Width High for Global Clock 1.40 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.65 ns RCKMPWL t Maximum Skew for Global Clock 0.62 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-107
IGLOO DC and Switching Characteristics Table 2-185 • AGL250 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.14 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 2.11 2.57 ns RCKL t Input High Delay for Global Clock 2.19 2.81 ns RCKH t Minimum Pulse Width High for Global Clock 1.40 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.65 ns RCKMPWL t Maximum Skew for Global Clock 0.62 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-186 • AGL400 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.14 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 2.18 2.64 ns RCKL t Input High Delay for Global Clock 2.27 2.89 ns RCKH t Minimum Pulse Width High for Global Clock 1.40 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.65 ns RCKMPWL t Maximum Skew for Global Clock 0.62 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-108 Revision 27
IGLOO Low Power Flash FPGAs Table 2-187 • AGL600 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.14 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 2.22 2.67 ns RCKL t Input High Delay for Global Clock 2.32 2.93 ns RCKH t Minimum Pulse Width High for Global Clock 1.40 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.65 ns RCKMPWL t Maximum Skew for Global Clock 0.61 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-188 • AGL1000 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.14 V J Std. Parameter Description Min.1 Max.2 Units t Input Low Delay for Global Clock 2.31 2.76 ns RCKL t Input High Delay for Global Clock 2.42 3.03 ns RCKH t Minimum Pulse Width High for Global Clock 1.40 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 1.65 ns RCKMPWL t Maximum Skew for Global Clock 0.61 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-109
IGLOO DC and Switching Characteristics Clock Conditioning Circuits CCC Electrical Specifications Timing Characteristics Table 2-189 • IGLOO CCC/PLL Specification For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage Parameter Min. Typ. Max. Units Clock Conditioning Circuitry Input Frequency f 1.5 250 MHz IN_CCC Clock Conditioning Circuitry Output Frequency f 0.75 250 MHz OUT_CCC Delay Increments in Programmable Delay Blocks 1, 2 3603 ps Number of Programmable Values in Each Programmable Delay Block 32 Serial Clock (SCLK) for Dynamic PLL4, 5 100 ns Input Cycle-to-Cycle Jitter (peak magnitude) 1 ns Acquisition Time LockControl = 0 300 µs LockControl = 1 6.0 ms Tracking Jitter6 LockControl = 0 2.5 ns LockControl = 1 1.5 ns Output Duty Cycle 48.5 51.5 % Delay Range in Block: Programmable Delay 1 1, 2 1.25 15.65 ns Delay Range in Block: Programmable Delay 2 1, 2 0.469 15.65 ns Delay Range in Block: Fixed Delay 1, 2 3.5 ns CCC Output Peak-to-Peak Period Jitter F Maximum Peak-to-Peak Jitter Data7 CCC_OUT SSO 48 SSO 88 SSO 168 0.75 MHz to 50 MHz 0.60% 0.80% 1.20% 50 MHz to 160 MHz 4.00% 6.00% 12.00% Notes: 1. This delay is a function of voltage and temperature. See Table2-6 on page2-7 and Table2-7 on page2-7 for deratings. 2. T = 25°C, V = 1.5 V J CC 3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information. 4. The AGL030 device does not support a PLL. 5. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter. 7. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength, and high slew Rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ type of packages, 20 pF load. 8. Simultaneously Switching Outputs (SSOs) are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO FPGA Fabric User Guide. 2-110 Revision 27
IGLOO Low Power Flash FPGAs Table 2-190 • IGLOO CCC/PLL Specification For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage Parameter Min. Typ. Max. Units Clock Conditioning Circuitry Input Frequency f 1.5 160 MHz IN_CCC Clock Conditioning Circuitry Output Frequency f 0.75 160 MHz OUT_CCC Delay Increments in Programmable Delay Blocks 1, 2 5803 ps Number of Programmable Values in Each Programmable Delay Block 32 Serial Clock (SCLK) for Dynamic PLL4,5 60 ns Input Cycle-to-Cycle Jitter (peak magnitude) 0.25 ns Acquisition Time LockControl = 0 300 µs LockControl = 1 6.0 ms Tracking Jitter6 LockControl = 0 4 ns LockControl = 1 3 ns Output Duty Cycle 48.5 51.5 % Delay Range in Block: Programmable Delay 11,2 2.3 20.86 ns Delay Range in Block: Programmable Delay 21,2 0.863 20.86 ns Delay Range in Block: Fixed Delay 1, 2, 5 5.7 ns CCC Output Peak-to-Peak Period Jitter F Maximum Peak-to-Peak Jitter Data7,8 CCC_OUT SSO 49 SSO 89 SSO 169 0.75 MHz to 50 MHz 1.20% 2.00% 3.00% 50 MHz to 160 MHz 5.00% 7.00% 15.00% Notes: 1. This delay is a function of voltage and temperature. See Table2-6 on page2-7 and Table2-7 on page2-7 for deratings. 2. T = 25°C, V = 1.2V J CC 3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information. 4. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 5. The AGL030 device does not support a PLL. 6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter. 7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300ps, the jitter on CCC_OUT is also 300ps, regardless of the output divider settings. 8. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength, and high slew Rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ type of packages, 20 pF load. 9. SSO are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO FPGA Fabric User Guide. 10. For definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the IGLOO FPGA Fabric User Guide. Revision 27 2-111
IGLOO DC and Switching Characteristics Output Signal T T period_max period_min Note: Peak-to-peak jitter measurements are defined by T = T – T . peak-to-peak period_max period_min Figure 2-30 • Peak-to-Peak Jitter Definition 2-112 Revision 27
IGLOO Low Power Flash FPGAs Embedded SRAM and FIFO Characteristics SRAM RAM4K9 RAM512X18 ADDRA11 DOUTA8 RADDR8 RD17 ADDRA10 DOUTA7 RADDR7 RD16 ADDRA0 DOUTA0 RADDR0 RD0 DINA8 DINA7 DINA0 RW1 RW0 WIDTHA1 WIDTHA0 PIPE PIPEA WMODEA BLKA REN WENA RCLK CLKA ADDRB11 DOUTB8 WADDR8 ADDRB10 DOUTB7 WADDR7 ADDRB0 DOUTB0 WADDR0 WD17 WD16 DINB8 DINB7 WD0 DINB0 WW1 WIDTHB1 WW0 WIDTHB0 PIPEB WMODEB BLKB WEN WENB CLKB WCLK RESET RESET Figure 2-31 • RAM Models Revision 27 2-113
IGLOO DC and Switching Characteristics Timing Waveforms t CYC t t CKH CKL CLK t t AS AH [R|W]ADDR A0 A1 A2 t BKS t BKH BLK tENS tENH WEN t CKQ1 DOUT|RD Dn D0 D1 D2 t DOH1 Figure 2-32 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18. t CYC t t CKH CKL CLK t t AS AH [R|W]ADDR A A A 0 1 2 t BKS t BKH BLK t t ENS ENH WEN t CKQ2 DOUT|RD D D D n 0 1 t DOH2 Figure 2-33 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18. 2-114 Revision 27
IGLOO Low Power Flash FPGAs t CYC t t CKH CKL CLK t t AS AH [R|W]ADDR A0 A1 A2 t BKS t BKH BLK t t ENS ENH WEN t t DS DH DIN|WD DI0 DI1 DOUT|RD Dn D2 Figure 2-34 • RAM Write, Output Retained. Applicable to Both RAM4K9 and RAM512x18. t CYC t t CKH CKL CLK t t AS AH [R|W]ADDR A0 A1 A2 t BKS t BKH BLK t ENS WEN t t DS DH DIN DI0 DI1 DI2 DOUT D DI DI n 0 1 (pass-through) DOUT D DI DI n 0 1 (pipelined) Figure 2-35 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 only. Revision 27 2-115
IGLOO DC and Switching Characteristics t CYC t t CKH CKL CLK RESET t RSTBQ DOUT|RD Dm Dn Figure 2-36 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18. 2-116 Revision 27
IGLOO Low Power Flash FPGAs Timing Characteristics 1.5 V DC Core Voltage Table 2-191 • RAM4K9 Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description Std. Units t Address setup time 0.83 ns AS t Address hold time 0.16 ns AH t REN, WEN setup time 0.81 ns ENS t REN, WEN hold time 0.16 ns ENH t BLK setup time 1.65 ns BKS t BLK hold time 0.16 ns BKH t Input data (DIN) setup time 0.71 ns DS t Input data (DIN) hold time 0.36 ns DH t Clock High to new data valid on DOUT (output retained, WMODE = 0) 3.53 ns CKQ1 Clock High to new data valid on DOUT (flow-through, WMODE = 1) 3.06 ns t Clock High to new data valid on DOUT (pipelined) 1.81 ns CKQ2 t 1 Address collision clk-to-clk delay for reliable write after write on same address – Applicable to Closing 0.23 ns C2CWWL Edge t 1 Address collision clk-to-clk delay for reliable read access after write on same address – Applicable to 0.35 ns C2CRWL Opening Edge t 1 Address collision clk-to-clk delay for reliable write access after read on same address – Applicable to 0.41 ns C2CWRH Opening Edge t RESET Low to data out Low on DOUT (flow-through) 2.06 ns RSTBQ RESET Low to data out Low on DOUT (pipelined) 2.06 ns t RESET removal 0.61 ns REMRSTB t RESET recovery 3.21 ns RECRSTB t RESET minimum pulse width 0.68 ns MPWRSTB t Clock cycle time 6.24 ns CYC F Maximum frequency 160 MHz MAX Notes: 1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-117
IGLOO DC and Switching Characteristics Table 2-192 • RAM512X18 Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description Std. Units t Address setup time 0.83 ns AS t Address hold time 0.16 ns AH t REN, WEN setup time 0.73 ns ENS t REN, WEN hold time 0.08 ns ENH t Input data (WD) setup time 0.71 ns DS t Input data (WD) hold time 0.36 ns DH t Clock High to new data valid on RD (output retained) 4.21 ns CKQ1 t Clock High to new data valid on RD (pipelined) 1.71 ns CKQ2 t 1 Address collision clk-to-clk delay for reliable read access after write on same address - Applicable to 0.35 ns C2CRWH Opening Edge t 1 Address collision clk-to-clk delay for reliable write access after read on same address - Applicable to 0.42 ns C2CWRH Opening Edge t RESET Low to data out Low on RD (flow-through) 2.06 ns RSTBQ RESET Low to data out Low on RD (pipelined) 2.06 ns t RESET removal 0.61 ns REMRSTB t RESET recovery 3.21 ns RECRSTB t RESET minimum pulse width 0.68 ns MPWRSTB t Clock cycle time 6.24 ns CYC F Maximum frequency 160 MHz MAX Notes: 1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-118 Revision 27
IGLOO Low Power Flash FPGAs 1.2 V DC Core Voltage Table 2-193 • RAM4K9 Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V J Parameter Description Std. Units t Address setup time 1.53 ns AS t Address hold time 0.29 ns AH t REN WEN setup time 1.50 ns ENS t REN, WEN hold time 0.29 ns ENH t BLK setup time 3.05 ns BKS t BLK hold time 0.29 ns BKH t Input data (DIN) setup time 1.33 ns DS t Input data (DIN) hold time 0.66 ns DH t Clock High to new data valid on DOUT (output retained, WMODE = 0) 6.61 ns CKQ1 Clock High to new data valid on DOUT (flow-through, WMODE = 1) 5.72 ns t Clock High to new data valid on DOUT (pipelined) 3.38 ns CKQ2 t 1 Address collision clk-to-clk delay for reliable write after write on same address – Applicable to 0.30 ns C2CWWL Closing Edge t 1 Address collision clk-to-clk delay for reliable read access after write on same address – Applicable 0.89 ns C2CRWH to Opening Edge t 1 Address collision clk-to-clk delay for reliable write access after read on same address – Applicable 1.01 ns C2CWRH to Opening Edge t RESET Low to data out Low on DOUT (flow-through) 3.86 ns RSTBQ RESET Low to data out Low on DOUT (pipelined) 3.86 ns t RESET removal 1.12 ns REMRSTB t RESET recovery 5.93 ns RECRSTB t RESET minimum pulse width 1.18 ns MPWRSTB t Clock cycle time 10.90 ns CYC F Maximum frequency 92 MHz MAX Notes: 1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-119
IGLOO DC and Switching Characteristics Table 2-194 • RAM512X18 Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V J Parameter Description Std. Units t Address setup time 1.53 ns AS t Address hold time 0.29 ns AH t REN, WEN setup time 1.36 ns ENS t REN, WEN hold time 0.15 ns ENH t Input data (WD) setup time 1.33 ns DS t Input data (WD) hold time 0.66 ns DH t Clock High to new data valid on RD (output retained) 7.88 ns CKQ1 t Clock High to new data valid on RD (pipelined) 3.20 ns CKQ2 t 1 Address collision clk-to-clk delay for reliable read access after write on same address – Applicable 0.87 ns C2CRWH to Opening Edge t 1 Address collision clk-to-clk delay for reliable write access after read on same address – Applicable 1.04 ns C2CWRH to Opening Edge t RESET Low to data out Low on RD (flow through) 3.86 ns RSTBQ RESET Low to data out Low on RD (pipelined) 3.86 ns t RESET removal 1.12 ns REMRSTB t RESET recovery 5.93 ns RECRSTB t RESET minimum pulse width 1.18 ns MPWRSTB t Clock cycle time 10.90 ns CYC F Maximum frequency 92 MHz MAX Notes: 1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-120 Revision 27
IGLOO Low Power Flash FPGAs FIFO FIFO4K18 RW2 R D 1 7 RW1 R D 1 6 RW0 WW2 WW1 WW0 RD0 ESTOP FSTOP F U L L AFULL EMPTY AEVAL11 AEMPTY AEVAL10 AEVAL0 AFVAL11 AFVAL10 AFVAL0 REN RBLK RCLK WD17 WD16 WD0 WEN WBLK WCLK RPIPE RESET Figure 2-37 • FIFO Model Revision 27 2-121
IGLOO DC and Switching Characteristics Timing Waveforms t CYC RCLK t t ENS ENH REN t t BKS BKH RBLK t CKQ1 (flow-througRhD) Dn D0 D1 D2 t CKQ2 RD D D D (pipelined) n 0 1 Figure 2-38 • FIFO Read t CYC WCLK t t ENS ENH WEN t t BKS BKH WBLK t t DS DH WD DI0 DI1 Figure 2-39 • FIFO Write 2-122 Revision 27
IGLOO Low Power Flash FPGAs RCLK/ WCLK t t MPWRSTB RSTCK RESET t RSTFG EMPTY t RSTAF AEMPTY t RSTFG FULL t RSTAF AFULL WA/RA (Address Counter) MATCH (A ) 0 Figure 2-40 • FIFO Reset t CYC RCLK t RCKEF EMPTY t CKAF AEMPTY WA/RA NO MATCH NO MATCH Dist = AEF_TH MATCH (EMPTY) (Address Counter) Figure 2-41 • FIFO EMPTY Flag and AEMPTY Flag Assertion Revision 27 2-123
IGLOO DC and Switching Characteristics t CYC WCLK t WCKFF FULL t CKAF AFULL WA/RA NO MATCH NO MATCH Dist = AFF_TH MATCH (FULL) (Address Counter) Figure 2-42 • FIFO FULL Flag and AFULL Flag Assertion WCLK WA/RA MATCH NO MATCH NO MATCH NO MATCH NO MATCH Dist = AEF_TH + 1 (Address Counter) (EMPTY) 1st Rising 2nd Rising Edge Edge After 1st After 1st RCLK Write Write t RCKEF EMPTY t CKAF AEMPTY Figure 2-43 • FIFO EMPTY Flag and AEMPTY Flag Deassertion RCLK WA/RA MATCH (FULL) NO MATCH NO MATCH NO MATCH NO MATCH Dist = AFF_TH – 1 (Address Counter) 1st Rising 1st Rising Edge Edge After 1st After 2nd WCLK Read Read t WCKF FULL t CKAF AFULL Figure 2-44 • FIFO FULL Flag and AFULL Flag Deassertion 2-124 Revision 27
IGLOO Low Power Flash FPGAs Timing Characteristics 1.5 V DC Core Voltage Table 2-195 • FIFO Worst Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Parameter Description Std. Units t REN, WEN Setup Time 1.99 ns ENS t REN, WEN Hold Time 0.16 ns ENH t BLK Setup Time 0.30 ns BKS t BLK Hold Time 0.00 ns BKH t Input Data (WD) Setup Time 0.76 ns DS t Input Data (WD) Hold Time 0.25 ns DH t Clock High to New Data Valid on RD (flow-through) 3.33 ns CKQ1 t Clock High to New Data Valid on RD (pipelined) 1.80 ns CKQ2 t RCLK High to Empty Flag Valid 3.53 ns RCKEF t WCLK High to Full Flag Valid 3.35 ns WCKFF t Clock High to Almost Empty/Full Flag Valid 12.85 ns CKAF t RESET Low to Empty/Full Flag Valid 3.48 ns RSTFG t RESET Low to Almost Empty/Full Flag Valid 12.72 ns RSTAF t RESET Low to Data Out Low on RD (flow-through) 2.02 ns RSTBQ RESET Low to Data Out Low on RD (pipelined) 2.02 ns t RESET Removal 0.61 ns REMRSTB t RESET Recovery 3.21 ns RECRSTB t RESET Minimum Pulse Width 0.68 ns MPWRSTB t Clock Cycle Time 6.24 ns CYC F Maximum Frequency for FIFO 160 MHz MAX Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Revision 27 2-125
IGLOO DC and Switching Characteristics 1.2 V DC Core Voltage Table 2-196 • FIFO Worst Commercial-Case Conditions: T = 70°C, VCC = 1.14 V J Parameter Description Std. Units t REN, WEN Setup Time 4.13 ns ENS t REN, WEN Hold Time 0.31 ns ENH t BLK Setup Time 0.47 ns BKS t BLK Hold Time 0.00 ns BKH t Input Data (WD) Setup Time 1.56 ns DS t Input Data (WD) Hold Time 0.49 ns DH t Clock High to New Data Valid on RD (flow-through) 6.80 ns CKQ1 t Clock High to New Data Valid on RD (pipelined) 3.62 ns CKQ2 t RCLK High to Empty Flag Valid 7.23 ns RCKEF t WCLK High to Full Flag Valid 6.85 ns WCKFF t Clock High to Almost Empty/Full Flag Valid 26.61 ns CKAF t RESET Low to Empty/Full Flag Valid 7.12 ns RSTFG t RESET Low to Almost Empty/Full Flag Valid 26.33 ns RSTAF t RESET Low to Data Out Low on RD (flow-through) 4.09 ns RSTBQ RESET Low to Data Out Low on RD (pipelined) 4.09 ns t RESET Removal 1.23 ns REMRSTB t RESET Recovery 6.58 ns RECRSTB t RESET Minimum Pulse Width 1.18 ns MPWRSTB t Clock Cycle Time 10.90 ns CYC F Maximum Frequency for FIFO 92 MHz MAX Note: For specific junction temperature and voltage supply levels, refer to Table2-7 on page2-7 for derating values. 2-126 Revision 27
IGLOO Low Power Flash FPGAs Embedded FlashROM Characteristics t t t SU SU SU CLK t t t HOLD HOLD HOLD Address A A 0 1 t t t CKQ2 CKQ2 CKQ2 Data D D D 0 0 1 Figure 2-45 • Timing Diagram Timing Characteristics 1.5 V DC Core Voltage Table 2-197 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Parameter Description Std. Units t Address Setup Time 0.57 ns SU t Address Hold Time 0.00 ns HOLD t Clock to Out 34.14 ns CK2Q F Maximum Clock Frequency 15 MHz MAX 1.2 V DC Core Voltage Table 2-198 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T = 70°C, VCC = 1.14 V J Parameter Description Std. Units t Address Setup Time 0.59 ns SU t Address Hold Time 0.00 ns HOLD t Clock to Out 52.90 ns CK2Q F Maximum Clock Frequency 10 MHz MAX Revision 27 2-127
IGLOO DC and Switching Characteristics JTAG 1532 Characteristics JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page2-20 for more details. Timing Characteristics Table 2-199 • JTAG 1532 Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description Std. Units t Test Data Input Setup Time 1.00 ns DISU t Test Data Input Hold Time 2.00 ns DIHD t Test Mode Select Setup Time 1.00 ns TMSSU t Test Mode Select Hold Time 2.00 ns TMDHD t Clock to Q (data out) 8.00 ns TCK2Q t Reset to Q (data out) 25.00 ns RSTB2Q F TCK Maximum Frequency 15 MHz TCKMAX t ResetB Removal Time 0.58 ns TRSTREM t ResetB Recovery Time 0.00 ns TRSTREC t ResetB Minimum Pulse TBD ns TRSTMPW Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. Table 2-200 • JTAG 1532 Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.14 V J Parameter Description Std. Units t Test Data Input Setup Time 1.50 ns DISU t Test Data Input Hold Time 3.00 ns DIHD t Test Mode Select Setup Time 1.50 ns TMSSU t Test Mode Select Hold Time 3.00 ns TMDHD t Clock to Q (data out) 11.00 ns TCK2Q t Reset to Q (data out) 30.00 ns RSTB2Q F TCK Maximum Frequency 9.00 MHz TCKMAX t ResetB Removal Time 1.18 ns TRSTREM t ResetB Recovery Time 0.00 ns TRSTREC t ResetB Minimum Pulse TBD ns TRSTMPW Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-7 for derating values. 2-128 Revision 27
3 – Pin Descriptions Supply Pins GND Ground Ground supply voltage to the core, I/O outputs, and I/O logic. GNDQ Ground (quiet) Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board. VCC Core Supply Voltage Supply voltage to the FPGA core, nominally 1.5V for IGLOO V5 devices, and 1.2V or 1.5V for IGLOO V2 devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device. For IGLOO V2 devices, VCC can be switched dynamically from 1.2V to 1.5V or vice versa. This allows in-system programming (ISP) when VCC is at 1.5V and the benefit of low power operation when VCC is at 1.2V. VCCIBx I/O Supply Voltage Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on IGLOO devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2V, 1.5V, 1.8V, 2.5V, or 3.3V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND. VMVx I/O Supply Voltage (quiet) Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2V, 1.5V, 1.8V, 2.5V, or 3.3V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.). VCCPLA/B/C/D/E/F PLL Supply Voltage Supply voltage to analog PLL, nominally 1.5 V or 1.2 V. • 1.5 V for IGLOO V5 devices • 1.2 V or 1.5 V for IGLOO V2 devices When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the IGLOO FPGA Fabric User Guide for a complete board solution for the PLL analog power supply and ground. • There is one VCCPLF pin on IGLOO devices. VCOMPLA/B/C/D/E/F PLL Ground Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-and- route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. There is one VCOMPLF pin on IGLOO devices. Revision 27 3-1
IGLOO Low Power Flash FPGAs VJTAG JTAG Supply Voltage Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5V to 3.3V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode. Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. VPUMP Programming Supply Voltage IGLOO devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet. When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry. For proper programming, 0.01µF and 0.33µF capacitors (both rated at 16V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible. Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. User Pins I/O User Input/Output The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected. During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration. Unused I/Os are configured as follows: • Output buffer is disabled (with tristate value of high impedance) • Input buffer is disabled (with tristate value of high impedance) • Weak pull-up is programmed GL Globals GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the IGLOO FPGA Fabric User Guide. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input. Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the IGLOO FPGA Fabric User Guide for an explanation of the naming of global pins. FF Flash*Freeze Mode Activation Pin Flash*Freeze mode is available on IGLOO devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O. When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted. Revision 27 3-2
Pin Descriptions The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered. Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required. Table3-1 shows the Flash*Freeze pin location on the available packages for IGLOO a devices. The Flash*Freeze pin location is independent of device, allowing migration to larger or smaller IGLOO devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the IGLOO FPGA Fabric User Guide for more information on I/O states during Flash*Freeze mode. Table 3-1 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent) IGLOO Packages Flash*Freeze Pin CS81/UC81 H2 CS121 J5 CS196 P3 CS281 W2 QN48 14 QN68 18 QN132 B12 VQ100 27 FG144 L3 FG256 T3 FG484 W6 3-3 Revision 27
IGLOO Low Power Flash FPGAs JTAG Pins IGLOO devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5V to 3.3V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. TCK Test Clock Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state. Note that to operate at all VJTAG voltages, 500 to 1k will satisfy the requirements. Refer to Table3-2 for more information. Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins VJTAG Tie-Off Resistance1,2 VJTAG at 3.3 V 200 to 1 k VJTAG at 2.5 V 200 to 1 k VJTAG at 1.8 V 500 to 1 k VJTAG at 1.5 V 500 to 1 k Notes: 1. The TCK pin can be pulled-up or pulled-down. 2. The TRST pin is pulled-down. 3. Equivalent parallel resistance if more than one device is on the JTAG chain Table 3-3 • TRST and TCK Pull-Down Recommendations VJTAG Tie-Off Resistance* VJTAG at 3.3 V 200 to 1 k VJTAG at 2.5 V 200 to 1 k VJTAG at 1.8 V 500 to 1 k VJTAG at 1.5 V 500 to 1 k Note: Equivalent parallel resistance if more than one device is on the JTAG chain TDI Test Data Input Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin. TDO Test Data Output Serial output for JTAG boundary scan, ISP, and UJTAG usage. TMS Test Mode Select The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin. TRST Boundary Scan Reset Pin The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table3-2 and must satisfy the parallel resistance value requirement. The values in Table3-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain. In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin. Revision 27 3-4
Pin Descriptions Note that to operate at all VJTAG voltages, 500 to 1k will satisfy the requirements. Special Function Pins NC No Connect This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device. DC Do Not Connect This pin should not be connected to any signals on the PCB. These pins should be left unconnected. Packaging Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility. Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems. Related Documents User Guides IGLOO FPGA Fabric User Guide http://www.microsemi.com/soc/documents/IGLOO_UG.pdf Packaging Documents The following documents provide packaging information and device selection for low power flash devices. Product Catalog http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use. Package Mechanical Drawings http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings. Additional packaging materials are available on the Microsemi SoC Products Group website at http://www.microsemi.com/soc/products/solutions/package/docs.aspx. 3-5 Revision 27
4 – Package Pin Assignments UC81 A1 Ball Pad Corner 9 8 7 6 5 4 3 2 1 A B C D E F G H J Note: This is the bottom view of the package. Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 27 4-1
Package Pin Assignments UC81 UC81 UC81 Pin Number AGL030 Function Pin Number AGL030 Function Pin Number AGL030 Function A1 IO00RSB0 E1 GEB0/IO71RSB1 J1 IO63RSB1 A2 IO02RSB0 E2 GEA0/IO72RSB1 J2 IO61RSB1 A3 IO06RSB0 E3 GEC0/IO73RSB1 J3 IO59RSB1 A4 IO11RSB0 E4 VCCIB1 J4 IO56RSB1 A5 IO16RSB0 E5 VCC J5 IO52RSB1 A6 IO19RSB0 E6 VCCIB0 J6 IO44RSB1 A7 IO22RSB0 E7 GDC0/IO32RSB0 J7 TCK A8 IO24RSB0 E8 GDA0/IO33RSB0 J8 TMS A9 IO26RSB0 E9 GDB0/IO34RSB0 J9 VPUMP B1 IO81RSB1 F1 IO68RSB1 B2 IO04RSB0 F2 IO67RSB1 B3 IO10RSB0 F3 IO64RSB1 B4 IO13RSB0 F4 GND B5 IO15RSB0 F5 VCCIB1 B6 IO20RSB0 F6 IO47RSB1 B7 IO21RSB0 F7 IO36RSB0 B8 IO28RSB0 F8 IO38RSB0 B9 IO25RSB0 F9 IO40RSB0 C1 IO79RSB1 G1 IO65RSB1 C2 IO80RSB1 G2 IO66RSB1 C3 IO08RSB0 G3 IO57RSB1 C4 IO12RSB0 G4 IO53RSB1 C5 IO17RSB0 G5 IO49RSB1 C6 IO14RSB0 G6 IO45RSB1 C7 IO18RSB0 G7 IO46RSB1 C8 IO29RSB0 G8 VJTAG C9 IO27RSB0 G9 TRST D1 IO74RSB1 H1 IO62RSB1 D2 IO76RSB1 H2 FF/IO60RSB1 D3 IO77RSB1 H3 IO58RSB1 D4 VCC H4 IO54RSB1 D5 VCCIB0 H5 IO48RSB1 D6 GND H6 IO43RSB1 D7 IO23RSB0 H7 IO42RSB1 D8 IO31RSB0 H8 TDI D9 IO30RSB0 H9 TDO 4-2 Revision 27
IGLOO Low Power Flash FPGAs CS81 A1 Ball Pad Corner 9 8 7 6 5 4 3 2 1 A B C D E F G H J Note: This is the bottom view of the package. Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 27 4-3
Package Pin Assignments CS81 CS81 CS81 Pin Number AGL030 Function Pin Number AGL030 Function Pin Number AGL030 Function A1 IO00RSB0 E1 GEB0/IO71RSB1 J1 IO63RSB1 A2 IO02RSB0 E2 GEA0/IO72RSB1 J2 IO61RSB1 A3 IO06RSB0 E3 GEC0/IO73RSB1 J3 IO59RSB1 A4 IO11RSB0 E4 VCCIB1 J4 IO56RSB1 A5 IO16RSB0 E5 VCC J5 IO52RSB1 A6 IO19RSB0 E6 VCCIB0 J6 IO45RSB1 A7 IO22RSB0 E7 GDC0/IO32RSB0 J7 TCK A8 IO24RSB0 E8 GDA0/IO33RSB0 J8 TMS A9 IO26RSB0 E9 GDB0/IO34RSB0 J9 VPUMP B1 IO81RSB1 F1 IO68RSB1 B2 IO04RSB0 F2 IO67RSB1 B3 IO10RSB0 F3 IO64RSB1 B4 IO13RSB0 F4 GND B5 IO15RSB0 F5 VCCIB1 B6 IO20RSB0 F6 IO47RSB1 B7 IO21RSB0 F7 IO36RSB0 B8 IO28RSB0 F8 IO38RSB0 B9 IO25RSB0 F9 IO40RSB0 C1 IO79RSB1 G1 IO65RSB1 C2 IO80RSB1 G2 IO66RSB1 C3 IO08RSB0 G3 IO57RSB1 C4 IO12RSB0 G4 IO53RSB1 C5 IO17RSB0 G5 IO49RSB1 C6 IO14RSB0 G6 IO44RSB1 C7 IO18RSB0 G7 IO46RSB1 C8 IO29RSB0 G8 VJTAG C9 IO27RSB0 G9 TRST D1 IO74RSB1 H1 IO62RSB1 D2 IO76RSB1 H2 FF/IO60RSB1 D3 IO77RSB1 H3 IO58RSB1 D4 VCC H4 IO54RSB1 D5 VCCIB0 H5 IO48RSB1 D6 GND H6 IO43RSB1 D7 IO23RSB0 H7 IO42RSB1 D8 IO31RSB0 H8 TDI D9 IO30RSB0 H9 TDO 4-4 Revision 27
IGLOO Low Power Flash FPGAs CS81 CS81 CS81 Pin Number AGL250 Function Pin Number AGL250 Function Pin Number AGL250 Function A1 GAA0/IO00RSB0 E1 GFB0/IO109NDB3 J1 GEA2/IO97RSB2 A2 GAA1/IO01RSB0 E2 GFB1/IO109PDB3 J2 GEC2/IO95RSB2 A3 GAC0/IO04RSB0 E3 GFA1/IO108PSB3 J3 IO92RSB2 A4 IO13RSB0 E4 VCCIB3 J4 IO88RSB2 A5 IO21RSB0 E5 VCC J5 IO84RSB2 A6 IO27RSB0 E6 VCCIB1 J6 IO74RSB2 A7 GBB0/IO37RSB0 E7 GCA0/IO50NDB1 J7 TCK A8 GBA1/IO40RSB0 E8 GCA1/IO50PDB1 J8 TMS A9 GBA2/IO41PPB1 E9 GCB2/IO52PPB1 J9 VPUMP B1 GAA2/IO118UPB3 F1 VCCPLF B2 GAB0/IO02RSB0 F2 VCOMPLF B3 GAC1/IO05RSB0 F3 GND B4 IO11RSB0 F4 GND B5 IO23RSB0 F5 VCCIB2 B6 GBC0/IO35RSB0 F6 GND B7 GBB1/IO38RSB0 F7 GDA1/IO60USB1 B8 IO41NPB1 F8 GDC1/IO58UDB1 B9 GBB2/IO42PSB1 F9 GDC0/IO58VDB1 C1 GAB2/IO117UPB3 G1 GEA0/IO98NDB3 C2 IO118VPB3 G2 GEC1/IO100PDB3 C3 GND G3 GEC0/IO100NDB3 C4 IO15RSB0 G4 IO91RSB2 C5 IO25RSB0 G5 IO86RSB2 C6 GND G6 IO71RSB2 C7 GBA0/IO39RSB0 G7 GDB2/IO62RSB2 C8 GBC2/IO43PDB1 G8 VJTAG C9 IO43NDB1 G9 TRST D1 GAC2/IO116USB3 H1 GEA1/IO98PDB3 D2 IO117VPB3 H2 FF/GEB2/IO96RSB2 D3 GFA2/IO107PSB3 H3 IO93RSB2 D4 VCC H4 IO90RSB2 D5 VCCIB0 H5 IO85RSB2 D6 GND H6 IO77RSB2 D7 IO52NPB1 H7 GDA2/IO61RSB2 D8 GCC1/IO48PDB1 H8 TDI D9 GCC0/IO48NDB1 H9 TDO Revision 27 4-5
Package Pin Assignments CS121 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L Note: This is the bottom view of the package. Note For more information on package drawings, see PD3068: Package Mechanical Drawings. 4-6 Revision 27
IGLOO Low Power Flash FPGAs CS121 CS121 CS121 Pin Number AGL060 Function Pin Number AGL060 Function Pin Number AGL060 Function A1 GNDQ D4 IO10RSB0 G7 VCC A2 IO01RSB0 D5 IO11RSB0 G8 GDC0/IO46RSB0 A3 GAA1/IO03RSB0 D6 IO18RSB0 G9 GDA1/IO49RSB0 A4 GAC1/IO07RSB0 D7 IO32RSB0 G10 GDB0/IO48RSB0 A5 IO15RSB0 D8 IO31RSB0 G11 GCA0/IO40RSB0 A6 IO13RSB0 D9 GCA2/IO41RSB0 H1 IO75RSB1 A7 IO17RSB0 D10 IO30RSB0 H2 IO76RSB1 A8 GBB1/IO22RSB0 D11 IO33RSB0 H3 GFC2/IO78RSB1 A9 GBA1/IO24RSB0 E1 IO87RSB1 H4 GFA2/IO80RSB1 A10 GNDQ E2 GFC0/IO85RSB1 H5 IO77RSB1 A11 VMV0 E3 IO92RSB1 H6 GEC2/IO66RSB1 B1 GAA2/IO95RSB1 E4 IO94RSB1 H7 IO54RSB1 B2 IO00RSB0 E5 VCC H8 GDC2/IO53RSB1 B3 GAA0/IO02RSB0 E6 VCCIB0 H9 VJTAG B4 GAC0/IO06RSB0 E7 GND H10 TRST B5 IO08RSB0 E8 GCC0/IO36RSB0 H11 IO44RSB0 B6 IO12RSB0 E9 IO34RSB0 J1 GEC1/IO74RSB1 B7 IO16RSB0 E10 GCB1/IO37RSB0 J2 GEC0/IO73RSB1 B8 GBC1/IO20RSB0 E11 GCC1/IO35RSB0 J3 GEB1/IO72RSB1 B9 GBB0/IO21RSB0 F1* VCOMPLF J4 GEA0/IO69RSB1 B10 GBB2/IO27RSB0 F2 GFB0/IO83RSB1 J5 FF/GEB2/IO67RSB1 B11 GBA2/IO25RSB0 F3 GFA0/IO82RSB1 J6 IO62RSB1 C1 IO89RSB1 F4 GFC1/IO86RSB1 J7 GDA2/IO51RSB1 C2 GAC2/IO91RSB1 F5 VCCIB1 J8 GDB2/IO52RSB1 C3 GAB1/IO05RSB0 F6 VCC J9 TDI C4 GAB0/IO04RSB0 F7 VCCIB0 J10 TDO C5 IO09RSB0 F8 GCB2/IO42RSB0 J11 GDC1/IO45RSB0 C6 IO14RSB0 F9 GCC2/IO43RSB0 K1 GEB0/IO71RSB1 C7 GBA0/IO23RSB0 F10 GCB0/IO38RSB0 K2 GEA1/IO70RSB1 C8 GBC0/IO19RSB0 F11 GCA1/IO39RSB0 K3 GEA2/IO68RSB1 C9 IO26RSB0 G1* VCCPLF K4 IO64RSB1 C10 IO28RSB0 G2 GFB2/IO79RSB1 K5 IO60RSB1 C11 GBC2/IO29RSB0 G3 GFA1/IO81RSB1 K6 IO59RSB1 D1 IO88RSB1 G4 GFB1/IO84RSB1 K7 IO56RSB1 D2 IO90RSB1 G5 GND K8 TCK D3 GAB2/IO93RSB1 G6 VCCIB1 K9 TMS Note: *Pin numbers F1 and G1 must be connected to ground because a PLL is not supported for AGL060-CS/G121. Revision 27 4-7
Package Pin Assignments CS121 Pin Number AGL060 Function K10 VPUMP K11 GDB1/IO47RSB0 L1 VMV1 L2 GNDQ L3 IO65RSB1 L4 IO63RSB1 L5 IO61RSB1 L6 IO58RSB1 L7 IO57RSB1 L8 IO55RSB1 L9 GNDQ L10 GDA0/IO50RSB0 L11 VMV1 4-8 Revision 27
IGLOO Low Power Flash FPGAs CS196 A1 Ball Pad Corner 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P Note: This is the bottom view of the package. Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 27 4-9
Package Pin Assignments CS196 CS196 CS196 Pin Number AGL125 Function Pin Number AGL125 Function Pin Number AGL125 Function A1 GND C9 IO23RSB0 F3 IO113RSB1 A2 GAA0/IO00RSB0 C10 IO29RSB0 F4 IO112RSB1 A3 GAC0/IO04RSB0 C11 VCCIB0 F5 IO111RSB1 A4 GAC1/IO05RSB0 C12 IO42RSB0 F6 NC A5 IO09RSB0 C13 GNDQ F7 VCC A6 IO15RSB0 C14 IO44RSB0 F8 VCC A7 IO18RSB0 D1 IO127RSB1 F9 NC A8 IO22RSB0 D2 IO129RSB1 F10 IO07RSB0 A9 IO27RSB0 D3 GAA2/IO132RSB1 F11 IO25RSB0 A10 GBC0/IO35RSB0 D4 IO126RSB1 F12 IO10RSB0 A11 GBB0/IO37RSB0 D5 IO06RSB0 F13 IO33RSB0 A12 GBB1/IO38RSB0 D6 IO13RSB0 F14 IO47RSB0 A13 GBA1/IO40RSB0 D7 IO19RSB0 G1 GFB1/IO121RSB1 A14 GND D8 IO21RSB0 G2 GFA0/IO119RSB1 B1 VCCIB1 D9 IO26RSB0 G3 GFA2/IO117RSB1 B2 VMV0 D10 IO31RSB0 G4 VCOMPLF B3 GAA1/IO01RSB0 D11 IO30RSB0 G5 GFC0/IO122RSB1 B4 GAB1/IO03RSB0 D12 VMV0 G6 VCC B5 GND D13 IO46RSB0 G7 GND B6 IO16RSB0 D14 GBC2/IO45RSB0 G8 GND B7 IO20RSB0 E1 IO125RSB1 G9 VCC B8 IO24RSB0 E2 GND G10 GCC0/IO52RSB0 B9 IO28RSB0 E3 IO131RSB1 G11 GCB1/IO53RSB0 B10 GND E4 VCCIB1 G12 GCA0/IO56RSB0 B11 GBC1/IO36RSB0 E5 NC G13 IO48RSB0 B12 GBA0/IO39RSB0 E6 IO08RSB0 G14 GCC2/IO59RSB0 B13 GBA2/IO41RSB0 E7 IO17RSB0 H1 GFB0/IO120RSB1 B14 GBB2/IO43RSB0 E8 IO12RSB0 H2 GFA1/IO118RSB1 C1 GAC2/IO128RSB1 E9 IO11RSB0 H3 VCCPLF C2 GAB2/IO130RSB1 E10 NC H4 GFB2/IO116RSB1 C3 GNDQ E11 VCCIB0 H5 GFC1/IO123RSB1 C4 VCCIB0 E12 IO32RSB0 H6 VCC C5 GAB0/IO02RSB0 E13 GND H7 GND C6 IO14RSB0 E14 IO34RSB0 H8 GND C7 VCCIB0 F1 IO124RSB1 H9 VCC C8 NC F2 IO114RSB1 H10 GCC1/IO51RSB0 4-10 Revision 27
IGLOO Low Power Flash FPGAs CS196 CS196 CS196 Pin Number AGL125 Function Pin Number AGL125 Function Pin Number AGL125 Function H11 GCB0/IO54RSB0 L5 IO91RSB1 N13 GNDQ H12 GCA1/IO55RSB0 L6 IO90RSB1 N14 TDO H13 IO49RSB0 L7 IO83RSB1 P1 GND H14 GCA2/IO57RSB0 L8 IO81RSB1 P2 GEA2/IO103RSB1 J1 GFC2/IO115RSB1 L9 IO71RSB1 P3 FF/GEB2/IO102RSB1 J2 IO110RSB1 L10 IO70RSB1 P4 IO98RSB1 J3 IO94RSB1 L11 VPUMP P5 IO97RSB1 J4 IO93RSB1 L12 VJTAG P6 IO85RSB1 J5 IO89RSB1 L13 GDA0/IO66RSB0 P7 IO84RSB1 J6 NC L14 GDB0/IO64RSB0 P8 IO79RSB1 J7 VCC M1 GEB0/IO106RSB1 P9 IO77RSB1 J8 VCC M2 GEA1/IO105RSB1 P10 IO75RSB1 J9 NC M3 GNDQ P11 GDC2/IO69RSB1 J10 IO60RSB0 M4 VCCIB1 P12 GDA2/IO67RSB1 J11 GCB2/IO58RSB0 M5 IO92RSB1 P13 TMS J12 IO50RSB0 M6 IO88RSB1 P14 GND J13 GDC1/IO61RSB0 M7 NC J14 GDC0/IO62RSB0 M8 VCCIB1 K1 IO99RSB1 M9 IO76RSB1 K2 GND M10 GDB2/IO68RSB1 K3 IO95RSB1 M11 VCCIB1 K4 VCCIB1 M12 VMV1 K5 NC M13 TRST K6 IO86RSB1 M14 VCCIB0 K7 IO80RSB1 N1 GEA0/IO104RSB1 K8 IO74RSB1 N2 VMV1 K9 IO72RSB1 N3 GEC2/IO101RSB1 K10 NC N4 IO100RSB1 K11 VCCIB0 N5 GND K12 GDA1/IO65RSB0 N6 IO87RSB1 K13 GND N7 IO82RSB1 K14 GDB1/IO63RSB0 N8 IO78RSB1 L1 GEB1/IO107RSB1 N9 IO73RSB1 L2 GEC1/IO109RSB1 N10 GND L3 GEC0/IO108RSB1 N11 TCK L4 IO96RSB1 N12 TDI Revision 27 4-11
Package Pin Assignments CS196 CS196 CS196 Pin Number AGL250 Function Pin Number AGL250 Function Pin Number AGL250 Function A1 GND C9 IO30RSB0 F3 IO111PDB3 A2 GAA0/IO00RSB0 C10 IO33RSB0 F4 IO111NDB3 A3 GAC0/IO04RSB0 C11 VCCIB0 F5 IO113NPB3 A4 GAC1/IO05RSB0 C12 IO41NPB1 F6 IO06RSB0 A5 IO10RSB0 C13 GNDQ F7 VCC A6 IO13RSB0 C14 IO42NDB1 F8 VCC A7 IO17RSB0 D1 IO116VDB3 F9 IO28RSB0 A8 IO19RSB0 D2 IO117VDB3 F10 IO54PDB1 A9 IO23RSB0 D3 GAA2/IO118UDB3 F11 IO54NDB1 A10 GBC0/IO35RSB0 D4 IO113PPB3 F12 IO47NDB1 A11 GBB0/IO37RSB0 D5 IO08RSB0 F13 IO47PDB1 A12 GBB1/IO38RSB0 D6 IO14RSB0 F14 IO45NDB1 A13 GBA1/IO40RSB0 D7 IO15RSB0 G1 GFB1/IO109PDB3 A14 GND D8 IO18RSB0 G2 GFA0/IO108NDB3 B1 VCCIB3 D9 IO25RSB0 G3 GFA2/IO107PPB3 B2 VMV0 D10 IO32RSB0 G4 VCOMPLF B3 GAA1/IO01RSB0 D11 IO44PPB1 G5 GFC0/IO110NDB3 B4 GAB1/IO03RSB0 D12 VMV1 G6 VCC B5 GND D13 IO43NDB1 G7 GND B6 IO12RSB0 D14 GBC2/IO43PDB1 G8 GND B7 IO16RSB0 E1 IO112PDB3 G9 VCC B8 IO22RSB0 E2 GND G10 GCC0/IO48NDB1 B9 IO24RSB0 E3 IO118VDB3 G11 GCB1/IO49PDB1 B10 GND E4 VCCIB3 G12 GCA0/IO50NDB1 B11 GBC1/IO36RSB0 E5 IO114USB3 G13 IO53NDB1 B12 GBA0/IO39RSB0 E6 IO07RSB0 G14 GCC2/IO53PDB1 B13 GBA2/IO41PPB1 E7 IO09RSB0 H1 GFB0/IO109NDB3 B14 GBB2/IO42PDB1 E8 IO21RSB0 H2 GFA1/IO108PDB3 C1 GAC2/IO116UDB3 E9 IO31RSB0 H3 VCCPLF C2 GAB2/IO117UDB3 E10 IO34RSB0 H4 GFB2/IO106PPB3 C3 GNDQ E11 VCCIB1 H5 GFC1/IO110PDB3 C4 VCCIB0 E12 IO44NPB1 H6 VCC C5 GAB0/IO02RSB0 E13 GND H7 GND C6 IO11RSB0 E14 IO45PDB1 H8 GND C7 VCCIB0 F1 IO112NDB3 H9 VCC C8 IO20RSB0 F2 IO107NPB3 H10 GCC1/IO48PDB1 4-12 Revision 27
IGLOO Low Power Flash FPGAs CS196 CS196 CS196 Pin Number AGL250 Function Pin Number AGL250 Function Pin Number AGL250 Function H11 GCB0/IO49NDB1 L5 IO89RSB2 N13 GNDQ H12 GCA1/IO50PDB1 L6 IO92RSB2 N14 TDO H13 IO51NDB1 L7 IO75RSB2 P1 GND H14 GCA2/IO51PDB1 L8 IO66RSB2 P2 GEA2/IO97RSB2 J1 GFC2/IO105PDB3 L9 IO65RSB2 P3 FF/GEB2/IO96RSB2 J2 IO104PPB3 L10 IO71RSB2 P4 IO90RSB2 J3 IO106NPB3 L11 VPUMP P5 IO85RSB2 J4 IO103PDB3 L12 VJTAG P6 IO83RSB2 J5 IO103NDB3 L13 GDA0/IO60VPB1 P7 IO79RSB2 J6 IO80RSB2 L14 GDB0/IO59VDB1 P8 IO76RSB2 J7 VCC M1 GEB0/IO99NDB3 P9 IO72RSB2 J8 VCC M2 GEA1/IO98PPB3 P10 IO68RSB2 J9 IO64RSB2 M3 GNDQ P11 GDC2/IO63RSB2 J10 IO56PDB1 M4 VCCIB2 P12 GDA2/IO61RSB2 J11 GCB2/IO52PDB1 M5 IO88RSB2 P13 TMS J12 IO52NDB1 M6 IO87RSB2 P14 GND J13 GDC1/IO58UDB1 M7 IO82RSB2 J14 GDC0/IO58VDB1 M8 VCCIB2 K1 IO105NDB3 M9 IO67RSB2 K2 GND M10 GDB2/IO62RSB2 K3 IO104NPB3 M11 VCCIB2 K4 VCCIB3 M12 VMV2 K5 IO101PPB3 M13 TRST K6 IO91RSB2 M14 VCCIB1 K7 IO81RSB2 N1 GEA0/IO98NPB3 K8 IO73RSB2 N2 VMV3 K9 IO77RSB2 N3 GEC2/IO95RSB2 K10 IO56NDB1 N4 IO94RSB2 K11 VCCIB1 N5 GND K12 GDA1/IO60UPB1 N6 IO86RSB2 K13 GND N7 IO78RSB2 K14 GDB1/IO59UDB1 N8 IO74RSB2 L1 GEB1/IO99PDB3 N9 IO69RSB2 L2 GEC1/IO100PDB3 N10 GND L3 GEC0/IO100NDB3 N11 TCK L4 IO101NPB3 N12 TDI Revision 27 4-13
Package Pin Assignments CS196 CS196 CS196 Pin Number AGL400 Function Pin Number AGL400 Function Pin Number AGL400 Function A1 GND C8 IO31RSB0 F2 IO144NPB3 A2 GAA0/IO00RSB0 C9 IO44RSB0 F3 IO148PDB3 A3 GAC0/IO04RSB0 C10 IO49RSB0 F4 IO148NDB3 A4 GAC1/IO05RSB0 C11 VCCIB0 F5 IO150NPB3 A5 IO14RSB0 C12 IO60NPB1 F6 IO07RSB0 A6 IO18RSB0 C13 GNDQ F7 VCC A7 IO26RSB0 C14 IO61NDB1 F8 VCC A8 IO29RSB0 D1 IO153VDB3 F9 IO43RSB0 A9 IO36RSB0 D2 IO154VDB3 F10 IO73PDB1 A10 GBC0/IO54RSB0 D3 GAA2/IO155UDB3 F11 IO73NDB1 A11 GBB0/IO56RSB0 D4 IO150PPB3 F12 IO66NDB1 A12 GBB1/IO57RSB0 D5 IO11RSB0 F13 IO66PDB1 A13 GBA1/IO59RSB0 D6 IO20RSB0 F14 IO64NDB1 A14 GND D7 IO23RSB0 G1 GFB1/IO146PDB3 B1 VCCIB3 D8 IO28RSB0 G2 GFA0/IO145NDB3 B2 VMV0 D9 IO41RSB0 G3 GFA2/IO144PPB3 B2 VMV0 D10 IO47RSB0 G4 VCOMPLF B3 GAA1/IO01RSB0 D11 IO63PPB1 G5 GFC0/IO147NDB3 B4 GAB1/IO03RSB0 D12 VMV1 G6 VCC B5 GND D13 IO62NDB1 G7 GND B6 IO17RSB0 D14 GBC2/IO62PDB1 G8 GND B7 IO25RSB0 E1 IO149PDB3 G9 VCC B8 IO34RSB0 E2 GND G10 GCC0/IO67NDB1 B9 IO39RSB0 E3 IO155VDB3 G11 GCB1/IO68PDB1 B10 GND E4 VCCIB3 G12 GCA0/IO69NDB1 B11 GBC1/IO55RSB0 E5 IO151USB3 G13 IO72NDB1 B12 GBA0/IO58RSB0 E6 IO09RSB0 G14 GCC2/IO72PDB1 B13 GBA2/IO60PPB1 E7 IO12RSB0 H1 GFB0/IO146NDB3 B14 GBB2/IO61PDB1 E8 IO32RSB0 H2 GFA1/IO145PDB3 C1 GAC2/IO153UDB3 E9 IO46RSB0 H3 VCCPLF C2 GAB2/IO154UDB3 E10 IO51RSB0 H4 GFB2/IO143PPB3 C3 GNDQ E11 VCCIB1 H5 GFC1/IO147PDB3 C4 VCCIB0 E12 IO63NPB1 H6 VCC C5 GAB0/IO02RSB0 E13 GND H7 GND C6 IO15RSB0 E14 IO64PDB1 H8 GND C7 VCCIB0 F1 IO149NDB3 H9 VCC 4-14 Revision 27
IGLOO Low Power Flash FPGAs CS196 CS196 CS196 Pin Number AGL400 Function Pin Number AGL400 Function Pin Number AGL400 Function H10 GCC1/IO67PDB1 L4 IO138NPB3 N11 TCK H11 GCB0/IO68NDB1 L5 IO122RSB2 N12 TDI H12 GCA1/IO69PDB1 L6 IO128RSB2 N13 GNDQ H13 IO70NDB1 L7 IO101RSB2 N14 TDO H14 GCA2/IO70PDB1 L8 IO88RSB2 P1 GND J1 GFC2/IO142PDB3 L9 IO86RSB2 P2 GEA2/IO134RSB2 J2 IO141PPB3 L10 IO94RSB2 P3 FF/GEB2/IO133RSB 2 J3 IO143NPB3 L11 VPUMP P4 IO123RSB2 J4 IO140PDB3 L12 VJTAG P5 IO116RSB2 J5 IO140NDB3 L13 GDA0/IO79VPB1 P6 IO114RSB2 J6 IO109RSB2 L14 GDB0/IO78VDB1 P7 IO107RSB2 J7 VCC M1 GEB0/IO136NDB3 P8 IO103RSB2 J8 VCC M2 GEA1/IO135PPB3 P9 IO95RSB2 J9 IO84RSB2 M3 GNDQ P10 IO91RSB2 J10 IO75PDB1 M4 VCCIB2 P11 GDC2/IO82RSB2 J11 GCB2/IO71PDB1 M5 IO120RSB2 P12 GDA2/IO80RSB2 J12 IO71NDB1 M6 IO119RSB2 P13 TMS J13 GDC1/IO77UDB1 M7 IO112RSB2 P14 GND J14 GDC0/IO77VDB1 M8 VCCIB2 K1 IO142NDB3 M9 IO89RSB2 K2 GND M10 GDB2/IO81RSB2 K3 IO141NPB3 M11 VCCIB2 K4 VCCIB3 M12 VMV2 K5 IO138PPB3 M12 VMV2 K6 IO125RSB2 M13 TRST K7 IO110RSB2 M14 VCCIB1 K8 IO98RSB2 N1 GEA0/IO135NPB3 K9 IO104RSB2 N2 VMV3 K10 IO75NDB1 N3 GEC2/IO132RSB2 K11 VCCIB1 N4 IO130RSB2 K12 GDA1/IO79UPB1 N5 GND K13 GND N6 IO117RSB2 K14 GDB1/IO78UDB1 N7 IO106RSB2 L1 GEB1/IO136PDB3 N8 IO100RSB2 L2 GEC1/IO137PDB3 N9 IO92RSB2 L3 GEC0/IO137NDB3 N10 GND Revision 27 4-15
Package Pin Assignments CS281 191817 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Note: This is the bottom view of the package. Note For more information on package drawings, see PD3068: Package Mechanical Drawings. 4-16 Revision 27
IGLOO Low Power Flash FPGAs CS281 CS281 CS281 Pin Number AGL600 Function Pin Number AGL600 Function Pin Number AGL600 Function A1 GND B18 VCCIB1 E13 IO46RSB0 A2 GAB0/IO02RSB0 B19 IO61NDB1 E14 GBB1/IO57RSB0 A3 GAC1/IO05RSB0 C1 GAB2/IO173PPB3 E15 IO62NPB1 A4 IO07RSB0 C2 IO174NPB3 E16 IO63PPB1 A5 IO10RSB0 C6 IO12RSB0 E18 IO64PPB1 A6 IO14RSB0 C14 IO50RSB0 E19 IO65NPB1 A7 IO18RSB0 C18 IO60NPB1 F1 IO168NPB3 A8 IO21RSB0 C19 GBB2/IO61PDB1 F2 GND A9 IO22RSB0 D1 IO170PPB3 F3 IO169PPB3 A10 VCCIB0 D2 IO172NPB3 F4 IO170NPB3 A11 IO33RSB0 D4 GAA0/IO00RSB0 F5 IO173NPB3 A12 IO40RSB0 D5 GAA1/IO01RSB0 F15 IO63NPB1 A13 IO37RSB0 D6 IO09RSB0 F16 IO65PPB1 A14 IO48RSB0 D7 IO16RSB0 F17 IO64NPB1 A15 IO51RSB0 D8 IO19RSB0 F18 GND A16 IO53RSB0 D9 IO26RSB0 F19 IO68PPB1 A17 GBC1/IO55RSB0 D10 GND G1 IO167NPB3 A18 GBA0/IO58RSB0 D11 IO34RSB0 G2 IO165NDB3 A19 GND D12 IO45RSB0 G4 IO168PPB3 B1 GAA2/IO174PPB3 D13 IO49RSB0 G5 IO167PPB3 B2 VCCIB0 D14 IO47RSB0 G7 GAC2/IO172PPB3 B3 GAB1/IO03RSB0 D15 GBB0/IO56RSB0 G8 VCCIB0 B4 GAC0/IO04RSB0 D16 GBA2/IO60PPB1 G9 IO28RSB0 B5 IO06RSB0 D18 GBC2/IO62PPB1 G10 IO32RSB0 B6 GND D19 IO66NPB1 G11 IO43RSB0 B7 IO15RSB0 E1 IO169NPB3 G12 VCCIB0 B8 IO20RSB0 E2 IO171PPB3 G13 IO66PPB1 B9 IO23RSB0 E4 IO171NPB3 G15 IO67NDB1 B10 IO24RSB0 E5 IO08RSB0 G16 IO67PDB1 B11 IO36RSB0 E6 IO11RSB0 G18 GCC0/IO69NPB1 B12 IO35RSB0 E7 IO13RSB0 G19 GCB1/IO70PPB1 B13 IO44RSB0 E8 IO17RSB0 H1 GFB0/IO163NPB3 B14 GND E9 IO25RSB0 H2 IO165PDB3 B15 IO52RSB0 E10 IO30RSB0 H4 GFC1/IO164PPB3 B16 GBC0/IO54RSB0 E11 IO41RSB0 H5 GFB1/IO163PPB3 B17 GBA1/IO59RSB0 E12 IO42RSB0 H7 VCCIB3 Revision 27 4-17
Package Pin Assignments CS281 CS281 CS281 Pin Number AGL600 Function Pin Number AGL600 Function Pin Number AGL600 Function H8 VCC K15 IO73NPB1 N4 IO150PPB3 H9 VCCIB0 K16 GND N5 IO148NPB3 H10 VCC K18 IO74NPB1 N7 GEA2/IO143RSB2 H11 VCCIB0 K19 VCCIB1 N8 VCCIB2 H12 VCC L1 GFB2/IO160PDB3 N9 IO117RSB2 H13 VCCIB1 L2 IO160NDB3 N10 IO115RSB2 H15 IO68NPB1 L4 GFC2/IO159PPB3 N11 IO114RSB2 H16 GCB0/IO70NPB1 L5 IO153PPB3 N12 VCCIB2 H18 GCA1/IO71PPB1 L7 IO153NPB3 N13 VPUMP H19 GCA2/IO72PPB1 L8 VCCIB3 N15 IO82PPB1 J1 VCOMPLF L9 GND N16 IO85PPB1 J2 GFA0/IO162NDB3 L10 GND N18 IO82NPB1 J4 VCCPLF L11 GND N19 IO81PPB1 J5 GFC0/IO164NPB3 L12 VCCIB1 P1 IO151PDB3 J7 GFA2/IO161PDB3 L13 IO76PPB1 P2 GND J8 VCCIB3 L15 IO76NPB1 P3 IO151NDB3 J9 GND L16 IO77PPB1 P4 IO149PPB3 J10 GND L18 IO78NPB1 P5 GEA0/IO144NPB3 J11 GND L19 IO77NPB1 P15 IO83NDB1 J12 VCCIB1 M1 IO158PDB3 P16 IO83PDB1 J13 GCC1/IO69PPB1 M2 IO158NDB3 P17 GDC1/IO86PPB1 J15 GCA0/IO71NPB1 M4 IO154NPB3 P18 GND J16 GCB2/IO73PPB1 M5 IO152PPB3 P19 IO85NPB1 J18 IO72NPB1 M7 VCCIB3 R1 IO150NPB3 J19 IO75PSB1 M8 VCC R2 IO149NPB3 K1 VCCIB3 M9 VCCIB2 R4 GEC1/IO146PPB3 K2 GFA1/IO162PDB3 M10 VCC R5 GEB1/IO145PPB3 K4 GND M11 VCCIB2 R6 IO138RSB2 K5 IO159NPB3 M12 VCC R7 IO127RSB2 K7 IO161NDB3 M13 VCCIB1 R8 IO123RSB2 K8 VCC M15 IO79NPB1 R9 IO118RSB2 K9 GND M16 IO81NPB1 R10 IO111RSB2 K10 GND M18 IO79PPB1 R11 IO106RSB2 K11 GND M19 IO78PPB1 R12 IO103RSB2 K12 VCC N1 IO154PPB3 R13 IO97RSB2 K13 GCC2/IO74PPB1 N2 IO152NPB3 R14 IO95RSB2 4-18 Revision 27
IGLOO Low Power Flash FPGAs CS281 CS281 Pin Number AGL600 Function Pin Number AGL600 Function R15 IO94RSB2 V10 IO112RSB2 R16 GDA1/IO88PPB1 V11 IO110RSB2 R18 GDB0/IO87NPB1 V12 IO108RSB2 R19 GDC0/IO86NPB1 V13 IO102RSB2 T1 IO148PPB3 V14 GND T2 GEC0/IO146NPB3 V15 IO93RSB2 T4 GEB0/IO145NPB3 V16 GDA2/IO89RSB2 T5 IO132RSB2 V17 TDI T6 IO136RSB2 V18 VCCIB2 T7 IO130RSB2 V19 TDO T8 IO126RSB2 W1 GND T9 IO120RSB2 W2 FF/GEB2/IO142RSB2 T10 GND W3 IO139RSB2 T11 IO113RSB2 W4 IO137RSB2 T12 IO104RSB2 W5 IO134RSB2 T13 IO101RSB2 W6 IO133RSB2 T14 IO98RSB2 W7 IO128RSB2 T15 GDC2/IO91RSB2 W8 IO124RSB2 T16 TMS W9 IO119RSB2 T18 VJTAG W10 VCCIB2 T19 GDB1/IO87PPB1 W11 IO109RSB2 U1 IO147PDB3 W12 IO107RSB2 U2 GEA1/IO144PPB3 W13 IO105RSB2 U6 IO131RSB2 W14 IO100RSB2 U14 IO99RSB2 W15 IO96RSB2 U18 TRST W16 IO92RSB2 U19 GDA0/IO88NPB1 W17 GDB2/IO90RSB2 V1 IO147NDB3 W18 TCK V2 VCCIB3 W19 GND V3 GEC2/IO141RSB2 V4 IO140RSB2 V5 IO135RSB2 V6 GND V7 IO125RSB2 V8 IO122RSB2 V9 IO116RSB2 Revision 27 4-19
Package Pin Assignments CS281 CS281 CS281 Pin Number AGL1000 Function Pin Number AGL1000 Function Pin Number AGL1000 Function A1 GND B18 VCCIB1 E13 IO53RSB0 A2 GAB0/IO02RSB0 B19 IO79NDB1 E14 GBB1/IO75RSB0 A3 GAC1/IO05RSB0 C1 GAB2/IO224PPB3 E15 IO80NPB1 A4 IO13RSB0 C2 IO225NPB3 E16 IO85PPB1 A5 IO11RSB0 C6 IO18RSB0 E18 IO83PPB1 A6 IO16RSB0 C14 IO63RSB0 E19 IO84NPB1 A7 IO20RSB0 C18 IO78NPB1 F1 IO214NPB3 A8 IO24RSB0 C19 GBB2/IO79PDB1 F2 GND A9 IO29RSB0 D1 IO219PPB3 F3 IO217PPB3 A10 VCCIB0 D2 IO223NPB3 F4 IO219NPB3 A11 IO39RSB0 D4 GAA0/IO00RSB0 F5 IO224NPB3 A12 IO45RSB0 D5 GAA1/IO01RSB0 F15 IO85NPB1 A13 IO48RSB0 D6 IO15RSB0 F16 IO84PPB1 A14 IO58RSB0 D7 IO19RSB0 F17 IO83NPB1 A15 IO61RSB0 D8 IO27RSB0 F18 GND A16 IO62RSB0 D9 IO32RSB0 F19 IO90PPB1 A17 GBC1/IO73RSB0 D10 GND G1 IO212NPB3 A18 GBA0/IO76RSB0 D11 IO38RSB0 G2 IO211NDB3 A19 GND D12 IO44RSB0 G4 IO214PPB3 B1 GAA2/IO225PPB3 D13 IO47RSB0 G5 IO212PPB3 B2 VCCIB0 D14 IO60RSB0 G7 GAC2/IO223PPB3 B3 GAB1/IO03RSB0 D15 GBB0/IO74RSB0 G8 VCCIB0 B4 GAC0/IO04RSB0 D16 GBA2/IO78PPB1 G9 IO30RSB0 B5 IO12RSB0 D18 GBC2/IO80PPB1 G10 IO37RSB0 B6 GND D19 IO88NPB1 G11 IO43RSB0 B7 IO21RSB0 E1 IO217NPB3 G12 VCCIB0 B8 IO26RSB0 E2 IO221PPB3 G13 IO88PPB1 B9 IO34RSB0 E4 IO221NPB3 G15 IO89NDB1 B10 IO35RSB0 E5 IO10RSB0 G16 IO89PDB1 B11 IO36RSB0 E6 IO14RSB0 G18 GCC0/IO91NPB1 B12 IO46RSB0 E7 IO25RSB0 G19 GCB1/IO92PPB1 B13 IO52RSB0 E8 IO28RSB0 H1 GFB0/IO208NPB3 B14 GND E9 IO31RSB0 H2 IO211PDB3 B15 IO59RSB0 E10 IO33RSB0 H4 GFC1/IO209PPB3 B16 GBC0/IO72RSB0 E11 IO42RSB0 H5 GFB1/IO208PPB3 B17 GBA1/IO77RSB0 E12 IO49RSB0 H7 VCCIB3 4-20 Revision 27
IGLOO Low Power Flash FPGAs CS281 CS281 CS281 Pin Number AGL1000 Function Pin Number AGL1000 Function Pin Number AGL1000 Function H8 VCC K15 IO95NPB1 N4 IO196PPB3 H9 VCCIB0 K16 GND N5 IO197NPB3 H10 VCC K18 IO96NPB1 N7 GEA2/IO187RSB2 H11 VCCIB0 K19 VCCIB1 N8 VCCIB2 H12 VCC L1 GFB2/IO205PDB3 N9 IO155RSB2 H13 VCCIB1 L2 IO205NDB3 N10 IO154RSB2 H15 IO90NPB1 L4 GFC2/IO204PPB3 N11 IO150RSB2 H16 GCB0/IO92NPB1 L5 IO203PPB3 N12 VCCIB2 H18 GCA1/IO93PPB1 L7 IO203NPB3 N13 VPUMP H19 GCA2/IO94PPB1 L8 VCCIB3 N15 IO107PPB1 J1 VCOMPLF L9 GND N16 IO105PPB1 J2 GFA0/IO207NDB3 L10 GND N18 IO107NPB1 J4 VCCPLF L11 GND N19 IO100PPB1 J5 GFC0/IO209NPB3 L12 VCCIB1 P1 IO195PDB3 J7 GFA2/IO206PDB3 L13 IO103PPB1 P2 GND J8 VCCIB3 L15 IO103NPB1 P3 IO195NDB3 J9 GND L16 IO97PPB1 P4 IO194PPB3 J10 GND L18 IO98NPB1 P5 GEA0/IO188NPB3 J11 GND L19 IO97NPB1 P15 IO108NDB1 J12 VCCIB1 M1 IO202PDB3 P16 IO108PDB1 J13 GCC1/IO91PPB1 M2 IO202NDB3 P17 GDC1/IO111PPB1 J15 GCA0/IO93NPB1 M4 IO201NPB3 P18 GND J16 GCB2/IO95PPB1 M5 IO198PPB3 P19 IO105NPB1 J18 IO94NPB1 M7 VCCIB3 R1 IO196NPB3 J19 IO102PSB1 M8 VCC R2 IO194NPB3 K1 VCCIB3 M9 VCCIB2 R4 GEC1/IO190PPB3 K2 GFA1/IO207PDB3 M10 VCC R5 GEB1/IO189PPB3 K4 GND M11 VCCIB2 R6 IO184RSB2 K5 IO204NPB3 M12 VCC R7 IO173RSB2 K7 IO206NDB3 M13 VCCIB1 R8 IO168RSB2 K8 VCC M15 IO104NPB1 R9 IO160RSB2 K9 GND M16 IO100NPB1 R10 IO151RSB2 K10 GND M18 IO104PPB1 R11 IO141RSB2 K11 GND M19 IO98PPB1 R12 IO136RSB2 K12 VCC N1 IO201PPB3 R13 IO127RSB2 K13 GCC2/IO96PPB1 N2 IO198NPB3 R14 IO124RSB2 Revision 27 4-21
Package Pin Assignments CS281 CS281 Pin Number AGL1000 Function Pin Number AGL1000 Function R15 IO122RSB2 V10 IO145RSB2 R16 GDA1/IO113PPB1 V11 IO144RSB2 R18 GDB0/IO112NPB1 V12 IO134RSB2 R19 GDC0/IO111NPB1 V13 IO133RSB2 T1 IO197PPB3 V14 GND T2 GEC0/IO190NPB3 V15 IO119RSB2 T4 GEB0/IO189NPB3 V16 GDA2/IO114RSB2 T5 IO181RSB2 V17 TDI T6 IO172RSB2 V18 VCCIB2 T7 IO171RSB2 V19 TDO T8 IO156RSB2 W1 GND T9 IO159RSB2 W2 FF/GEB2/IO186RSB2 T10 GND W3 IO183RSB2 T11 IO139RSB2 W4 IO176RSB2 T12 IO138RSB2 W5 IO170RSB2 T13 IO129RSB2 W6 IO162RSB2 T14 IO123RSB2 W7 IO157RSB2 T15 GDC2/IO116RSB2 W8 IO152RSB2 T16 TMS W9 IO149RSB2 T18 VJTAG W10 VCCIB2 T19 GDB1/IO112PPB1 W11 IO140RSB2 U1 IO193PDB3 W12 IO135RSB2 U2 GEA1/IO188PPB3 W13 IO130RSB2 U6 IO167RSB2 W14 IO125RSB2 U14 IO128RSB2 W15 IO120RSB2 U18 TRST W16 IO118RSB2 U19 GDA0/IO113NPB1 W17 GDB2/IO115RSB2 V1 IO193NDB3 W18 TCK V2 VCCIB3 W19 GND V3 GEC2/IO185RSB2 V4 IO182RSB2 V5 IO175RSB2 V6 GND V7 IO161RSB2 V8 IO143RSB2 V9 IO146RSB2 4-22 Revision 27
IGLOO Low Power Flash FPGAs QN48 Pin 1 48 1 Notes: 1. This is the bottom view of the package. 2. The die attach paddle center of the package is tied to ground (GND). Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 27 4-23
Package Pin Assignments QN48 QN48 Pin Number AGL030 Function Pin Number AGL030 Function 1 IO82RSB1 37 IO24RSB0 2 GEC0/IO73RSB1 38 IO22RSB0 3 GEA0/IO72RSB1 39 IO20RSB0 4 GEB0/IO71RSB1 40 IO18RSB0 5 GND 41 IO16RSB0 6 VCCIB1 42 IO14RSB0 7 IO68RSB1 43 IO10RSB0 8 IO67RSB1 44 IO08RSB0 9 IO66RSB1 45 IO06RSB0 10 IO65RSB1 46 IO04RSB0 11 IO64RSB1 47 IO02RSB0 12 IO62RSB1 48 IO00RSB0 13 IO61RSB1 14 FF/IO60RSB1 15 IO57RSB1 16 IO55RSB1 17 IO53RSB1 18 VCC 19 VCCIB1 20 IO46RSB1 21 IO42RSB1 22 TCK 23 TDI 24 TMS 25 VPUMP 26 TDO 27 TRST 28 VJTAG 29 IO38RSB0 30 GDB0/IO34RSB0 31 GDA0/IO33RSB0 32 GDC0/IO32RSB0 33 VCCIB0 34 GND 35 VCC 36 IO25RSB0 4-24 Revision 27
IGLOO Low Power Flash FPGAs QN68 Pin A1 Mark 68 1 Notes: 1. This is the bottom view of the package. 2. The die attach paddle center of the package is tied to ground (GND). Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 27 4-25
Package Pin Assignments QN68 QN68 Pin Number AGL015 Function Pin Number AGL015 Function 1 IO82RSB1 37 TRST 2 IO80RSB1 38 VJTAG 3 IO78RSB1 39 IO40RSB0 4 IO76RSB1 40 IO37RSB0 5 GEC0/IO73RSB1 41 GDB0/IO34RSB0 6 GEA0/IO72RSB1 42 GDA0/IO33RSB0 7 GEB0/IO71RSB1 43 GDC0/IO32RSB0 8 VCC 44 VCCIB0 9 GND 45 GND 10 VCCIB1 46 VCC 11 IO68RSB1 47 IO31RSB0 12 IO67RSB1 48 IO29RSB0 13 IO66RSB1 49 IO28RSB0 14 IO65RSB1 50 IO27RSB0 15 IO64RSB1 51 IO25RSB0 16 IO63RSB1 52 IO24RSB0 17 IO62RSB1 53 IO22RSB0 18 FF/IO60RSB1 54 IO21RSB0 19 IO58RSB1 55 IO19RSB0 20 IO56RSB1 56 IO17RSB0 21 IO54RSB1 57 IO15RSB0 22 IO52RSB1 58 IO14RSB0 23 IO51RSB1 59 VCCIB0 24 VCC 60 GND 25 GND 61 VCC 26 VCCIB1 62 IO12RSB0 27 IO50RSB1 63 IO10RSB0 28 IO48RSB1 64 IO08RSB0 29 IO46RSB1 65 IO06RSB0 30 IO44RSB1 66 IO04RSB0 31 IO42RSB1 67 IO02RSB0 32 TCK 68 IO00RSB0 33 TDI 34 TMS 35 VPUMP 36 TDO 4-26 Revision 27
IGLOO Low Power Flash FPGAs QN68 QN68 Pin Number AGL030 Function Pin Number AGL030 Function 1 IO82RSB1 37 TRST 2 IO80RSB1 38 VJTAG 3 IO78RSB1 39 IO40RSB0 4 IO76RSB1 40 IO37RSB0 5 GEC0/IO73RSB1 41 GDB0/IO34RSB0 6 GEA0/IO72RSB1 42 GDA0/IO33RSB0 7 GEB0/IO71RSB1 43 GDC0/IO32RSB0 8 VCC 44 VCCIB0 9 GND 45 GND 10 VCCIB1 46 VCC 11 IO68RSB1 47 IO31RSB0 12 IO67RSB1 48 IO29RSB0 13 IO66RSB1 49 IO28RSB0 14 IO65RSB1 50 IO27RSB0 15 IO64RSB1 51 IO25RSB0 16 IO63RSB1 52 IO24RSB0 17 IO62RSB1 53 IO22RSB0 18 FF/IO60RSB1 54 IO21RSB0 19 IO58RSB1 55 IO19RSB0 20 IO56RSB1 56 IO17RSB0 21 IO54RSB1 57 IO15RSB0 22 IO52RSB1 58 IO14RSB0 23 IO51RSB1 59 VCCIB0 24 VCC 60 GND 25 GND 61 VCC 26 VCCIB1 62 IO12RSB0 27 IO50RSB1 63 IO10RSB0 28 IO48RSB1 64 IO08RSB0 29 IO46RSB1 65 IO06RSB0 30 IO44RSB1 66 IO04RSB0 31 IO42RSB1 67 IO02RSB0 32 TCK 68 IO00RSB0 33 TDI 34 TMS 35 VPUMP 36 TDO Revision 27 4-27
Package Pin Assignments QN132 A37 A48 B34 B44 C31 C40 Pin A1Mark D4 D1 A36 A1 B33 B1 C30 C1 C21 C10 B23 B11 A25 A12 D3 D2 Optional Corner Pad (4x) C20 C11 B22 B12 A24 A13 Notes: 1. This is the bottom view of the package. 2. The die attach paddle center of the package is tied to ground (GND). Note QN132 package is discontinued and is not available for IGLOO devices. For more information on package drawings, see PD3068: Package Mechanical Drawings. 4-28 Revision 27
IGLOO Low Power Flash FPGAs QN132 QN132 QN132 Pin Number AGL030 Function Pin Number AGL030 Function Pin Number AGL030 Function A1 IO80RSB1 A37 IO22RSB0 B25 GND A2 IO77RSB1 A38 IO19RSB0 B26 NC A3 NC A39 NC B27 IO37RSB0 A4 IO76RSB1 A40 IO18RSB0 B28 GND A5 GEC0/IO73RSB1 A41 IO16RSB0 B29 GDA0/IO33RSB0 A6 NC A42 IO14RSB0 B30 NC A7 GEB0/IO71RSB1 A43 VCC B31 GND A8 IO69RSB1 A44 IO11RSB0 B32 IO29RSB0 A9 NC A45 IO08RSB0 B33 IO26RSB0 A10 VCC A46 IO06RSB0 B34 IO23RSB0 A11 IO67RSB1 A47 IO05RSB0 B35 IO20RSB0 A12 IO64RSB1 A48 IO02RSB0 B36 GND A13 IO59RSB1 B1 IO81RSB1 B37 IO17RSB0 A14 IO56RSB1 B2 IO78RSB1 B38 IO15RSB0 A15 NC B3 GND B39 GND A16 IO55RSB1 B4 IO75RSB1 B40 IO12RSB0 A17 IO53RSB1 B5 NC B41 IO09RSB0 A18 VCC B6 GND B42 GND A19 IO50RSB1 B7 IO70RSB1 B43 IO04RSB0 A20 IO48RSB1 B8 NC B44 IO01RSB0 A21 IO45RSB1 B9 GND C1 IO82RSB1 A22 IO44RSB1 B10 IO66RSB1 C2 IO79RSB1 A23 IO43RSB1 B11 IO63RSB1 C3 NC A24 TDI B12 FF/IO60RSB1 C4 IO74RSB1 A25 TRST B13 IO57RSB1 C5 GEA0/IO72RSB1 A26 IO40RSB0 B14 GND C6 NC A27 NC B15 IO54RSB1 C7 NC A28 IO39RSB0 B16 IO52RSB1 C8 VCCIB1 A29 IO38RSB0 B17 GND C9 IO65RSB1 A30 IO36RSB0 B18 IO49RSB1 C10 IO62RSB1 A31 IO35RSB0 B19 IO46RSB1 C11 IO61RSB1 A32 GDC0/IO32RSB0 B20 GND C12 IO58RSB1 A33 NC B21 IO42RSB1 C13 NC A34 VCC B22 TMS C14 NC A35 IO30RSB0 B23 TDO C15 IO51RSB1 A36 IO27RSB0 B24 IO41RSB0 C16 VCCIB1 Revision 27 4-29
Package Pin Assignments QN132 Pin Number AGL030 Function C17 IO47RSB1 C18 NC C19 TCK C20 NC C21 VPUMP C22 VJTAG C23 NC C24 NC C25 NC C26 GDB0/IO34RSB0 C27 NC C28 VCCIB0 C29 IO28RSB0 C30 IO25RSB0 C31 IO24RSB0 C32 IO21RSB0 C33 NC C34 NC C35 VCCIB0 C36 IO13RSB0 C37 IO10RSB0 C38 IO07RSB0 C39 IO03RSB0 C40 IO00RSB0 D1 GND D2 GND D3 GND D4 GND 4-30 Revision 27
IGLOO Low Power Flash FPGAs QN132 QN132 QN132 Pin Number AGL060 Function Pin Number AGL060 Function Pin Number AGL060 Function A1 GAB2/IO00RSB1 A37 GBB1/IO25RSB0 B24 GDC0/IO49RSB0 A2 IO93RSB1 A38 GBC0/IO22RSB0 B25 GND A3 VCCIB1 A39 VCCIB0 B26 NC A4 GFC1/IO89RSB1 A40 IO21RSB0 B27 GCB2/IO45RSB0 A5 GFB0/IO86RSB1 A41 IO18RSB0 B28 GND A6 VCCPLF A42 IO15RSB0 B29 GCB0/IO41RSB0 A7 GFA1/IO84RSB1 A43 IO14RSB0 B30 GCC1/IO38RSB0 A8 GFC2/IO81RSB1 A44 IO11RSB0 B31 GND A9 IO78RSB1 A45 GAB1/IO08RSB0 B32 GBB2/IO30RSB0 A10 VCC A46 NC B33 VMV0 A11 GEB1/IO75RSB1 A47 GAB0/IO07RSB0 B34 GBA0/IO26RSB0 A12 GEA0/IO72RSB1 A48 IO04RSB0 B35 GBC1/IO23RSB0 A13 GEC2/IO69RSB1 B1 IO01RSB1 B36 GND A14 IO65RSB1 B2 GAC2/IO94RSB1 B37 IO20RSB0 A15 VCC B3 GND B38 IO17RSB0 A16 IO64RSB1 B4 GFC0/IO88RSB1 B39 GND A17 IO63RSB1 B5 VCOMPLF B40 IO12RSB0 A18 IO62RSB1 B6 GND B41 GAC0/IO09RSB0 A19 IO61RSB1 B7 GFB2/IO82RSB1 B42 GND A20 IO58RSB1 B8 IO79RSB1 B43 GAA1/IO06RSB0 A21 GDB2/IO55RSB1 B9 GND B44 GNDQ A22 NC B10 GEB0/IO74RSB1 C1 GAA2/IO02RSB1 A23 GDA2/IO54RSB1 B11 VMV1 C2 IO95RSB1 A24 TDI B12 FF/GEB2/IO70RSB C3 VCC 1 A25 TRST C4 GFB1/IO87RSB1 B13 IO67RSB1 A26 GDC1/IO48RSB0 C5 GFA0/IO85RSB1 B14 GND A27 VCC C6 GFA2/IO83RSB1 B15 NC A28 IO47RSB0 C7 IO80RSB1 B16 NC A29 GCC2/IO46RSB0 C8 VCCIB1 B17 GND A30 GCA2/IO44RSB0 C9 GEA1/IO73RSB1 B18 IO59RSB1 A31 GCA0/IO43RSB0 C10 GNDQ B19 GDC2/IO56RSB1 A32 GCB1/IO40RSB0 C11 GEA2/IO71RSB1 B20 GND A33 IO36RSB0 C12 IO68RSB1 B21 GNDQ A34 VCC C13 VCCIB1 B22 TMS A35 IO31RSB0 C14 NC B23 TDO A36 GBA2/IO28RSB0 C15 NC Revision 27 4-31
Package Pin Assignments QN132 Pin Number AGL060 Function C16 IO60RSB1 C17 IO57RSB1 C18 NC C19 TCK C20 VMV1 C21 VPUMP C22 VJTAG C23 VCCIB0 C24 NC C25 NC C26 GCA1/IO42RSB0 C27 GCC0/IO39RSB0 C28 VCCIB0 C29 IO29RSB0 C30 GNDQ C31 GBA1/IO27RSB0 C32 GBB0/IO24RSB0 C33 VCC C34 IO19RSB0 C35 IO16RSB0 C36 IO13RSB0 C37 GAC1/IO10RSB0 C38 NC C39 GAA0/IO05RSB0 C40 VMV0 D1 GND D2 GND D3 GND D4 GND 4-32 Revision 27
IGLOO Low Power Flash FPGAs QN132 QN132 QN132 Pin Number AGL125 Function Pin Number AGL125 Function Pin Number AGL125 Function A1 GAB2/IO69RSB1 A37 GBB1/IO38RSB0 B25 GND A2 IO130RSB1 A38 GBC0/IO35RSB0 B26 NC A3 VCCIB1 A39 VCCIB0 B27 GCB2/IO58RSB0 A4 GFC1/IO126RSB1 A40 IO28RSB0 B28 GND A5 GFB0/IO123RSB1 A41 IO22RSB0 B29 GCB0/IO54RSB0 A6 VCCPLF A42 IO18RSB0 B30 GCC1/IO51RSB0 A7 GFA1/IO121RSB1 A43 IO14RSB0 B31 GND A8 GFC2/IO118RSB1 A44 IO11RSB0 B32 GBB2/IO43RSB0 A9 IO115RSB1 A45 IO07RSB0 B33 VMV0 A10 VCC A46 VCC B34 GBA0/IO39RSB0 A11 GEB1/IO110RSB1 A47 GAC1/IO05RSB0 B35 GBC1/IO36RSB0 A12 GEA0/IO107RSB1 A48 GAB0/IO02RSB0 B36 GND A13 GEC2/IO104RSB1 B1 IO68RSB1 B37 IO26RSB0 A14 IO100RSB1 B2 GAC2/IO131RSB1 B38 IO21RSB0 A15 VCC B3 GND B39 GND A16 IO99RSB1 B4 GFC0/IO125RSB1 B40 IO13RSB0 A17 IO96RSB1 B5 VCOMPLF B41 IO08RSB0 A18 IO94RSB1 B6 GND B42 GND A19 IO91RSB1 B7 GFB2/IO119RSB1 B43 GAC0/IO04RSB0 A20 IO85RSB1 B8 IO116RSB1 B44 GNDQ A21 IO79RSB1 B9 GND C1 GAA2/IO67RSB1 A22 VCC B10 GEB0/IO109RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 FF/GEB2/IO105RSB1 C4 GFB1/IO124RSB1 A25 TRST B13 IO101RSB1 C5 GFA0/IO122RSB1 A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B15 IO98RSB1 C7 IO117RSB1 A28 IO60RSB0 B16 IO95RSB1 C8 VCCIB1 A29 GCC2/IO59RSB0 B17 GND C9 GEA1/IO108RSB1 A30 GCA2/IO57RSB0 B18 IO87RSB1 C10 GNDQ A31 GCA0/IO56RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A32 GCB1/IO53RSB0 B20 GND C12 IO103RSB1 A33 IO49RSB0 B21 GNDQ C13 VCCIB1 A34 VCC B22 TMS C14 IO97RSB1 A35 IO44RSB0 B23 TDO C15 IO93RSB1 A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1 Revision 27 4-33
Package Pin Assignments QN132 Pin Number AGL125 Function C17 IO83RSB1 C18 VCCIB1 C19 TCK C20 VMV1 C21 VPUMP C22 VJTAG C23 VCCIB0 C24 NC C25 NC C26 GCA1/IO55RSB0 C27 GCC0/IO52RSB0 C28 VCCIB0 C29 IO42RSB0 C30 GNDQ C31 GBA1/IO40RSB0 C32 GBB0/IO37RSB0 C33 VCC C34 IO24RSB0 C35 IO19RSB0 C36 IO16RSB0 C37 IO10RSB0 C38 VCCIB0 C39 GAB1/IO03RSB0 C40 VMV0 D1 GND D2 GND D3 GND D4 GND 4-34 Revision 27
IGLOO Low Power Flash FPGAs QN132 QN132 QN132 Pin Number AGL250 Function Pin Number AGL250 Function Pin Number AGL250 Function A1 GAB2/IO117UPB3 A37 GBB1/IO38RSB0 B25 GND A2 IO117VPB3 A38 GBC0/IO35RSB0 B26 IO54PDB1 A3 VCCIB3 A39 VCCIB0 B27 GCB2/IO52PDB1 A4 GFC1/IO110PDB3 A40 IO28RSB0 B28 GND A5 GFB0/IO109NPB3 A41 IO22RSB0 B29 GCB0/IO49NDB1 A6 VCCPLF A42 IO18RSB0 B30 GCC1/IO48PDB1 A7 GFA1/IO108PPB3 A43 IO14RSB0 B31 GND A8 GFC2/IO105PPB3 A44 IO11RSB0 B32 GBB2/IO42PDB1 A9 IO103NDB3 A45 IO07RSB0 B33 VMV1 A10 VCC A46 VCC B34 GBA0/IO39RSB0 A11 GEA1/IO98PPB3 A47 GAC1/IO05RSB0 B35 GBC1/IO36RSB0 A12 GEA0/IO98NPB3 A48 GAB0/IO02RSB0 B36 GND A13 GEC2/IO95RSB2 B1 IO118VDB3 B37 IO26RSB0 A14 IO91RSB2 B2 GAC2/IO116UDB3 B38 IO21RSB0 A15 VCC B3 GND B39 GND A16 IO90RSB2 B4 GFC0/IO110NDB3 B40 IO13RSB0 A17 IO87RSB2 B5 VCOMPLF B41 IO08RSB0 A18 IO85RSB2 B6 GND B42 GND A19 IO82RSB2 B7 GFB2/IO106PSB3 B43 GAC0/IO04RSB0 A20 IO76RSB2 B8 IO103PDB3 B44 GNDQ A21 IO70RSB2 B9 GND C1 GAA2/IO118UDB3 A22 VCC B10 GEB0/IO99NDB3 C2 IO116VDB3 A23 GDB2/IO62RSB2 B11 VMV3 C3 VCC A24 TDI B12 FF/GEB2/IO96RSB2 C4 GFB1/IO109PPB3 A25 TRST B13 IO92RSB2 C5 GFA0/IO108NPB3 A26 GDC1/IO58UDB1 B14 GND C6 GFA2/IO107PSB3 A27 VCC B15 IO89RSB2 C7 IO105NPB3 A28 IO54NDB1 B16 IO86RSB2 C8 VCCIB3 A29 IO52NDB1 B17 GND C9 GEB1/IO99PDB3 A30 GCA2/IO51PPB1 B18 IO78RSB2 C10 GNDQ A31 GCA0/IO50NPB1 B19 IO72RSB2 C11 GEA2/IO97RSB2 A32 GCB1/IO49PDB1 B20 GND C12 IO94RSB2 A33 IO47NSB1 B21 GNDQ C13 VCCIB2 A34 VCC B22 TMS C14 IO88RSB2 A35 IO41NPB1 B23 TDO C15 IO84RSB2 A36 GBA2/IO41PPB1 B24 GDC0/IO58VDB1 C16 IO80RSB2 Revision 27 4-35
Package Pin Assignments QN132 Pin Number AGL250 Function C17 IO74RSB2 C18 VCCIB2 C19 TCK C20 VMV2 C21 VPUMP C22 VJTAG C23 VCCIB1 C24 IO53NSB1 C25 IO51NPB1 C26 GCA1/IO50PPB1 C27 GCC0/IO48NDB1 C28 VCCIB1 C29 IO42NDB1 C30 GNDQ C31 GBA1/IO40RSB0 C32 GBB0/IO37RSB0 C33 VCC C34 IO24RSB0 C35 IO19RSB0 C36 IO16RSB0 C37 IO10RSB0 C38 VCCIB0 C39 GAB1/IO03RSB0 C40 VMV0 D1 GND D2 GND D3 GND D4 GND 4-36 Revision 27
IGLOO Low Power Flash FPGAs VQ100 100 1 Note: This is the top view of the package. Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 27 4-37
Package Pin Assignments VQ100 VQ100 VQ100 Pin Number AGL030 Function Pin Number AGL030 Function Pin Number AGL030 Function 1 GND 37 VCC 73 IO27RSB0 2 IO82RSB1 38 GND 74 IO26RSB0 3 IO81RSB1 39 VCCIB1 75 IO25RSB0 4 IO80RSB1 40 IO49RSB1 76 IO24RSB0 5 IO79RSB1 41 IO47RSB1 77 IO23RSB0 6 IO78RSB1 42 IO46RSB1 78 IO22RSB0 7 IO77RSB1 43 IO45RSB1 79 IO21RSB0 8 IO76RSB1 44 IO44RSB1 80 IO20RSB0 9 GND 45 IO43RSB1 81 IO19RSB0 10 IO75RSB1 46 IO42RSB1 82 IO18RSB0 11 IO74RSB1 47 TCK 83 IO17RSB0 12 GEC0/IO73RSB1 48 TDI 84 IO16RSB0 13 GEA0/IO72RSB1 49 TMS 85 IO15RSB0 14 GEB0/IO71RSB1 50 NC 86 IO14RSB0 15 IO70RSB1 51 GND 87 VCCIB0 16 IO69RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 IO12RSB0 19 IO68RSB1 55 TRST 91 IO10RSB0 20 IO67RSB1 56 VJTAG 92 IO08RSB0 21 IO66RSB1 57 IO41RSB0 93 IO07RSB0 22 IO65RSB1 58 IO40RSB0 94 IO06RSB0 23 IO64RSB1 59 IO39RSB0 95 IO05RSB0 24 IO63RSB1 60 IO38RSB0 96 IO04RSB0 25 IO62RSB1 61 IO37RSB0 97 IO03RSB0 26 IO61RSB1 62 IO36RSB0 98 IO02RSB0 27 FF/IO60RSB1 63 GDB0/IO34RSB0 99 IO01RSB0 28 IO59RSB1 64 GDA0/IO33RSB0 100 IO00RSB0 29 IO58RSB1 65 GDC0/IO32RSB0 30 IO57RSB1 66 VCCIB0 31 IO56RSB1 67 GND 32 IO55RSB1 68 VCC 33 IO54RSB1 69 IO31RSB0 34 IO53RSB1 70 IO30RSB0 35 IO52RSB1 71 IO29RSB0 36 IO51RSB1 72 IO28RSB0 4-38 Revision 27
IGLOO Low Power Flash FPGAs VQ100 VQ100 VQ100 Pin Number AGL060 Function Pin Number AGL060 Function Pin Number AGL060 Function 1 GND 37 VCC 73 GBA2/IO25RSB0 2 GAA2/IO51RSB1 38 GND 74 VMV0 3 IO52RSB1 39 VCCIB1 75 GNDQ 4 GAB2/IO53RSB1 40 IO60RSB1 76 GBA1/IO24RSB0 5 IO95RSB1 41 IO59RSB1 77 GBA0/IO23RSB0 6 GAC2/IO94RSB1 42 IO58RSB1 78 GBB1/IO22RSB0 7 IO93RSB1 43 IO57RSB1 79 GBB0/IO21RSB0 8 IO92RSB1 44 GDC2/IO56RSB1 80 GBC1/IO20RSB0 9 GND 45 GDB2/IO55RSB1 81 GBC0/IO19RSB0 10 GFB1/IO87RSB1 46 GDA2/IO54RSB1 82 IO18RSB0 11 GFB0/IO86RSB1 47 TCK 83 IO17RSB0 12 VCOMPLF 48 TDI 84 IO15RSB0 13 GFA0/IO85RSB1 49 TMS 85 IO13RSB0 14 VCCPLF 50 VMV1 86 IO11RSB0 15 GFA1/IO84RSB1 51 GND 87 VCCIB0 16 GFA2/IO83RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 IO10RSB0 19 GEC1/IO77RSB1 55 TRST 91 IO09RSB0 20 GEB1/IO75RSB1 56 VJTAG 92 IO08RSB0 21 GEB0/IO74RSB1 57 GDA1/IO49RSB0 93 GAC1/IO07RSB0 22 GEA1/IO73RSB1 58 GDC0/IO46RSB0 94 GAC0/IO06RSB0 23 GEA0/IO72RSB1 59 GDC1/IO45RSB0 95 GAB1/IO05RSB0 24 VMV1 60 GCC2/IO43RSB0 96 GAB0/IO04RSB0 25 GNDQ 61 GCB2/IO42RSB0 97 GAA1/IO03RSB0 26 GEA2/IO71RSB1 62 GCA0/IO40RSB0 98 GAA0/IO02RSB0 27 FF/GEB2/IO70RSB1 63 GCA1/IO39RSB0 99 IO01RSB0 28 GEC2/IO69RSB1 64 GCC0/IO36RSB0 100 IO00RSB0 29 IO68RSB1 65 GCC1/IO35RSB0 30 IO67RSB1 66 VCCIB0 31 IO66RSB1 67 GND 32 IO65RSB1 68 VCC 33 IO64RSB1 69 IO31RSB0 34 IO63RSB1 70 GBC2/IO29RSB0 35 IO62RSB1 71 GBB2/IO27RSB0 36 IO61RSB1 72 IO26RSB0 Revision 27 4-39
Package Pin Assignments VQ100 VQ100 VQ100 Pin Number AGL125 Function Pin Number AGL125 Function Pin Number AGL125 Function 1 GND 36 IO93RSB1 72 IO42RSB0 2 GAA2/IO67RSB1 37 VCC 73 GBA2/IO41RSB0 3 IO68RSB1 38 GND 74 VMV0 4 GAB2/IO69RSB1 39 VCCIB1 75 GNDQ 5 IO132RSB1 40 IO87RSB1 76 GBA1/IO40RSB0 6 GAC2/IO131RSB1 41 IO84RSB1 77 GBA0/IO39RSB0 7 IO130RSB1 42 IO81RSB1 78 GBB1/IO38RSB0 8 IO129RSB1 43 IO75RSB1 79 GBB0/IO37RSB0 9 GND 44 GDC2/IO72RSB1 80 GBC1/IO36RSB0 10 GFB1/IO124RSB1 45 GDB2/IO71RSB1 81 GBC0/IO35RSB0 11 GFB0/IO123RSB1 46 GDA2/IO70RSB1 82 IO32RSB0 12 VCOMPLF 47 TCK 83 IO28RSB0 13 GFA0/IO122RSB1 48 TDI 84 IO25RSB0 14 VCCPLF 49 TMS 85 IO22RSB0 15 GFA1/IO121RSB1 50 VMV1 86 IO19RSB0 16 GFA2/IO120RSB1 51 GND 87 VCCIB0 17 VCC 52 VPUMP 88 GND 18 VCCIB1 53 NC 89 VCC 19 GEC0/IO111RSB1 54 TDO 90 IO15RSB0 20 GEB1/IO110RSB1 55 TRST 91 IO13RSB0 21 GEB0/IO109RSB1 56 VJTAG 92 IO11RSB0 22 GEA1/IO108RSB1 57 GDA1/IO65RSB0 93 IO09RSB0 23 GEA0/IO107RSB1 58 GDC0/IO62RSB0 94 IO07RSB0 24 VMV1 59 GDC1/IO61RSB0 95 GAC1/IO05RSB0 25 GNDQ 60 GCC2/IO59RSB0 96 GAC0/IO04RSB0 26 GEA2/IO106RSB1 61 GCB2/IO58RSB0 97 GAB1/IO03RSB0 27 FF/GEB2/IO105RSB 62 GCA0/IO56RSB0 98 GAB0/IO02RSB0 1 63 GCA1/IO55RSB0 99 GAA1/IO01RSB0 28 GEC2/IO104RSB1 64 GCC0/IO52RSB0 100 GAA0/IO00RSB0 29 IO102RSB1 65 GCC1/IO51RSB0 30 IO100RSB1 66 VCCIB0 31 IO99RSB1 67 GND 32 IO97RSB1 68 VCC 33 IO96RSB1 69 IO47RSB0 34 IO95RSB1 70 GBC2/IO45RSB0 35 IO94RSB1 71 GBB2/IO43RSB0 4-40 Revision 27
IGLOO Low Power Flash FPGAs VQ100 VQ100 VQ100 Pin Number AGL250 Function Pin Number AGL250 Function Pin Number AGL250 Function 1 GND 37 VCC 73 GBA2/IO41PDB1 2 GAA2/IO118UDB3 38 GND 74 VMV1 3 IO118VDB3 39 VCCIB2 75 GNDQ 4 GAB2/IO117UDB3 40 IO77RSB2 76 GBA1/IO40RSB0 5 IO117VDB3 41 IO74RSB2 77 GBA0/IO39RSB0 6 GAC2/IO116UDB3 42 IO71RSB2 78 GBB1/IO38RSB0 7 IO116VDB3 43 GDC2/IO63RSB2 79 GBB0/IO37RSB0 8 IO112PSB3 44 GDB2/IO62RSB2 80 GBC1/IO36RSB0 9 GND 45 GDA2/IO61RSB2 81 GBC0/IO35RSB0 10 GFB1/IO109PDB3 46 GNDQ 82 IO29RSB0 11 GFB0/IO109NDB3 47 TCK 83 IO27RSB0 12 VCOMPLF 48 TDI 84 IO25RSB0 13 GFA0/IO108NPB3 49 TMS 85 IO23RSB0 14 VCCPLF 50 VMV2 86 IO21RSB0 15 GFA1/IO108PPB3 51 GND 87 VCCIB0 16 GFA2/IO107PSB3 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB3 54 TDO 90 IO15RSB0 19 GFC2/IO105PSB3 55 TRST 91 IO13RSB0 20 GEC1/IO100PDB3 56 VJTAG 92 IO11RSB0 21 GEC0/IO100NDB3 57 GDA1/IO60USB1 93 GAC1/IO05RSB0 22 GEA1/IO98PDB3 58 GDC0/IO58VDB1 94 GAC0/IO04RSB0 23 GEA0/IO98NDB3 59 GDC1/IO58UDB1 95 GAB1/IO03RSB0 24 VMV3 60 IO52NDB1 96 GAB0/IO02RSB0 25 GNDQ 61 GCB2/IO52PDB1 97 GAA1/IO01RSB0 26 GEA2/IO97RSB2 62 GCA1/IO50PDB1 98 GAA0/IO00RSB0 27 FF/GEB2/IO96RSB2 63 GCA0/IO50NDB1 99 GNDQ 28 GEC2/IO95RSB2 64 GCC0/IO48NDB1 100 VMV0 29 IO93RSB2 65 GCC1/IO48PDB1 30 IO92RSB2 66 VCCIB1 31 IO91RSB2 67 GND 32 IO90RSB2 68 VCC 33 IO88RSB2 69 IO43NDB1 34 IO86RSB2 70 GBC2/IO43PDB1 35 IO85RSB2 71 GBB2/IO42PSB1 36 IO84RSB2 72 IO41NDB1 Revision 27 4-41
Package Pin Assignments FG144 A1 Ball Pad Corner 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M Note: This is the bottom view of the package. Note For more information on package drawings, see PD3068: Package Mechanical Drawings. 4-42 Revision 27
IGLOO Low Power Flash FPGAs FG144 FG144 FG144 Pin Number AGL125 Function Pin Number AGL125 Function Pin Number AGL125 Function A1 GNDQ D1 IO128RSB1 G1 GFA1/IO121RSB1 A2 VMV0 D2 IO129RSB1 G2 GND A3 GAB0/IO02RSB0 D3 IO130RSB1 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO67RSB1 G4 GFA0/IO122RSB1 A5 IO11RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO18RSB0 D7 GBC0/IO35RSB0 G7 GND A8 VCC D8 GBC1/IO36RSB0 G8 GDC1/IO61RSB0 A9 IO25RSB0 D9 GBB2/IO43RSB0 G9 IO48RSB0 A10 GBA0/IO39RSB0 D10 IO28RSB0 G10 GCC2/IO59RSB0 A11 GBA1/IO40RSB0 D11 IO44RSB0 G11 IO47RSB0 A12 GNDQ D12 GCB1/IO53RSB0 G12 GCB2/IO58RSB0 B1 GAB2/IO69RSB1 E1 VCC H1 VCC B2 GND E2 GFC0/IO125RSB1 H2 GFB2/IO119RSB1 B3 GAA0/IO00RSB0 E3 GFC1/IO126RSB1 H3 GFC2/IO118RSB1 B4 GAA1/IO01RSB0 E4 VCCIB1 H4 GEC1/IO112RSB1 B5 IO08RSB0 E5 IO68RSB1 H5 VCC B6 IO14RSB0 E6 VCCIB0 H6 IO50RSB0 B7 IO19RSB0 E7 VCCIB0 H7 IO60RSB0 B8 IO22RSB0 E8 GCC1/IO51RSB0 H8 GDB2/IO71RSB1 B9 GBB0/IO37RSB0 E9 VCCIB0 H9 GDC0/IO62RSB0 B10 GBB1/IO38RSB0 E10 VCC H10 VCCIB0 B11 GND E11 GCA0/IO56RSB0 H11 IO49RSB0 B12 VMV0 E12 IO46RSB0 H12 VCC C1 IO132RSB1 F1 GFB0/IO123RSB1 J1 GEB1/IO110RSB1 C2 GFA2/IO120RSB1 F2 VCOMPLF J2 IO115RSB1 C3 GAC2/IO131RSB1 F3 GFB1/IO124RSB1 J3 VCCIB1 C4 VCC F4 IO127RSB1 J4 GEC0/IO111RSB1 C5 IO10RSB0 F5 GND J5 IO116RSB1 C6 IO12RSB0 F6 GND J6 IO117RSB1 C7 IO21RSB0 F7 GND J7 VCC C8 IO24RSB0 F8 GCC0/IO52RSB0 J8 TCK C9 IO27RSB0 F9 GCB0/IO54RSB0 J9 GDA2/IO70RSB1 C10 GBA2/IO41RSB0 F10 GND J10 TDO C11 IO42RSB0 F11 GCA1/IO55RSB0 J11 GDA1/IO65RSB0 C12 GBC2/IO45RSB0 F12 GCA2/IO57RSB0 J12 GDB1/IO63RSB0 Revision 27 4-43
Package Pin Assignments FG144 Pin Number AGL125 Function K1 GEB0/IO109RSB1 K2 GEA1/IO108RSB1 K3 GEA0/IO107RSB1 K4 GEA2/IO106RSB1 K5 IO100RSB1 K6 IO98RSB1 K7 GND K8 IO73RSB1 K9 GDC2/IO72RSB1 K10 GND K11 GDA0/IO66RSB0 K12 GDB0/IO64RSB0 L1 GND L2 VMV1 L3 FF/GEB2/IO105RSB1 L4 IO102RSB1 L5 VCCIB1 L6 IO95RSB1 L7 IO85RSB1 L8 IO74RSB1 L9 TMS L10 VJTAG L11 VMV1 L12 TRST M1 GNDQ M2 GEC2/IO104RSB1 M3 IO103RSB1 M4 IO101RSB1 M5 IO97RSB1 M6 IO94RSB1 M7 IO86RSB1 M8 IO75RSB1 M9 TDI M10 VCCIB1 M11 VPUMP M12 GNDQ 4-44 Revision 27
IGLOO Low Power Flash FPGAs FG144 FG144 FG144 Pin Number AGL250 Function Pin Number AGL250 Function Pin Number AGL250 Function A1 GNDQ D1 IO112NDB3 G1 GFA1/IO108PPB3 A2 VMV0 D2 IO112PDB3 G2 GND A3 GAB0/IO02RSB0 D3 IO116VDB3 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO118UPB3 G4 GFA0/IO108NPB3 A5 IO16RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO29RSB0 D7 GBC0/IO35RSB0 G7 GND A8 VCC D8 GBC1/IO36RSB0 G8 GDC1/IO58UPB1 A9 IO33RSB0 D9 GBB2/IO42PDB1 G9 IO53NDB1 A10 GBA0/IO39RSB0 D10 IO42NDB1 G10 GCC2/IO53PDB1 A11 GBA1/IO40RSB0 D11 IO43NPB1 G11 IO52NDB1 A12 GNDQ D12 GCB1/IO49PPB1 G12 GCB2/IO52PDB1 B1 GAB2/IO117UDB3 E1 VCC H1 VCC B2 GND E2 GFC0/IO110NDB3 H2 GFB2/IO106PDB3 B3 GAA0/IO00RSB0 E3 GFC1/IO110PDB3 H3 GFC2/IO105PSB3 B4 GAA1/IO01RSB0 E4 VCCIB3 H4 GEC1/IO100PDB3 B5 IO14RSB0 E5 IO118VPB3 H5 VCC B6 IO19RSB0 E6 VCCIB0 H6 IO79RSB2 B7 IO22RSB0 E7 VCCIB0 H7 IO65RSB2 B8 IO30RSB0 E8 GCC1/IO48PDB1 H8 GDB2/IO62RSB2 B9 GBB0/IO37RSB0 E9 VCCIB1 H9 GDC0/IO58VPB1 B10 GBB1/IO38RSB0 E10 VCC H10 VCCIB1 B11 GND E11 GCA0/IO50NDB1 H11 IO54PSB1 B12 VMV1 E12 IO51NDB1 H12 VCC C1 IO117VDB3 F1 GFB0/IO109NPB3 J1 GEB1/IO99PDB3 C2 GFA2/IO107PPB3 F2 VCOMPLF J2 IO106NDB3 C3 GAC2/IO116UDB3 F3 GFB1/IO109PPB3 J3 VCCIB3 C4 VCC F4 IO107NPB3 J4 GEC0/IO100NDB3 C5 IO12RSB0 F5 GND J5 IO88RSB2 C6 IO17RSB0 F6 GND J6 IO81RSB2 C7 IO24RSB0 F7 GND J7 VCC C8 IO31RSB0 F8 GCC0/IO48NDB1 J8 TCK C9 IO34RSB0 F9 GCB0/IO49NPB1 J9 GDA2/IO61RSB2 C10 GBA2/IO41PDB1 F10 GND J10 TDO C11 IO41NDB1 F11 GCA1/IO50PDB1 J11 GDA1/IO60UDB1 C12 GBC2/IO43PPB1 F12 GCA2/IO51PDB1 J12 GDB1/IO59UDB1 Revision 27 4-45
Package Pin Assignments FG144 Pin Number AGL250 Function K1 GEB0/IO99NDB3 K2 GEA1/IO98PDB3 K3 GEA0/IO98NDB3 K4 GEA2/IO97RSB2 K5 IO90RSB2 K6 IO84RSB2 K7 GND K8 IO66RSB2 K9 GDC2/IO63RSB2 K10 GND K11 GDA0/IO60VDB1 K12 GDB0/IO59VDB1 L1 GND L2 VMV3 L3 FF/GEB2/IO96RSB2 L4 IO91RSB2 L5 VCCIB2 L6 IO82RSB2 L7 IO80RSB2 L8 IO72RSB2 L9 TMS L10 VJTAG L11 VMV2 L12 TRST M1 GNDQ M2 GEC2/IO95RSB2 M3 IO92RSB2 M4 IO89RSB2 M5 IO87RSB2 M6 IO85RSB2 M7 IO78RSB2 M8 IO76RSB2 M9 TDI M10 VCCIB2 M11 VPUMP M12 GNDQ 4-46 Revision 27
IGLOO Low Power Flash FPGAs FG144 FG144 FG144 Pin Number AGL400 Function Pin Number AGL400 Function Pin Number AGL400 Function A1 GNDQ D1 IO149NDB3 G1 GFA1/IO145PPB3 A2 VMV0 D2 IO149PDB3 G2 GND A3 GAB0/IO02RSB0 D3 IO153VDB3 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO155UPB3 G4 GFA0/IO145NPB3 A5 IO16RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO30RSB0 D7 GBC0/IO54RSB0 G7 GND A8 VCC D8 GBC1/IO55RSB0 G8 GDC1/IO77UPB1 A9 IO34RSB0 D9 GBB2/IO61PDB1 G9 IO72NDB1 A10 GBA0/IO58RSB0 D10 IO61NDB1 G10 GCC2/IO72PDB1 A11 GBA1/IO59RSB0 D11 IO62NPB1 G11 IO71NDB1 A12 GNDQ D12 GCB1/IO68PPB1 G12 GCB2/IO71PDB1 B1 GAB2/IO154UDB3 E1 VCC H1 VCC B2 GND E2 GFC0/IO147NDB3 H2 GFB2/IO143PDB3 B3 GAA0/IO00RSB0 E3 GFC1/IO147PDB3 H3 GFC2/IO142PSB3 B4 GAA1/IO01RSB0 E4 VCCIB3 H4 GEC1/IO137PDB3 B5 IO14RSB0 E5 IO155VPB3 H5 VCC B6 IO19RSB0 E6 VCCIB0 H6 IO75PDB1 B7 IO23RSB0 E7 VCCIB0 H7 IO75NDB1 B8 IO31RSB0 E8 GCC1/IO67PDB1 H8 GDB2/IO81RSB2 B9 GBB0/IO56RSB0 E9 VCCIB1 H9 GDC0/IO77VPB1 B10 GBB1/IO57RSB0 E10 VCC H10 VCCIB1 B11 GND E11 GCA0/IO69NDB1 H11 IO73PSB1 B12 VMV1 E12 IO70NDB1 H12 VCC C1 IO154VDB3 F1 GFB0/IO146NPB3 J1 GEB1/IO136PDB3 C2 GFA2/IO144PPB3 F2 VCOMPLF J2 IO143NDB3 C3 GAC2/IO153UDB3 F3 GFB1/IO146PPB3 J3 VCCIB3 C4 VCC F4 IO144NPB3 J4 GEC0/IO137NDB3 C5 IO12RSB0 F5 GND J5 IO125RSB2 C6 IO17RSB0 F6 GND J6 IO116RSB2 C7 IO25RSB0 F7 GND J7 VCC C8 IO32RSB0 F8 GCC0/IO67NDB1 J8 TCK C9 IO53RSB0 F9 GCB0/IO68NPB1 J9 GDA2/IO80RSB2 C10 GBA2/IO60PDB1 F10 GND J10 TDO C11 IO60NDB1 F11 GCA1/IO69PDB1 J11 GDA1/IO79UDB1 C12 GBC2/IO62PPB1 F12 GCA2/IO70PDB1 J12 GDB1/IO78UDB1 Revision 27 4-47
Package Pin Assignments FG144 Pin Number AGL400 Function K1 GEB0/IO136NDB3 K2 GEA1/IO135PDB3 K3 GEA0/IO135NDB3 K4 GEA2/IO134RSB2 K5 IO127RSB2 K6 IO121RSB2 K7 GND K8 IO104RSB2 K9 GDC2/IO82RSB2 K10 GND K11 GDA0/IO79VDB1 K12 GDB0/IO78VDB1 L1 GND L2 VMV3 L3 FF/GEB2/IO133RSB2 L4 IO128RSB2 L5 VCCIB2 L6 IO119RSB2 L7 IO114RSB2 L8 IO110RSB2 L9 TMS L10 VJTAG L11 VMV2 L12 TRST M1 GNDQ M2 GEC2/IO132RSB2 M3 IO129RSB2 M4 IO126RSB2 M5 IO124RSB2 M6 IO122RSB2 M7 IO117RSB2 M8 IO115RSB2 M9 TDI M10 VCCIB2 M11 VPUMP M12 GNDQ 4-48 Revision 27
IGLOO Low Power Flash FPGAs FG144 FG144 FG144 Pin Number AGL600 Function Pin Number AGL600 Function Pin Number AGL600 Function A1 GNDQ D1 IO169PDB3 G1 GFA1/IO162PPB3 A2 VMV0 D2 IO169NDB3 G2 GND A3 GAB0/IO02RSB0 D3 IO172NDB3 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO174PPB3 G4 GFA0/IO162NPB3 A5 IO10RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO34RSB0 D7 GBC0/IO54RSB0 G7 GND A8 VCC D8 GBC1/IO55RSB0 G8 GDC1/IO86PPB1 A9 IO50RSB0 D9 GBB2/IO61PDB1 G9 IO74NDB1 A10 GBA0/IO58RSB0 D10 IO61NDB1 G10 GCC2/IO74PDB1 A11 GBA1/IO59RSB0 D11 IO62NPB1 G11 IO73NDB1 A12 GNDQ D12 GCB1/IO70PPB1 G12 GCB2/IO73PDB1 B1 GAB2/IO173PDB3 E1 VCC H1 VCC B2 GND E2 GFC0/IO164NDB3 H2 GFB2/IO160PDB3 B3 GAA0/IO00RSB0 E3 GFC1/IO164PDB3 H3 GFC2/IO159PSB3 B4 GAA1/IO01RSB0 E4 VCCIB3 H4 GEC1/IO146PDB3 B5 IO13RSB0 E5 IO174NPB3 H5 VCC B6 IO19RSB0 E6 VCCIB0 H6 IO80PDB1 B7 IO31RSB0 E7 VCCIB0 H7 IO80NDB1 B8 IO39RSB0 E8 GCC1/IO69PDB1 H8 GDB2/IO90RSB2 B9 GBB0/IO56RSB0 E9 VCCIB1 H9 GDC0/IO86NPB1 B10 GBB1/IO57RSB0 E10 VCC H10 VCCIB1 B11 GND E11 GCA0/IO71NDB1 H11 IO84PSB1 B12 VMV1 E12 IO72NDB1 H12 VCC C1 IO173NDB3 F1 GFB0/IO163NPB3 J1 GEB1/IO145PDB3 C2 GFA2/IO161PPB3 F2 VCOMPLF J2 IO160NDB3 C3 GAC2/IO172PDB3 F3 GFB1/IO163PPB3 J3 VCCIB3 C4 VCC F4 IO161NPB3 J4 GEC0/IO146NDB3 C5 IO16RSB0 F5 GND J5 IO129RSB2 C6 IO25RSB0 F6 GND J6 IO131RSB2 C7 IO28RSB0 F7 GND J7 VCC C8 IO42RSB0 F8 GCC0/IO69NDB1 J8 TCK C9 IO45RSB0 F9 GCB0/IO70NPB1 J9 GDA2/IO89RSB2 C10 GBA2/IO60PDB1 F10 GND J10 TDO C11 IO60NDB1 F11 GCA1/IO71PDB1 J11 GDA1/IO88PDB1 C12 GBC2/IO62PPB1 F12 GCA2/IO72PDB1 J12 GDB1/IO87PDB1 Revision 27 4-49
Package Pin Assignments FG144 Pin Number AGL600 Function K1 GEB0/IO145NDB3 K2 GEA1/IO144PDB3 K3 GEA0/IO144NDB3 K4 GEA2/IO143RSB2 K5 IO119RSB2 K6 IO111RSB2 K7 GND K8 IO94RSB2 K9 GDC2/IO91RSB2 K10 GND K11 GDA0/IO88NDB1 K12 GDB0/IO87NDB1 L1 GND L2 VMV3 L3 FF/GEB2/IO142RSB2 L4 IO136RSB2 L5 VCCIB2 L6 IO115RSB2 L7 IO103RSB2 L8 IO97RSB2 L9 TMS L10 VJTAG L11 VMV2 L12 TRST M1 GNDQ M2 GEC2/IO141RSB2 M3 IO138RSB2 M4 IO123RSB2 M5 IO126RSB2 M6 IO134RSB2 M7 IO108RSB2 M8 IO99RSB2 M9 TDI M10 VCCIB2 M11 VPUMP M12 GNDQ 4-50 Revision 27
IGLOO Low Power Flash FPGAs FG144 FG144 FG144 Pin Number AGL1000 Function Pin Number AGL1000 Function Pin Number AGL1000 Function A1 GNDQ D1 IO213PDB3 G1 GFA1/IO207PPB3 A2 VMV0 D2 IO213NDB3 G2 GND A3 GAB0/IO02RSB0 D3 IO223NDB3 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO225PPB3 G4 GFA0/IO207NPB3 A5 IO10RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO44RSB0 D7 GBC0/IO72RSB0 G7 GND A8 VCC D8 GBC1/IO73RSB0 G8 GDC1/IO111PPB1 A9 IO69RSB0 D9 GBB2/IO79PDB1 G9 IO96NDB1 A10 GBA0/IO76RSB0 D10 IO79NDB1 G10 GCC2/IO96PDB1 A11 GBA1/IO77RSB0 D11 IO80NPB1 G11 IO95NDB1 A12 GNDQ D12 GCB1/IO92PPB1 G12 GCB2/IO95PDB1 B1 GAB2/IO224PDB3 E1 VCC H1 VCC B2 GND E2 GFC0/IO209NDB3 H2 GFB2/IO205PDB3 B3 GAA0/IO00RSB0 E3 GFC1/IO209PDB3 H3 GFC2/IO204PSB3 B4 GAA1/IO01RSB0 E4 VCCIB3 H4 GEC1/IO190PDB3 B5 IO13RSB0 E5 IO225NPB3 H5 VCC B6 IO26RSB0 E6 VCCIB0 H6 IO105PDB1 B7 IO35RSB0 E7 VCCIB0 H7 IO105NDB1 B8 IO60RSB0 E8 GCC1/IO91PDB1 H8 GDB2/IO115RSB2 B9 GBB0/IO74RSB0 E9 VCCIB1 H9 GDC0/IO111NPB1 B10 GBB1/IO75RSB0 E10 VCC H10 VCCIB1 B11 GND E11 GCA0/IO93NDB1 H11 IO101PSB1 B12 VMV1 E12 IO94NDB1 H12 VCC C1 IO224NDB3 F1 GFB0/IO208NPB3 J1 GEB1/IO189PDB3 C2 GFA2/IO206PPB3 F2 VCOMPLF J2 IO205NDB3 C3 GAC2/IO223PDB3 F3 GFB1/IO208PPB3 J3 VCCIB3 C4 VCC F4 IO206NPB3 J4 GEC0/IO190NDB3 C5 IO16RSB0 F5 GND J5 IO160RSB2 C6 IO29RSB0 F6 GND J6 IO157RSB2 C7 IO32RSB0 F7 GND J7 VCC C8 IO63RSB0 F8 GCC0/IO91NDB1 J8 TCK C9 IO66RSB0 F9 GCB0/IO92NPB1 J9 GDA2/IO114RSB2 C10 GBA2/IO78PDB1 F10 GND J10 TDO C11 IO78NDB1 F11 GCA1/IO93PDB1 J11 GDA1/IO113PDB1 C12 GBC2/IO80PPB1 F12 GCA2/IO94PDB1 J12 GDB1/IO112PDB1 Revision 27 4-51
Package Pin Assignments FG144 Pin Number AGL1000 Function K1 GEB0/IO189NDB3 K2 GEA1/IO188PDB3 K3 GEA0/IO188NDB3 K4 GEA2/IO187RSB2 K5 IO169RSB2 K6 IO152RSB2 K7 GND K8 IO117RSB2 K9 GDC2/IO116RSB2 K10 GND K11 GDA0/IO113NDB1 K12 GDB0/IO112NDB1 L1 GND L2 VMV3 L3 FF/GEB2/IO186RSB2 L4 IO172RSB2 L5 VCCIB2 L6 IO153RSB2 L7 IO144RSB2 L8 IO140RSB2 L9 TMS L10 VJTAG L11 VMV2 L12 TRST M1 GNDQ M2 GEC2/IO185RSB2 M3 IO173RSB2 M4 IO168RSB2 M5 IO161RSB2 M6 IO156RSB2 M7 IO145RSB2 M8 IO141RSB2 M9 TDI M10 VCCIB2 M11 VPUMP M12 GNDQ 4-52 Revision 27
IGLOO Low Power Flash FPGAs FG256 A1 Ball Pad Corner 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T Note: This is the bottom view of the package. Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 27 4-53
Package Pin Assignments FG256 FG256 FG256 Pin Number AGL400 Function Pin Number AGL400 Function Pin Number AGL400 Function A1 GND C7 IO20RSB0 E13 GBC2/IO62PDB1 A2 GAA0/IO00RSB0 C8 IO24RSB0 E14 IO65RSB1 A3 GAA1/IO01RSB0 C9 IO33RSB0 E15 IO52RSB0 A4 GAB0/IO02RSB0 C10 IO39RSB0 E16 IO66PDB1 A5 IO16RSB0 C11 IO45RSB0 F1 IO150NDB3 A6 IO17RSB0 C12 GBC0/IO54RSB0 F2 IO149NPB3 A7 IO22RSB0 C13 IO48RSB0 F3 IO09RSB0 A8 IO28RSB0 C14 VMV0 F4 IO152UDB3 A9 IO34RSB0 C15 IO61NPB1 F5 VCCIB3 A10 IO37RSB0 C16 IO63PDB1 F6 GND A11 IO41RSB0 D1 IO151VDB3 F7 VCC A12 IO43RSB0 D2 IO151UDB3 F8 VCC A13 GBB1/IO57RSB0 D3 GAC2/IO153UDB3 F9 VCC A14 GBA0/IO58RSB0 D4 IO06RSB0 F10 VCC A15 GBA1/IO59RSB0 D5 GNDQ F11 GND A16 GND D6 IO10RSB0 F12 VCCIB1 B1 GAB2/IO154UDB3 D7 IO19RSB0 F13 IO62NDB1 B2 GAA2/IO155UDB3 D8 IO26RSB0 F14 IO49RSB0 B3 IO12RSB0 D9 IO30RSB0 F15 IO64PPB1 B4 GAB1/IO03RSB0 D10 IO40RSB0 F16 IO66NDB1 B5 IO13RSB0 D11 IO46RSB0 G1 IO148NDB3 B6 IO14RSB0 D12 GNDQ G2 IO148PDB3 B7 IO21RSB0 D13 IO47RSB0 G3 IO149PPB3 B8 IO27RSB0 D14 GBB2/IO61PPB1 G4 GFC1/IO147PPB3 B9 IO32RSB0 D15 IO53RSB0 G5 VCCIB3 B10 IO38RSB0 D16 IO63NDB1 G6 VCC B11 IO42RSB0 E1 IO150PDB3 G7 GND B12 GBC1/IO55RSB0 E2 IO08RSB0 G8 GND B13 GBB0/IO56RSB0 E3 IO153VDB3 G9 GND B14 IO44RSB0 E4 IO152VDB3 G10 GND B15 GBA2/IO60PDB1 E5 VMV0 G11 VCC B16 IO60NDB1 E6 VCCIB0 G12 VCCIB1 C1 IO154VDB3 E7 VCCIB0 G13 GCC1/IO67PPB1 C2 IO155VDB3 E8 IO25RSB0 G14 IO64NPB1 C3 IO11RSB0 E9 IO31RSB0 G15 IO73PDB1 C4 IO07RSB0 E10 VCCIB0 G16 IO73NDB1 C5 GAC0/IO04RSB0 E11 VCCIB0 H1 GFB0/IO146NPB3 C6 GAC1/IO05RSB0 E12 VMV1 H2 GFA0/IO145NDB3 4-54 Revision 27
IGLOO Low Power Flash FPGAs FG256 FG256 FG256 Pin Number AGL400 Function Pin Number AGL400 Function Pin Number AGL400 Function H3 GFB1/IO146PPB3 K9 GND M15 GDC1/IO77UDB1 H4 VCOMPLF K10 GND M16 IO75NDB1 H5 GFC0/IO147NPB3 K11 VCC N1 IO140NDB3 H6 VCC K12 VCCIB1 N2 IO138PPB3 H7 GND K13 IO71NPB1 N3 GEC1/IO137PPB3 H8 GND K14 IO74RSB1 N4 IO131RSB2 H9 GND K15 IO72NPB1 N5 GNDQ H10 GND K16 IO70NDB1 N6 GEA2/IO134RSB2 H11 VCC L1 IO142NDB3 N7 IO117RSB2 H12 GCC0/IO67NPB1 L2 IO141NPB3 N8 IO111RSB2 H13 GCB1/IO68PPB1 L3 IO125RSB2 N9 IO99RSB2 H14 GCA0/IO69NPB1 L4 IO139RSB3 N10 IO94RSB2 H15 NC L5 VCCIB3 N11 IO87RSB2 H16 GCB0/IO68NPB1 L6 GND N12 GNDQ J1 GFA2/IO144PPB3 L7 VCC N13 IO93RSB2 J2 GFA1/IO145PDB3 L8 VCC N14 VJTAG J3 VCCPLF L9 VCC N15 GDC0/IO77VDB1 J4 IO143NDB3 L10 VCC N16 GDA1/IO79UDB1 J5 GFB2/IO143PDB3 L11 GND P1 GEB1/IO136PDB3 J6 VCC L12 VCCIB1 P2 GEB0/IO136NDB3 J7 GND L13 GDB0/IO78VPB1 P3 VMV2 J8 GND L14 IO76VDB1 P4 IO129RSB2 J9 GND L15 IO76UDB1 P5 IO128RSB2 J10 GND L16 IO75PDB1 P6 IO122RSB2 J11 VCC M1 IO140PDB3 P7 IO115RSB2 J12 GCB2/IO71PPB1 M2 IO130RSB2 P8 IO110RSB2 J13 GCA1/IO69PPB1 M3 IO138NPB3 P9 IO98RSB2 J14 GCC2/IO72PPB1 M4 GEC0/IO137NPB3 P10 IO95RSB2 J15 NC M5 VMV3 P11 IO88RSB2 J16 GCA2/IO70PDB1 M6 VCCIB2 P12 IO84RSB2 K1 GFC2/IO142PDB3 M7 VCCIB2 P13 TCK K2 IO144NPB3 M8 IO108RSB2 P14 VPUMP K3 IO141PPB3 M9 IO101RSB2 P15 TRST K4 IO120RSB2 M10 VCCIB2 P16 GDA0/IO79VDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO135PDB3 K6 VCC M12 VMV2 R2 GEA0/IO135NDB3 K7 GND M13 IO83RSB2 R3 IO127RSB2 K8 GND M14 GDB1/IO78UPB1 R4 GEC2/IO132RSB2 Revision 27 4-55
Package Pin Assignments FG256 Pin Number AGL400 Function R5 IO123RSB2 R6 IO118RSB2 R7 IO112RSB2 R8 IO106RSB2 R9 IO100RSB2 R10 IO96RSB2 R11 IO89RSB2 R12 IO85RSB2 R13 GDB2/IO81RSB2 R14 TDI R15 NC R16 TDO T1 GND T2 IO126RSB2 T3 FF/GEB2/IO133RSB2 T4 IO124RSB2 T5 IO116RSB2 T6 IO113RSB2 T7 IO107RSB2 T8 IO105RSB2 T9 IO102RSB2 T10 IO97RSB2 T11 IO92RSB2 T12 GDC2/IO82RSB2 T13 IO86RSB2 T14 GDA2/IO80RSB2 T15 TMS T16 GND 4-56 Revision 27
IGLOO Low Power Flash FPGAs FG256 FG256 FG256 Pin Number AGL600 Function Pin Number AGL600 Function Pin Number AGL600 Function A1 GND C7 IO20RSB0 E13 GBC2/IO62PDB1 A2 GAA0/IO00RSB0 C8 IO24RSB0 E14 IO67PPB1 A3 GAA1/IO01RSB0 C9 IO33RSB0 E15 IO64PPB1 A4 GAB0/IO02RSB0 C10 IO39RSB0 E16 IO66PDB1 A5 IO11RSB0 C11 IO44RSB0 F1 IO166NDB3 A6 IO16RSB0 C12 GBC0/IO54RSB0 F2 IO168NPB3 A7 IO18RSB0 C13 IO51RSB0 F3 IO167PPB3 A8 IO28RSB0 C14 VMV0 F4 IO169PDB3 A9 IO34RSB0 C15 IO61NPB1 F5 VCCIB3 A10 IO37RSB0 C16 IO63PDB1 F6 GND A11 IO41RSB0 D1 IO171NDB3 F7 VCC A12 IO43RSB0 D2 IO171PDB3 F8 VCC A13 GBB1/IO57RSB0 D3 GAC2/IO172PDB3 F9 VCC A14 GBA0/IO58RSB0 D4 IO06RSB0 F10 VCC A15 GBA1/IO59RSB0 D5 GNDQ F11 GND A16 GND D6 IO10RSB0 F12 VCCIB1 B1 GAB2/IO173PDB3 D7 IO19RSB0 F13 IO62NDB1 B2 GAA2/IO174PDB3 D8 IO26RSB0 F14 IO64NPB1 B3 GNDQ D9 IO30RSB0 F15 IO65PPB1 B4 GAB1/IO03RSB0 D10 IO40RSB0 F16 IO66NDB1 B5 IO13RSB0 D11 IO45RSB0 G1 IO165NDB3 B6 IO14RSB0 D12 GNDQ G2 IO165PDB3 B7 IO21RSB0 D13 IO50RSB0 G3 IO168PPB3 B8 IO27RSB0 D14 GBB2/IO61PPB1 G4 GFC1/IO164PPB3 B9 IO32RSB0 D15 IO53RSB0 G5 VCCIB3 B10 IO38RSB0 D16 IO63NDB1 G6 VCC B11 IO42RSB0 E1 IO166PDB3 G7 GND B12 GBC1/IO55RSB0 E2 IO167NPB3 G8 GND B13 GBB0/IO56RSB0 E3 IO172NDB3 G9 GND B14 IO52RSB0 E4 IO169NDB3 G10 GND B15 GBA2/IO60PDB1 E5 VMV0 G11 VCC B16 IO60NDB1 E6 VCCIB0 G12 VCCIB1 C1 IO173NDB3 E7 VCCIB0 G13 GCC1/IO69PPB1 C2 IO174NDB3 E8 IO25RSB0 G14 IO65NPB1 C3 VMV3 E9 IO31RSB0 G15 IO75PDB1 C4 IO07RSB0 E10 VCCIB0 G16 IO75NDB1 C5 GAC0/IO04RSB0 E11 VCCIB0 H1 GFB0/IO163NPB3 C6 GAC1/IO05RSB0 E12 VMV1 H2 GFA0/IO162NDB3 Revision 27 4-57
Package Pin Assignments FG256 FG256 FG256 Pin Number AGL600 Function Pin Number AGL600 Function Pin Number AGL600 Function H3 GFB1/IO163PPB3 K9 GND M15 GDC1/IO86PDB1 H4 VCOMPLF K10 GND M16 IO84NDB1 H5 GFC0/IO164NPB3 K11 VCC N1 IO150NDB3 H6 VCC K12 VCCIB1 N2 IO147PPB3 H7 GND K13 IO73NPB1 N3 GEC1/IO146PPB3 H8 GND K14 IO80NPB1 N4 IO140RSB2 H9 GND K15 IO74NPB1 N5 GNDQ H10 GND K16 IO72NDB1 N6 GEA2/IO143RSB2 H11 VCC L1 IO159NDB3 N7 IO126RSB2 H12 GCC0/IO69NPB1 L2 IO156NPB3 N8 IO120RSB2 H13 GCB1/IO70PPB1 L3 IO151PPB3 N9 IO108RSB2 H14 GCA0/IO71NPB1 L4 IO158PSB3 N10 IO103RSB2 H15 IO67NPB1 L5 VCCIB3 N11 IO99RSB2 H16 GCB0/IO70NPB1 L6 GND N12 GNDQ J1 GFA2/IO161PPB3 L7 VCC N13 IO92RSB2 J2 GFA1/IO162PDB3 L8 VCC N14 VJTAG J3 VCCPLF L9 VCC N15 GDC0/IO86NDB1 J4 IO160NDB3 L10 VCC N16 GDA1/IO88PDB1 J5 GFB2/IO160PDB3 L11 GND P1 GEB1/IO145PDB3 J6 VCC L12 VCCIB1 P2 GEB0/IO145NDB3 J7 GND L13 GDB0/IO87NPB1 P3 VMV2 J8 GND L14 IO85NDB1 P4 IO138RSB2 J9 GND L15 IO85PDB1 P5 IO136RSB2 J10 GND L16 IO84PDB1 P6 IO131RSB2 J11 VCC M1 IO150PDB3 P7 IO124RSB2 J12 GCB2/IO73PPB1 M2 IO151NPB3 P8 IO119RSB2 J13 GCA1/IO71PPB1 M3 IO147NPB3 P9 IO107RSB2 J14 GCC2/IO74PPB1 M4 GEC0/IO146NPB3 P10 IO104RSB2 J15 IO80PPB1 M5 VMV3 P11 IO97RSB2 J16 GCA2/IO72PDB1 M6 VCCIB2 P12 VMV1 K1 GFC2/IO159PDB3 M7 VCCIB2 P13 TCK K2 IO161NPB3 M8 IO117RSB2 P14 VPUMP K3 IO156PPB3 M9 IO110RSB2 P15 TRST K4 IO129RSB2 M10 VCCIB2 P16 GDA0/IO88NDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO144PDB3 K6 VCC M12 VMV2 R2 GEA0/IO144NDB3 K7 GND M13 IO94RSB2 R3 IO139RSB2 K8 GND M14 GDB1/IO87PPB1 R4 GEC2/IO141RSB2 4-58 Revision 27
IGLOO Low Power Flash FPGAs FG256 Pin Number AGL600 Function R5 IO132RSB2 R6 IO127RSB2 R7 IO121RSB2 R8 IO114RSB2 R9 IO109RSB2 R10 IO105RSB2 R11 IO98RSB2 R12 IO96RSB2 R13 GDB2/IO90RSB2 R14 TDI R15 GNDQ R16 TDO T1 GND T2 IO137RSB2 T3 FF/GEB2/IO142RSB2 T4 IO134RSB2 T5 IO125RSB2 T6 IO123RSB2 T7 IO118RSB2 T8 IO115RSB2 T9 IO111RSB2 T10 IO106RSB2 T11 IO102RSB2 T12 GDC2/IO91RSB2 T13 IO93RSB2 T14 GDA2/IO89RSB2 T15 TMS T16 GND Revision 27 4-59
Package Pin Assignments FG256 FG256 FG256 Pin Number AGL1000 Function Pin Number AGL1000 Function Pin Number AGL1000 Function A1 GND C7 IO25RSB0 E13 GBC2/IO80PDB1 A2 GAA0/IO00RSB0 C8 IO36RSB0 E14 IO83PPB1 A3 GAA1/IO01RSB0 C9 IO42RSB0 E15 IO86PPB1 A4 GAB0/IO02RSB0 C10 IO49RSB0 E16 IO87PDB1 A5 IO16RSB0 C11 IO56RSB0 F1 IO217NDB3 A6 IO22RSB0 C12 GBC0/IO72RSB0 F2 IO218NDB3 A7 IO28RSB0 C13 IO62RSB0 F3 IO216PDB3 A8 IO35RSB0 C14 VMV0 F4 IO216NDB3 A9 IO45RSB0 C15 IO78NDB1 F5 VCCIB3 A10 IO50RSB0 C16 IO81NDB1 F6 GND A11 IO55RSB0 D1 IO222NDB3 F7 VCC A12 IO61RSB0 D2 IO222PDB3 F8 VCC A13 GBB1/IO75RSB0 D3 GAC2/IO223PDB3 F9 VCC A14 GBA0/IO76RSB0 D4 IO223NDB3 F10 VCC A15 GBA1/IO77RSB0 D5 GNDQ F11 GND A16 GND D6 IO23RSB0 F12 VCCIB1 B1 GAB2/IO224PDB3 D7 IO29RSB0 F13 IO83NPB1 B2 GAA2/IO225PDB3 D8 IO33RSB0 F14 IO86NPB1 B3 GNDQ D9 IO46RSB0 F15 IO90PPB1 B4 GAB1/IO03RSB0 D10 IO52RSB0 F16 IO87NDB1 B5 IO17RSB0 D11 IO60RSB0 G1 IO210PSB3 B6 IO21RSB0 D12 GNDQ G2 IO213NDB3 B7 IO27RSB0 D13 IO80NDB1 G3 IO213PDB3 B8 IO34RSB0 D14 GBB2/IO79PDB1 G4 GFC1/IO209PPB3 B9 IO44RSB0 D15 IO79NDB1 G5 VCCIB3 B10 IO51RSB0 D16 IO82NSB1 G6 VCC B11 IO57RSB0 E1 IO217PDB3 G7 GND B12 GBC1/IO73RSB0 E2 IO218PDB3 G8 GND B13 GBB0/IO74RSB0 E3 IO221NDB3 G9 GND B14 IO71RSB0 E4 IO221PDB3 G10 GND B15 GBA2/IO78PDB1 E5 VMV0 G11 VCC B16 IO81PDB1 E6 VCCIB0 G12 VCCIB1 C1 IO224NDB3 E7 VCCIB0 G13 GCC1/IO91PPB1 C2 IO225NDB3 E8 IO38RSB0 G14 IO90NPB1 C3 VMV3 E9 IO47RSB0 G15 IO88PDB1 C4 IO11RSB0 E10 VCCIB0 G16 IO88NDB1 C5 GAC0/IO04RSB0 E11 VCCIB0 H1 GFB0/IO208NPB3 C6 GAC1/IO05RSB0 E12 VMV1 H2 GFA0/IO207NDB3 4-60 Revision 27
IGLOO Low Power Flash FPGAs FG256 FG256 FG256 Pin Number AGL1000 Function Pin Number AGL1000 Function Pin Number AGL1000 Function H3 GFB1/IO208PPB3 K9 GND M15 GDC1/IO111PDB1 H4 VCOMPLF K10 GND M16 IO107NDB1 H5 GFC0/IO209NPB3 K11 VCC N1 IO194PSB3 H6 VCC K12 VCCIB1 N2 IO192PPB3 H7 GND K13 IO95NPB1 N3 GEC1/IO190PPB3 H8 GND K14 IO100NPB1 N4 IO192NPB3 H9 GND K15 IO102NDB1 N5 GNDQ H10 GND K16 IO102PDB1 N6 GEA2/IO187RSB2 H11 VCC L1 IO202NDB3 N7 IO161RSB2 H12 GCC0/IO91NPB1 L2 IO202PDB3 N8 IO155RSB2 H13 GCB1/IO92PPB1 L3 IO196PPB3 N9 IO141RSB2 H14 GCA0/IO93NPB1 L4 IO193PPB3 N10 IO129RSB2 H15 IO96NPB1 L5 VCCIB3 N11 IO124RSB2 H16 GCB0/IO92NPB1 L6 GND N12 GNDQ J1 GFA2/IO206PSB3 L7 VCC N13 IO110PDB1 J2 GFA1/IO207PDB3 L8 VCC N14 VJTAG J3 VCCPLF L9 VCC N15 GDC0/IO111NDB1 J4 IO205NDB3 L10 VCC N16 GDA1/IO113PDB1 J5 GFB2/IO205PDB3 L11 GND P1 GEB1/IO189PDB3 J6 VCC L12 VCCIB1 P2 GEB0/IO189NDB3 J7 GND L13 GDB0/IO112NPB1 P3 VMV2 J8 GND L14 IO106NDB1 P4 IO179RSB2 J9 GND L15 IO106PDB1 P5 IO171RSB2 J10 GND L16 IO107PDB1 P6 IO165RSB2 J11 VCC M1 IO197NSB3 P7 IO159RSB2 J12 GCB2/IO95PPB1 M2 IO196NPB3 P8 IO151RSB2 J13 GCA1/IO93PPB1 M3 IO193NPB3 P9 IO137RSB2 J14 GCC2/IO96PPB1 M4 GEC0/IO190NPB3 P10 IO134RSB2 J15 IO100PPB1 M5 VMV3 P11 IO128RSB2 J16 GCA2/IO94PSB1 M6 VCCIB2 P12 VMV1 K1 GFC2/IO204PDB3 M7 VCCIB2 P13 TCK K2 IO204NDB3 M8 IO147RSB2 P14 VPUMP K3 IO203NDB3 M9 IO136RSB2 P15 TRST K4 IO203PDB3 M10 VCCIB2 P16 GDA0/IO113NDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO188PDB3 K6 VCC M12 VMV2 R2 GEA0/IO188NDB3 K7 GND M13 IO110NDB1 R3 IO184RSB2 K8 GND M14 GDB1/IO112PPB1 R4 GEC2/IO185RSB2 Revision 27 4-61
Package Pin Assignments FG256 Pin Number AGL1000 Function R5 IO168RSB2 R6 IO163RSB2 R7 IO157RSB2 R8 IO149RSB2 R9 IO143RSB2 R10 IO138RSB2 R11 IO131RSB2 R12 IO125RSB2 R13 GDB2/IO115RSB2 R14 TDI R15 GNDQ R16 TDO T1 GND T2 IO183RSB2 T3 FF/GEB2/IO186RSB2 T4 IO172RSB2 T5 IO170RSB2 T6 IO164RSB2 T7 IO158RSB2 T8 IO153RSB2 T9 IO142RSB2 T10 IO135RSB2 T11 IO130RSB2 T12 GDC2/IO116RSB2 T13 IO120RSB2 T14 GDA2/IO114RSB2 T15 TMS T16 GND 4-62 Revision 27
IGLOO Low Power Flash FPGAs FG484 A1 Ball Pad Corner 22 21 201918 1716 151413 1211 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB Note: This is the bottom view of the package. Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 27 4-63
Package Pin Assignments FG484 Pin Number AGL400 Function A1 GND A2 GND A3 VCCIB0 A4 NC A5 NC A6 IO15RSB0 A7 IO18RSB0 A8 NC A9 NC A10 IO23RSB0 A11 IO29RSB0 A12 IO35RSB0 A13 IO36RSB0 A14 NC A15 NC A16 IO50RSB0 A17 IO51RSB0 A18 NC A19 NC A20 VCCIB0 A21 GND A22 GND AA1 GND AA2 VCCIB3 AA3 NC AA4 NC AA5 NC AA6 NC AA7 NC AA8 NC AA9 NC AA10 NC AA11 NC AA12 NC AA13 NC AA14 NC 4-64 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL400 Function AA15 NC AA16 NC AA17 NC AA18 NC AA19 NC AA20 NC AA21 VCCIB1 AA22 GND AB1 GND AB2 GND AB3 VCCIB2 AB4 NC AB5 NC AB6 IO121RSB2 AB7 IO119RSB2 AB8 IO114RSB2 AB9 IO109RSB2 AB10 NC AB11 NC AB12 IO104RSB2 AB13 IO103RSB2 AB14 NC AB15 NC AB16 IO91RSB2 AB17 IO90RSB2 AB18 NC AB19 NC AB20 VCCIB2 AB21 GND AB22 GND B1 GND B2 VCCIB3 B3 NC B4 NC B5 NC B6 NC Revision 27 4-65
Package Pin Assignments FG484 Pin Number AGL400 Function B7 NC B8 NC B9 NC B10 NC B11 NC B12 NC B13 NC B14 NC B15 NC B16 NC B17 NC B18 NC B19 NC B20 NC B21 VCCIB1 B22 GND C1 VCCIB3 C2 NC C3 NC C4 NC C5 GND C6 NC C7 NC C8 VCC C9 VCC C10 NC C11 NC C12 NC C13 NC C14 VCC C15 VCC C16 NC C17 NC C18 GND C19 NC C20 NC 4-66 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL400 Function C21 NC C22 VCCIB1 D1 NC D2 NC D3 NC D4 GND D5 GAA0/IO00RSB0 D6 GAA1/IO01RSB0 D7 GAB0/IO02RSB0 D8 IO16RSB0 D9 IO17RSB0 D10 IO22RSB0 D11 IO28RSB0 D12 IO34RSB0 D13 IO37RSB0 D14 IO41RSB0 D15 IO43RSB0 D16 GBB1/IO57RSB0 D17 GBA0/IO58RSB0 D18 GBA1/IO59RSB0 D19 GND D20 NC D21 NC D22 NC E1 NC E2 NC E3 GND E4 GAB2/IO154UDB3 E5 GAA2/IO155UDB3 E6 IO12RSB0 E7 GAB1/IO03RSB0 E8 IO13RSB0 E9 IO14RSB0 E10 IO21RSB0 E11 IO27RSB0 E12 IO32RSB0 Revision 27 4-67
Package Pin Assignments FG484 Pin Number AGL400 Function E13 IO38RSB0 E14 IO42RSB0 E15 GBC1/IO55RSB0 E16 GBB0/IO56RSB0 E17 IO44RSB0 E18 GBA2/IO60PDB1 E19 IO60NDB1 E20 GND E21 NC E22 NC F1 NC F2 NC F3 NC F4 IO154VDB3 F5 IO155VDB3 F6 IO11RSB0 F7 IO07RSB0 F8 GAC0/IO04RSB0 F9 GAC1/IO05RSB0 F10 IO20RSB0 F11 IO24RSB0 F12 IO33RSB0 F13 IO39RSB0 F14 IO45RSB0 F15 GBC0/IO54RSB0 F16 IO48RSB0 F17 VMV0 F18 IO61NPB1 F19 IO63PDB1 F20 NC F21 NC F22 NC G1 NC G2 NC G3 NC G4 IO151VDB3 4-68 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL400 Function G5 IO151UDB3 G6 GAC2/IO153UDB3 G7 IO06RSB0 G8 GNDQ G9 IO10RSB0 G10 IO19RSB0 G11 IO26RSB0 G12 IO30RSB0 G13 IO40RSB0 G14 IO46RSB0 G15 GNDQ G16 IO47RSB0 G17 GBB2/IO61PPB1 G18 IO53RSB0 G19 IO63NDB1 G20 NC G21 NC G22 NC H1 NC H2 NC H3 VCC H4 IO150PDB3 H5 IO08RSB0 H6 IO153VDB3 H7 IO152VDB3 H8 VMV0 H9 VCCIB0 H10 VCCIB0 H11 IO25RSB0 H12 IO31RSB0 H13 VCCIB0 H14 VCCIB0 H15 VMV1 H16 GBC2/IO62PDB1 H17 IO65RSB1 H18 IO52RSB0 Revision 27 4-69
Package Pin Assignments FG484 Pin Number AGL400 Function H19 IO66PDB1 H20 VCC H21 NC H22 NC J1 NC J2 NC J3 NC J4 IO150NDB3 J5 IO149NPB3 J6 IO09RSB0 J7 IO152UDB3 J8 VCCIB3 J9 GND J10 VCC J11 VCC J12 VCC J13 VCC J14 GND J15 VCCIB1 J16 IO62NDB1 J17 IO49RSB0 J18 IO64PPB1 J19 IO66NDB1 J20 NC J21 NC J22 NC K1 NC K2 NC K3 NC K4 IO148NDB3 K5 IO148PDB3 K6 IO149PPB3 K7 GFC1/IO147PPB3 K8 VCCIB3 K9 VCC K10 GND 4-70 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL400 Function K11 GND K12 GND K13 GND K14 VCC K15 VCCIB1 K16 GCC1/IO67PPB1 K17 IO64NPB1 K18 IO73PDB1 K19 IO73NDB1 K20 NC K21 NC K22 NC L1 NC L2 NC L3 NC L4 GFB0/IO146NPB3 L5 GFA0/IO145NDB3 L6 GFB1/IO146PPB3 L7 VCOMPLF L8 GFC0/IO147NPB3 L9 VCC L10 GND L11 GND L12 GND L13 GND L14 VCC L15 GCC0/IO67NPB1 L16 GCB1/IO68PPB1 L17 GCA0/IO69NPB1 L18 NC L19 GCB0/IO68NPB1 L20 NC L21 NC L22 NC M1 NC M2 NC Revision 27 4-71
Package Pin Assignments FG484 Pin Number AGL400 Function M3 NC M4 GFA2/IO144PPB3 M5 GFA1/IO145PDB3 M6 VCCPLF M7 IO143NDB3 M8 GFB2/IO143PDB3 M9 VCC M10 GND M11 GND M12 GND M13 GND M14 VCC M15 GCB2/IO71PPB1 M16 GCA1/IO69PPB1 M17 GCC2/IO72PPB1 M18 NC M19 GCA2/IO70PDB1 M20 NC M21 NC M22 NC N1 NC N2 NC N3 NC N4 GFC2/IO142PDB3 N5 IO144NPB3 N6 IO141PPB3 N7 IO120RSB2 N8 VCCIB3 N9 VCC N10 GND N11 GND N12 GND N13 GND N14 VCC N15 VCCIB1 N16 IO71NPB1 4-72 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL400 Function N17 IO74RSB1 N18 IO72NPB1 N19 IO70NDB1 N20 NC N21 NC N22 NC P1 NC P2 NC P3 NC P4 IO142NDB3 P5 IO141NPB3 P6 IO125RSB2 P7 IO139RSB3 P8 VCCIB3 P9 GND P10 VCC P11 VCC P12 VCC P13 VCC P14 GND P15 VCCIB1 P16 GDB0/IO78VPB1 P17 IO76VDB1 P18 IO76UDB1 P19 IO75PDB1 P20 NC P21 NC P22 NC R1 NC R2 NC R3 VCC R4 IO140PDB3 R5 IO130RSB2 R6 IO138NPB3 R7 GEC0/IO137NPB3 R8 VMV3 Revision 27 4-73
Package Pin Assignments FG484 Pin Number AGL400 Function R9 VCCIB2 R10 VCCIB2 R11 IO108RSB2 R12 IO101RSB2 R13 VCCIB2 R14 VCCIB2 R15 VMV2 R16 IO83RSB2 R17 GDB1/IO78UPB1 R18 GDC1/IO77UDB1 R19 IO75NDB1 R20 VCC R21 NC R22 NC T1 NC T2 NC T3 NC T4 IO140NDB3 T5 IO138PPB3 T6 GEC1/IO137PPB3 T7 IO131RSB2 T8 GNDQ T9 GEA2/IO134RSB2 T10 IO117RSB2 T11 IO111RSB2 T12 IO99RSB2 T13 IO94RSB2 T14 IO87RSB2 T15 GNDQ T16 IO93RSB2 T17 VJTAG T18 GDC0/IO77VDB1 T19 GDA1/IO79UDB1 T20 NC T21 NC T22 NC 4-74 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL400 Function U1 NC U2 NC U3 NC U4 GEB1/IO136PDB3 U5 GEB0/IO136NDB3 U6 VMV2 U7 IO129RSB2 U8 IO128RSB2 U9 IO122RSB2 U10 IO115RSB2 U11 IO110RSB2 U12 IO98RSB2 U13 IO95RSB2 U14 IO88RSB2 U15 IO84RSB2 U16 TCK U17 VPUMP U18 TRST U19 GDA0/IO79VDB1 U20 NC U21 NC U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO135PDB3 V5 GEA0/IO135NDB3 V6 IO127RSB2 V7 GEC2/IO132RSB2 V8 IO123RSB2 V9 IO118RSB2 V10 IO112RSB2 V11 IO106RSB2 V12 IO100RSB2 V13 IO96RSB2 V14 IO89RSB2 Revision 27 4-75
Package Pin Assignments FG484 Pin Number AGL400 Function V15 IO85RSB2 V16 GDB2/IO81RSB2 V17 TDI V18 NC V19 TDO V20 GND V21 NC V22 NC W1 NC W2 NC W3 NC W4 GND W5 IO126RSB2 W6 FF/GEB2/IO133RSB2 W7 IO124RSB2 W8 IO116RSB2 W9 IO113RSB2 W10 IO107RSB2 W11 IO105RSB2 W12 IO102RSB2 W13 IO97RSB2 W14 IO92RSB2 W15 GDC2/IO82RSB2 W16 IO86RSB2 W17 GDA2/IO80RSB2 W18 TMS W19 GND W20 NC W21 NC W22 NC Y1 VCCIB3 Y2 NC Y3 NC Y4 NC Y5 GND Y6 NC 4-76 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL400 Function Y7 NC Y8 VCC Y9 VCC Y10 NC Y11 NC Y12 NC Y13 NC Y14 VCC Y15 VCC Y16 NC Y17 NC Y18 GND Y19 NC Y20 NC Y21 NC Y22 VCCIB1 Revision 27 4-77
IGLOO Low Power Flash FPGAs FG484 FG484 FG484 Pin Number AGL600 Function Pin Number AGL600 Function Pin Number AGL600 Function A1 GND AA15 NC B7 IO12RSB0 A2 GND AA16 IO101RSB2 B8 NC A3 VCCIB0 AA17 NC B9 NC A4 NC AA18 NC B10 IO17RSB0 A5 NC AA19 NC B11 NC A6 IO09RSB0 AA20 NC B12 NC A7 IO15RSB0 AA21 VCCIB1 B13 IO36RSB0 A8 NC AA22 GND B14 NC A9 NC AB1 GND B15 NC A10 IO22RSB0 AB2 GND B16 IO47RSB0 A11 IO23RSB0 AB3 VCCIB2 B17 IO49RSB0 A12 IO29RSB0 AB4 NC B18 NC A13 IO35RSB0 AB5 NC B19 NC A14 NC AB6 IO130RSB2 B20 NC A15 NC AB7 IO128RSB2 B21 VCCIB1 A16 IO46RSB0 AB8 IO122RSB2 B22 GND A17 IO48RSB0 AB9 IO116RSB2 C1 VCCIB3 A18 NC AB10 NC C2 NC A19 NC AB11 NC C3 NC A20 VCCIB0 AB12 IO113RSB2 C4 NC A21 GND AB13 IO112RSB2 C5 GND A22 GND AB14 NC C6 NC AA1 GND AB15 NC C7 NC AA2 VCCIB3 AB16 IO100RSB2 C8 VCC AA3 NC AB17 IO95RSB2 C9 VCC AA4 NC AB18 NC C10 NC AA5 NC AB19 NC C11 NC AA6 IO135RSB2 AB20 VCCIB2 C12 NC AA7 IO133RSB2 AB21 GND C13 NC AA8 NC AB22 GND C14 VCC AA9 NC B1 GND C15 VCC AA10 NC B2 VCCIB3 C16 NC AA11 NC B3 NC C17 NC AA12 NC B4 NC C18 GND AA13 NC B5 NC C19 NC AA14 NC B6 IO08RSB0 C20 NC Revision 27 4-78
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL600 Function C21 NC C22 VCCIB1 D1 NC D2 NC D3 NC D4 GND D5 GAA0/IO00RSB0 D6 GAA1/IO01RSB0 D7 GAB0/IO02RSB0 D8 IO11RSB0 D9 IO16RSB0 D10 IO18RSB0 D11 IO28RSB0 D12 IO34RSB0 D13 IO37RSB0 D14 IO41RSB0 D15 IO43RSB0 D16 GBB1/IO57RSB0 D17 GBA0/IO58RSB0 D18 GBA1/IO59RSB0 D19 GND D20 NC D21 NC D22 NC E1 NC E2 NC E3 GND E4 GAB2/IO173PDB3 E5 GAA2/IO174PDB3 E6 GNDQ E7 GAB1/IO03RSB0 E8 IO13RSB0 E9 IO14RSB0 E10 IO21RSB0 E11 IO27RSB0 E12 IO32RSB0 Revision 27 4-79
Package Pin Assignments FG484 Pin Number AGL600 Function E13 IO38RSB0 E14 IO42RSB0 E15 GBC1/IO55RSB0 E16 GBB0/IO56RSB0 E17 IO52RSB0 E18 GBA2/IO60PDB1 E19 IO60NDB1 E20 GND E21 NC E22 NC F1 NC F2 NC F3 NC F4 IO173NDB3 F5 IO174NDB3 F6 VMV3 F7 IO07RSB0 F8 GAC0/IO04RSB0 F9 GAC1/IO05RSB0 F10 IO20RSB0 F11 IO24RSB0 F12 IO33RSB0 F13 IO39RSB0 F14 IO44RSB0 F15 GBC0/IO54RSB0 F16 IO51RSB0 F17 VMV0 F18 IO61NPB1 F19 IO63PDB1 F20 NC F21 NC F22 NC G1 IO170NDB3 G2 IO170PDB3 G3 NC G4 IO171NDB3 4-80 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL600 Function G5 IO171PDB3 G6 GAC2/IO172PDB3 G7 IO06RSB0 G8 GNDQ G9 IO10RSB0 G10 IO19RSB0 G11 IO26RSB0 G12 IO30RSB0 G13 IO40RSB0 G14 IO45RSB0 G15 GNDQ G16 IO50RSB0 G17 GBB2/IO61PPB1 G18 IO53RSB0 G19 IO63NDB1 G20 NC G21 NC G22 NC H1 NC H2 NC H3 VCC H4 IO166PDB3 H5 IO167NPB3 H6 IO172NDB3 H7 IO169NDB3 H8 VMV0 H9 VCCIB0 H10 VCCIB0 H11 IO25RSB0 H12 IO31RSB0 H13 VCCIB0 H14 VCCIB0 H15 VMV1 H16 GBC2/IO62PDB1 H17 IO67PPB1 H18 IO64PPB1 Revision 27 4-81
Package Pin Assignments FG484 Pin Number AGL600 Function H19 IO66PDB1 H20 VCC H21 NC H22 NC J1 NC J2 NC J3 NC J4 IO166NDB3 J5 IO168NPB3 J6 IO167PPB3 J7 IO169PDB3 J8 VCCIB3 J9 GND J10 VCC J11 VCC J12 VCC J13 VCC J14 GND J15 VCCIB1 J16 IO62NDB1 J17 IO64NPB1 J18 IO65PPB1 J19 IO66NDB1 J20 NC J21 IO68PDB1 J22 IO68NDB1 K1 IO157PDB3 K2 IO157NDB3 K3 NC K4 IO165NDB3 K5 IO165PDB3 K6 IO168PPB3 K7 GFC1/IO164PPB3 K8 VCCIB3 K9 VCC K10 GND 4-82 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL600 Function K11 GND K12 GND K13 GND K14 VCC K15 VCCIB1 K16 GCC1/IO69PPB1 K17 IO65NPB1 K18 IO75PDB1 K19 IO75NDB1 K20 NC K21 IO76NDB1 K22 IO76PDB1 L1 NC L2 IO155PDB3 L3 NC L4 GFB0/IO163NPB3 L5 GFA0/IO162NDB3 L6 GFB1/IO163PPB3 L7 VCOMPLF L8 GFC0/IO164NPB3 L9 VCC L10 GND L11 GND L12 GND L13 GND L14 VCC L15 GCC0/IO69NPB1 L16 GCB1/IO70PPB1 L17 GCA0/IO71NPB1 L18 IO67NPB1 L19 GCB0/IO70NPB1 L20 IO77PDB1 L21 IO77NDB1 L22 IO78NPB1 M1 NC M2 IO155NDB3 Revision 27 4-83
Package Pin Assignments FG484 Pin Number AGL600 Function M3 IO158NPB3 M4 GFA2/IO161PPB3 M5 GFA1/IO162PDB3 M6 VCCPLF M7 IO160NDB3 M8 GFB2/IO160PDB3 M9 VCC M10 GND M11 GND M12 GND M13 GND M14 VCC M15 GCB2/IO73PPB1 M16 GCA1/IO71PPB1 M17 GCC2/IO74PPB1 M18 IO80PPB1 M19 GCA2/IO72PDB1 M20 IO79PPB1 M21 IO78PPB1 M22 NC N1 IO154NDB3 N2 IO154PDB3 N3 NC N4 GFC2/IO159PDB3 N5 IO161NPB3 N6 IO156PPB3 N7 IO129RSB2 N8 VCCIB3 N9 VCC N10 GND N11 GND N12 GND N13 GND N14 VCC N15 VCCIB1 N16 IO73NPB1 4-84 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL600 Function N17 IO80NPB1 N18 IO74NPB1 N19 IO72NDB1 N20 NC N21 IO79NPB1 N22 NC P1 NC P2 IO153PDB3 P3 IO153NDB3 P4 IO159NDB3 P5 IO156NPB3 P6 IO151PPB3 P7 IO158PPB3 P8 VCCIB3 P9 GND P10 VCC P11 VCC P12 VCC P13 VCC P14 GND P15 VCCIB1 P16 GDB0/IO87NPB1 P17 IO85NDB1 P18 IO85PDB1 P19 IO84PDB1 P20 NC P21 IO81PDB1 P22 NC R1 NC R2 NC R3 VCC R4 IO150PDB3 R5 IO151NPB3 R6 IO147NPB3 R7 GEC0/IO146NPB3 R8 VMV3 Revision 27 4-85
Package Pin Assignments FG484 Pin Number AGL600 Function R9 VCCIB2 R10 VCCIB2 R11 IO117RSB2 R12 IO110RSB2 R13 VCCIB2 R14 VCCIB2 R15 VMV2 R16 IO94RSB2 R17 GDB1/IO87PPB1 R18 GDC1/IO86PDB1 R19 IO84NDB1 R20 VCC R21 IO81NDB1 R22 IO82PDB1 T1 IO152PDB3 T2 IO152NDB3 T3 NC T4 IO150NDB3 T5 IO147PPB3 T6 GEC1/IO146PPB3 T7 IO140RSB2 T8 GNDQ T9 GEA2/IO143RSB2 T10 IO126RSB2 T11 IO120RSB2 T12 IO108RSB2 T13 IO103RSB2 T14 IO99RSB2 T15 GNDQ T16 IO92RSB2 T17 VJTAG T18 GDC0/IO86NDB1 T19 GDA1/IO88PDB1 T20 NC T21 IO83PDB1 T22 IO82NDB1 4-86 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL600 Function U1 IO149PDB3 U2 IO149NDB3 U3 NC U4 GEB1/IO145PDB3 U5 GEB0/IO145NDB3 U6 VMV2 U7 IO138RSB2 U8 IO136RSB2 U9 IO131RSB2 U10 IO124RSB2 U11 IO119RSB2 U12 IO107RSB2 U13 IO104RSB2 U14 IO97RSB2 U15 VMV1 U16 TCK U17 VPUMP U18 TRST U19 GDA0/IO88NDB1 U20 NC U21 IO83NDB1 U22 NC V1 NC V2 NC V3 GND V4 GEA1/IO144PDB3 V5 GEA0/IO144NDB3 V6 IO139RSB2 V7 GEC2/IO141RSB2 V8 IO132RSB2 V9 IO127RSB2 V10 IO121RSB2 V11 IO114RSB2 V12 IO109RSB2 V13 IO105RSB2 V14 IO98RSB2 Revision 27 4-87
Package Pin Assignments FG484 Pin Number AGL600 Function V15 IO96RSB2 V16 GDB2/IO90RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC V22 NC W1 NC W2 IO148PDB3 W3 NC W4 GND W5 IO137RSB2 W6 FF/GEB2/IO142RSB2 W7 IO134RSB2 W8 IO125RSB2 W9 IO123RSB2 W10 IO118RSB2 W11 IO115RSB2 W12 IO111RSB2 W13 IO106RSB2 W14 IO102RSB2 W15 GDC2/IO91RSB2 W16 IO93RSB2 W17 GDA2/IO89RSB2 W18 TMS W19 GND W20 NC W21 NC W22 NC Y1 VCCIB3 Y2 IO148NDB3 Y3 NC Y4 NC Y5 GND Y6 NC 4-88 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL600 Function Y7 NC Y8 VCC Y9 VCC Y10 NC Y11 NC Y12 NC Y13 NC Y14 VCC Y15 VCC Y16 NC Y17 NC Y18 GND Y19 NC Y20 NC Y21 NC Y22 VCCIB1 Revision 27 4-89
Package Pin Assignments FG484 Pin Number AGL1000 Function A1 GND A2 GND A3 VCCIB0 A4 IO07RSB0 A5 IO09RSB0 A6 IO13RSB0 A7 IO18RSB0 A8 IO20RSB0 A9 IO26RSB0 A10 IO32RSB0 A11 IO40RSB0 A12 IO41RSB0 A13 IO53RSB0 A14 IO59RSB0 A15 IO64RSB0 A16 IO65RSB0 A17 IO67RSB0 A18 IO69RSB0 A19 NC A20 VCCIB0 A21 GND A22 GND AA1 GND AA2 VCCIB3 AA3 NC AA4 IO181RSB2 AA5 IO178RSB2 AA6 IO175RSB2 AA7 IO169RSB2 AA8 IO166RSB2 AA9 IO160RSB2 AA10 IO152RSB2 AA11 IO146RSB2 AA12 IO139RSB2 AA13 IO133RSB2 AA14 NC 4-90 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL1000 Function AA15 NC AA16 IO122RSB2 AA17 IO119RSB2 AA18 IO117RSB2 AA19 NC AA20 NC AA21 VCCIB1 AA22 GND AB1 GND AB2 GND AB3 VCCIB2 AB4 IO180RSB2 AB5 IO176RSB2 AB6 IO173RSB2 AB7 IO167RSB2 AB8 IO162RSB2 AB9 IO156RSB2 AB10 IO150RSB2 AB11 IO145RSB2 AB12 IO144RSB2 AB13 IO132RSB2 AB14 IO127RSB2 AB15 IO126RSB2 AB16 IO123RSB2 AB17 IO121RSB2 AB18 IO118RSB2 AB19 NC AB20 VCCIB2 AB21 GND AB22 GND B1 GND B2 VCCIB3 B3 NC B4 IO06RSB0 B5 IO08RSB0 B6 IO12RSB0 Revision 27 4-91
Package Pin Assignments FG484 Pin Number AGL1000 Function B7 IO15RSB0 B8 IO19RSB0 B9 IO24RSB0 B10 IO31RSB0 B11 IO39RSB0 B12 IO48RSB0 B13 IO54RSB0 B14 IO58RSB0 B15 IO63RSB0 B16 IO66RSB0 B17 IO68RSB0 B18 IO70RSB0 B19 NC B20 NC B21 VCCIB1 B22 GND C1 VCCIB3 C2 IO220PDB3 C3 NC C4 NC C5 GND C6 IO10RSB0 C7 IO14RSB0 C8 VCC C9 VCC C10 IO30RSB0 C11 IO37RSB0 C12 IO43RSB0 C13 NC C14 VCC C15 VCC C16 NC C17 NC C18 GND C19 NC C20 NC 4-92 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL1000 Function C21 NC C22 VCCIB1 D1 IO219PDB3 D2 IO220NDB3 D3 NC D4 GND D5 GAA0/IO00RSB0 D6 GAA1/IO01RSB0 D7 GAB0/IO02RSB0 D8 IO16RSB0 D9 IO22RSB0 D10 IO28RSB0 D11 IO35RSB0 D12 IO45RSB0 D13 IO50RSB0 D14 IO55RSB0 D15 IO61RSB0 D16 GBB1/IO75RSB0 D17 GBA0/IO76RSB0 D18 GBA1/IO77RSB0 D19 GND D20 NC D21 NC D22 NC E1 IO219NDB3 E2 NC E3 GND E4 GAB2/IO224PDB3 E5 GAA2/IO225PDB3 E6 GNDQ E7 GAB1/IO03RSB0 E8 IO17RSB0 E9 IO21RSB0 E10 IO27RSB0 E11 IO34RSB0 E12 IO44RSB0 Revision 27 4-93
Package Pin Assignments FG484 Pin Number AGL1000 Function E13 IO51RSB0 E14 IO57RSB0 E15 GBC1/IO73RSB0 E16 GBB0/IO74RSB0 E17 IO71RSB0 E18 GBA2/IO78PDB1 E19 IO81PDB1 E20 GND E21 NC E22 IO84PDB1 F1 NC F2 IO215PDB3 F3 IO215NDB3 F4 IO224NDB3 F5 IO225NDB3 F6 VMV3 F7 IO11RSB0 F8 GAC0/IO04RSB0 F9 GAC1/IO05RSB0 F10 IO25RSB0 F11 IO36RSB0 F12 IO42RSB0 F13 IO49RSB0 F14 IO56RSB0 F15 GBC0/IO72RSB0 F16 IO62RSB0 F17 VMV0 F18 IO78NDB1 F19 IO81NDB1 F20 IO82PPB1 F21 NC F22 IO84NDB1 G1 IO214NDB3 G2 IO214PDB3 G3 NC G4 IO222NDB3 4-94 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL1000 Function G5 IO222PDB3 G6 GAC2/IO223PDB3 G7 IO223NDB3 G8 GNDQ G9 IO23RSB0 G10 IO29RSB0 G11 IO33RSB0 G12 IO46RSB0 G13 IO52RSB0 G14 IO60RSB0 G15 GNDQ G16 IO80NDB1 G17 GBB2/IO79PDB1 G18 IO79NDB1 G19 IO82NPB1 G20 IO85PDB1 G21 IO85NDB1 G22 NC H1 NC H2 NC H3 VCC H4 IO217PDB3 H5 IO218PDB3 H6 IO221NDB3 H7 IO221PDB3 H8 VMV0 H9 VCCIB0 H10 VCCIB0 H11 IO38RSB0 H12 IO47RSB0 H13 VCCIB0 H14 VCCIB0 H15 VMV1 H16 GBC2/IO80PDB1 H17 IO83PPB1 H18 IO86PPB1 Revision 27 4-95
Package Pin Assignments FG484 Pin Number AGL1000 Function H19 IO87PDB1 H20 VCC H21 NC H22 NC J1 IO212NDB3 J2 IO212PDB3 J3 NC J4 IO217NDB3 J5 IO218NDB3 J6 IO216PDB3 J7 IO216NDB3 J8 VCCIB3 J9 GND J10 VCC J11 VCC J12 VCC J13 VCC J14 GND J15 VCCIB1 J16 IO83NPB1 J17 IO86NPB1 J18 IO90PPB1 J19 IO87NDB1 J20 NC J21 IO89PDB1 J22 IO89NDB1 K1 IO211PDB3 K2 IO211NDB3 K3 NC K4 IO210PPB3 K5 IO213NDB3 K6 IO213PDB3 K7 GFC1/IO209PPB3 K8 VCCIB3 K9 VCC K10 GND 4-96 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL1000 Function K11 GND K12 GND K13 GND K14 VCC K15 VCCIB1 K16 GCC1/IO91PPB1 K17 IO90NPB1 K18 IO88PDB1 K19 IO88NDB1 K20 IO94NPB1 K21 IO98NDB1 K22 IO98PDB1 L1 NC L2 IO200PDB3 L3 IO210NPB3 L4 GFB0/IO208NPB3 L5 GFA0/IO207NDB3 L6 GFB1/IO208PPB3 L7 VCOMPLF L8 GFC0/IO209NPB3 L9 VCC L10 GND L11 GND L12 GND L13 GND L14 VCC L15 GCC0/IO91NPB1 L16 GCB1/IO92PPB1 L17 GCA0/IO93NPB1 L18 IO96NPB1 L19 GCB0/IO92NPB1 L20 IO97PDB1 L21 IO97NDB1 L22 IO99NPB1 M1 NC M2 IO200NDB3 Revision 27 4-97
Package Pin Assignments FG484 Pin Number AGL1000 Function M3 IO206NDB3 M4 GFA2/IO206PDB3 M5 GFA1/IO207PDB3 M6 VCCPLF M7 IO205NDB3 M8 GFB2/IO205PDB3 M9 VCC M10 GND M11 GND M12 GND M13 GND M14 VCC M15 GCB2/IO95PPB1 M16 GCA1/IO93PPB1 M17 GCC2/IO96PPB1 M18 IO100PPB1 M19 GCA2/IO94PPB1 M20 IO101PPB1 M21 IO99PPB1 M22 NC N1 IO201NDB3 N2 IO201PDB3 N3 NC N4 GFC2/IO204PDB3 N5 IO204NDB3 N6 IO203NDB3 N7 IO203PDB3 N8 VCCIB3 N9 VCC N10 GND N11 GND N12 GND N13 GND N14 VCC N15 VCCIB1 N16 IO95NPB1 4-98 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL1000 Function N17 IO100NPB1 N18 IO102NDB1 N19 IO102PDB1 N20 NC N21 IO101NPB1 N22 IO103PDB1 P1 NC P2 IO199PDB3 P3 IO199NDB3 P4 IO202NDB3 P5 IO202PDB3 P6 IO196PPB3 P7 IO193PPB3 P8 VCCIB3 P9 GND P10 VCC P11 VCC P12 VCC P13 VCC P14 GND P15 VCCIB1 P16 GDB0/IO112NPB1 P17 IO106NDB1 P18 IO106PDB1 P19 IO107PDB1 P20 NC P21 IO104PDB1 P22 IO103NDB1 R1 NC R2 IO197PPB3 R3 VCC R4 IO197NPB3 R5 IO196NPB3 R6 IO193NPB3 R7 GEC0/IO190NPB3 R8 VMV3 Revision 27 4-99
Package Pin Assignments FG484 Pin Number AGL1000 Function R9 VCCIB2 R10 VCCIB2 R11 IO147RSB2 R12 IO136RSB2 R13 VCCIB2 R14 VCCIB2 R15 VMV2 R16 IO110NDB1 R17 GDB1/IO112PPB1 R18 GDC1/IO111PDB1 R19 IO107NDB1 R20 VCC R21 IO104NDB1 R22 IO105PDB1 T1 IO198PDB3 T2 IO198NDB3 T3 NC T4 IO194PPB3 T5 IO192PPB3 T6 GEC1/IO190PPB3 T7 IO192NPB3 T8 GNDQ T9 GEA2/IO187RSB2 T10 IO161RSB2 T11 IO155RSB2 T12 IO141RSB2 T13 IO129RSB2 T14 IO124RSB2 T15 GNDQ T16 IO110PDB1 T17 VJTAG T18 GDC0/IO111NDB1 T19 GDA1/IO113PDB1 T20 NC T21 IO108PDB1 T22 IO105NDB1 4-100 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL1000 Function U1 IO195PDB3 U2 IO195NDB3 U3 IO194NPB3 U4 GEB1/IO189PDB3 U5 GEB0/IO189NDB3 U6 VMV2 U7 IO179RSB2 U8 IO171RSB2 U9 IO165RSB2 U10 IO159RSB2 U11 IO151RSB2 U12 IO137RSB2 U13 IO134RSB2 U14 IO128RSB2 U15 VMV1 U16 TCK U17 VPUMP U18 TRST U19 GDA0/IO113NDB1 U20 NC U21 IO108NDB1 U22 IO109PDB1 V1 NC V2 NC V3 GND V4 GEA1/IO188PDB3 V5 GEA0/IO188NDB3 V6 IO184RSB2 V7 GEC2/IO185RSB2 V8 IO168RSB2 V9 IO163RSB2 V10 IO157RSB2 V11 IO149RSB2 V12 IO143RSB2 V13 IO138RSB2 V14 IO131RSB2 Revision 27 4-101
Package Pin Assignments FG484 Pin Number AGL1000 Function V15 IO125RSB2 V16 GDB2/IO115RSB2 V17 TDI V18 GNDQ V19 TDO V20 GND V21 NC V22 IO109NDB1 W1 NC W2 IO191PDB3 W3 NC W4 GND W5 IO183RSB2 W6 FF/GEB2/IO186RSB2 W7 IO172RSB2 W8 IO170RSB2 W9 IO164RSB2 W10 IO158RSB2 W11 IO153RSB2 W12 IO142RSB2 W13 IO135RSB2 W14 IO130RSB2 W15 GDC2/IO116RSB2 W16 IO120RSB2 W17 GDA2/IO114RSB2 W18 TMS W19 GND W20 NC W21 NC W22 NC Y1 VCCIB3 Y2 IO191NDB3 Y3 NC Y4 IO182RSB2 Y5 GND Y6 IO177RSB2 4-102 Revision 27
IGLOO Low Power Flash FPGAs FG484 Pin Number AGL1000 Function Y7 IO174RSB2 Y8 VCC Y9 VCC Y10 IO154RSB2 Y11 IO148RSB2 Y12 IO140RSB2 Y13 NC Y14 VCC Y15 VCC Y16 NC Y17 NC Y18 GND Y19 NC Y20 NC Y21 NC Y22 VCCIB1 Revision 27 4-103
5 – Datasheet Information List of Changes The following tables list critical changes that were made in each revision of the IGLOO datasheet. Revision Changes Page Revision 27 Added the deleted package FG144 from AGL125 device in "IGLOO Devices" (SAR 1-I (May 2016) 79355). Revision 26 Updated "IGLOO Ordering Information" and "Temperature Grade Offerings" notes by: 1-III and (March 2016) • Replacing Commercial (0°C to +70°C Ambient Temperature) with Commercial 1-IV (0°C to +85°C Junction Temperature) (SAR 48352). • Replacing Industrial (–40°C to +85°C Ambient Temperature) with Industrial (– 40°C to +100°C Junction Temperature) (SAR 48352). Ambient temperature row removed in Table2-2 (SAR 48352). 2-2 Updated Table2-2 note 2 from "To ensure targeted reliability standards are met across 2-2 ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi’s timing and power simulation tools." to "Software Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information on custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help." (SAR 77087). Updated Table2-2 note 9 from "VMV pins must be connected to the corresponding 2-2 VCCI pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User Guide for further information." to "VMV and VCCI must be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" on page 3-1 for further information." (SAR 77087) Added 2 mA drive strengths in tables same as 4 mA (SAR 57179). NA Added reference of Package Mechanical Drawings document in all package pin NA assignment notes (76777). Revision 25 Removed package FG144 from AGL060 device in the following tables: "IGLOO I, II, and (June2015) Devices", "I/Os Per Package1" and "Temperature Grade Offerings" (SAR 68517) IV Removed Package Pin Assignment table of AGL060 device from FG144.(SAR 68517) - Revision 24 Note added for the discontinuance of QN132 package to the following tables: "IGLOO I, II, IV, (March 2014) Devices", "I/Os Per Package1", "IGLOO FPGAs Package Sizes Dimensions", and 4-28 and"Temperature Grade Offerings" and "QN132" section (SAR 55117, PDN 1306). Removed packages CS81 and QN132 from AGL250 device in the following tables: I, II, and "IGLOO Devices", "I/Os Per Package1", and "Temperature Grade Offerings" (SAR IV 49472). Revision 27 5-1
IGLOO Low Power Flash FPGAs Revision Changes Page Revision 23 The "IGLOO Ordering Information" section has been updated to mention "Y" as "Blank" III (December 2012) mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43173). The note in Table2-189·IGLOO CCC/PLL Specification and Table2-190·IGLOO 2-115, CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to 2-116 the online help associated with the core (SAR 42564). Additionally, note regarding SSOs was added. Live at Power-Up (LAPU) has been replaced with ’Instant On’. NA Revision 22 The "Security" section was modified to clarify that Microsemi does not support read- 1-2 (September 2012) back of programmed data. Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip N/A (SoC) throughout the document (SAR 40271). Revision 21 Under AGL125, in the Package Pin list, CS121 was incorrectly added to the datasheet I to IV (May 2012) in revision 19 and has been removed (SAR 38217). Corrected the inadvertent error for Max Values for LVPECL VIH and revised the same 2-82 to ’3.6’ in Table2-151·Minimum and Maximum DC Input and Output Levels (SAR 37685). Figure 2-38 • FIFO Read and Figure 2-39 • FIFO Write have been added (SAR 34841). 2-127 The following sentence was removed from the VMVx description in the "Pin 3-1 Descriptions" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with “Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks” (SAR 38317). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement. Revision 27 5-2
Datasheet Information Revision Changes Page Revision 21 Pin description table for AGL125 CS121 was removed as it was incorrectly added to the - (continued) datasheet in revision 19 (SAR 38217). Revision 20 Notes indicating that AGL015 is not recommended for new designs have been added. I to IV (March 2012) The "Devices Not Recommended For New Designs" section is new (SAR 35015). Notes indicating that device/package support is TBD for AGL250-QN132 and I to IV AGL060-FG144 have been reinserted (SAR 33689). Values for the power data for PAC1, PAC2, PAC3, PAC4, PAC7, and PAC8 were 2-13, revised in Table 2-19 • Different Components Contributing to Dynamic Power 2-15 Consumption in IGLOO Devices and Table 2-21 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices to match the SmartPower tool in Libero software version 9.0 SP1 and Power Calculator spreadsheet v7a released on 08/10/2010 (SAR 33768). The reference to guidelines for global spines and VersaTile rows, given in the "Global 2-17 Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the IGLOO FPGA Fabric User Guide (SAR 34730). Figure 2-4 • Input Buffer Timing Model and Delays (example) has been modified for the 2-21 DIN waveform; the Rise and Fall time label has been changed to t (SAR 37104). DIN Added missing characteristics for 3.3 V LVCMOS, 3.3 V LVCMOS Wide range, 1.2 V 2-35 to LVCMOS, and 1.2 V LVCMOS Wide range to the following tables: 2-40, • Table2-38, Table2-39, Table2-40, Table2-42, Table2-43, and Table2-44 (SARs 2-47 to 33854 and 36891) 2-49, 2-74, • Table2-63, Table2-64, and Table2-65 (SAR 33854) 2-77, and • Table2-127, Table2-128, Table2-129, Table2-137, Table2-138, and Table2-139 2-77 (SAR 36891). AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to 2-42 match Table2-50·AC Waveforms, Measuring Points, and Capacitive Loads (SAR 34878). Added values for minimum pulse width and removed the FRMAX row from Table2-173 2-107 through Table2-188 in the "Global Tree Timing Characteristics" section. Use the through software to determine the FRMAX for the device you are using (SAR 29271). 2-114 Revision 19 CS121 was added to the product tables in the "IGLOO Low Power Flash FPGAs" I (September 2011) section for AGL125 (SAR 22737). CS81 was added for AGL250 (SAR 22737). Notes indicating that device/package support is TBD for AGL250-QN132 and I to IV AGL060-FG144 have been removed (SAR 33689). M1AGL400 was removed from the "I/Os Per Package1" table. This device was II discontinued in April 2009 (SAR 32450). Dimensions for the QN48 package were added to Table 1 • IGLOO FPGAs Package II Sizes Dimensions (SAR 30537). The Y security option and Licensed DPA Logo were added to the "IGLOO Ordering III Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 32151). The "In-System Programming (ISP) and Security" section and "Security" section were I, 1-2 revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 32865). 5-3 Revision 27
IGLOO Low Power Flash FPGAs Revision Changes Page Revision 19 The following sentence was removed from the "Advanced Architecture" section: 1-3 (continued) "In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3V) programming of IGLOO devices via an IEEE 1532 JTAG interface" (SAR 28756). The "Specifying I/O States During Programming" section is new (SAR 21281). 1-8 Values for VCCPLL at 1.2V –1.5V DC core supply voltage were revised in Table 2-2 • 2-2 Recommended Operating Conditions1 (SAR 22356). The value for VPUMP operation was changed from "0 to 3.45 V" to "0 to 3.6 V" (SAR 25220). The value for VCCPLL 1.5 V DC core supply voltage was changed from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 26551). The notes in the table were renumbered in order of their appearance in the table (SAR 21869). The temperature used in EQ 2 was revised from 110°C to 100°C for consistency with 2-6 the limits given in Table 2-2 • Recommended Operating Conditions1. The resulting maximum power allowed is thus 1.28 W. Formerly it was 1.71 W (SAR 26259). Values for CS196, CS281, and QN132 packages were added to Table 2-5 • Package 2-6 Thermal Resistivities (SARs 26228, 32301). Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to 2-7 TJ = 70°C, VCC=1.425V) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C, VCC=1.14V) were updated to remove the column for –20°C and shift the data over to correct columns (SAR 23041). The tables in the "Quiescent Supply Current" section were updated with revised notes 2-7 on IDD (SAR 24112). Table 2-8 • Power Supply State per Mode is new. The formulas in the table notes for Table 2-41 • I/O Weak Pull-Up/Pull-Down 2-37 Resistances were corrected (SAR 21348). The row for 110°C was removed from Table 2-45 • Duration of Short Circuit Event 2-40 before Failure. The example in the associated paragraph was changed from 110°C to 100°C. Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1 was revised to change 110° to 100°C. (SAR 26259). The notes regarding drive strength in the "Summary of I/O Timing Characteristics – 2-28, Default I/O Software Settings" section, "3.3 V LVCMOS Wide Range" section and "1.2 2-47, V LVCMOS Wide Range" section tables were revised for clarification. They now state 2-77 that the minimum drive strength for the default software configuration when run in wide range is ±100µA. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700). The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It 2-56 uses a 5V–tolerant input buffer and push-pull output buffer." The values for F and F were updated in the tables in the "Input DDR 2-94, DDRIMAX DDOMAX Module" section and "Output DDR Module" section (SAR 23919). 2-97 The following notes were removed from Table 2-147 • Minimum and Maximum DC Input 2-81 and Output Levels (SAR 29428): ±5% Differential input voltage = ±350 mV Table 2-189 • IGLOO CCC/PLL Specification and Table 2-190 • IGLOO CCC/PLL 2-115 Specification were updated. A note was added to both tables indicating that when the CCC/PLL core is generated by Mircosemi core generator software, not all delay values of the specified delay increments are available (SAR 25705). Revision 27 5-4
Datasheet Information Revision Changes Page Revision 19 The following figures were deleted (SAR 29991). Reference was made to a new N/A application note, Simultaneous Read-Write Operations in Dual-Port SRAM for Flash- Based cSoCs and FPGAs, which covers these cases in detail (SAR 21770). Figure 2-36 • Write Access after Write onto Same Address Figure 2-37 • Read Access after Write onto Same Address Figure 2-38 • Write Access after Read onto Same Address 2-119 to 2-130 The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-40 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SARs 29991, 30510). The "Pin Descriptions" chapter has been added (SAR 21642). 3-1 Package names used in the "Package Pin Assignments" section were revised to match 4-1 standards given in Package Mechanical Drawings (SAR 27395). The "CS81" pin table for AGL250 is new (SAR 22737). 4-5 The CS121 pin table for AGL125 is new (SAR 22737). The P3 function was revised in the "CS196" pin table for AGL250 (SAR 24800). 4-12 The "QN132" pin table for AGL250 was added. 4-35, The "FG144" pin table for AGL060 was added (SAR 33689) 4-42 July 2010 The versioning system for datasheets has been changed. Datasheets are assigned a N/A revision number that increments each time the datasheet is revised. The "IGLOO Device Status" table indicates the status for each device in the device family. 5-5 Revision 27
IGLOO Low Power Flash FPGAs Revision / Version Changes Page Revision 18 (Nov 2009) The version changed to v2.0 for IGLOO datasheet chapters, indicating the N/A datasheet contains information based on final characterization. Please review the datasheet carefully as most tables were updated with new data. Revision 17 (Sep 2009) The "Reprogrammable Flash Technology" section was modified to add "250MHz I (1.5V systems) and 160MHz (1.2V systems) System Performance." Product Brief v1.6 "IGLOO Ordering Information" was revised to note that halogen-free packages III are available with RoHS-compliant packaging. Table1-1 • I/O Standards Supported is new. 1-7 The definitions of hot-swap and cold-sparing were added to the "I/Os with 1-7 Advanced I/O Standards" section. Revision 16 (Apr 2009) M1AGL400 is no longer offered and was removed from the "IGLOO Devices" I, III, IV Product Brief v1.5 product table, "IGLOO Ordering Information", and "Temperature Grade Offerings". The –F speed grade is no longer offered for IGLOO devices. The speed grade III, IV column and note regarding –F speed grade were removed from "IGLOO Ordering Information". The "Speed Grade and Temperature Grade Matrix" section was removed. This datasheet now has fully characterized data and has moved from being N/A Advance to a Production version. The version number changed from Advance v0.5 to v2.0. Please review the datasheet carefully as most tables were updated with new data. DC and Switching 3.3 V LVCMOS and 1.2 V LVCMOS Wide Range support was added to the Characteristics datasheet. This affects all tables that contained 3.3 V LVCMOS and 1.2 V Advance v0.6 LVCMOS data. I and I input leakage current information was added to all "Minimum and N/A IL IH Maximum DC Input and Output Levels" tables. –F was removed from the datasheet. The speed grade is no longer supported. N/A The notes in Table 2-2 • Recommended Operating Conditions1 were updated. 2-2 Table 2-4 • Overshoot and Undershoot Limits1 was updated. 2-3 Table 2-5 • Package Thermal Resistivities was updated. 2-6 Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays 2-7 (normalized to TJ = 70°C, VCC=1.425V) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C, VCC=1.14V) were updated. In Table 2-191 • RAM4K9 and Table 2-193 • RAM4K9, the following specifications 2-122 were removed: and t 2-124 WRO t CCKH In Table 2-192 • RAM512X18 and Table 2-194 • RAM512X18, the following 2-123 specifications were removed: and t 2-125 WRO t CCKH Revision 15 (Feb 2009) The "QN132" pin table for the AGL060 device is new. 4-31 Packaging v1.9 Revision 27 5-6
Datasheet Information Revision / Version Changes Page Revision 14 (Feb 2009) The "Advanced I/O" section was revised to include two bullets regarding wide I Product Brief v1.4 range power supply voltage support. 3.0V wide range was added to the list of supported voltages in the "I/Os with 1-8 Advanced I/O Standards" section. The "Wide Range I/O Support" section is new. Revision 13 (Jan 2009) The "CS121" pin table was revised to add a note regarding pins F1 and G1. 4-7 Packaging v1.8 Revision 12 (Dec 2008) QN48 and QN68 were added to the AGL030 for the following tables: N/A Product Brief v1.3 "IGLOO Devices" Product Family Table "IGLOO Ordering Information" "Temperature Grade Offerings" QN132 is fully supported by AGL125 so footnote 3 was removed. Packaging v1.7 The "QN48" pin diagram and pin table are new. 4-24 The "QN68" pin table for AGL030 is new. 4-26 Revision 12 (Dec 2008) The AGL600 Function for pin K15 in the "FG484" table was changed to VCCIB1. 4-78 Revision 11 (Oct 2008) This document was updated to include AGL400 device information. The following N/A Product Brief v1.2 sections were updated: "IGLOO Devices" Product Family Table "IGLOO Ordering Information" "Temperature Grade Offerings" Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and AGL1000) DC and Switching The tables in the "Quiescent Supply Current" section were updated with values 2-7 Characteristics for AGL400. In addition, the title was updated to include: Advance v0.5 (VCC = VJTAG = VPP = 0 V). The tables in the "Power Consumption of Various Internal Resources" section 2-13 were updated with values for AGL400. Table 2-178 • AGL400 Global Resource is new. 2-109 Packaging v1.6 The "CS196" table for the AGL400 device is new. 4-14 The "FG144" table for the AGL400 device is new. 4-47 The "FG256" table for the AGL400 device is new. 4-54 The "FG484" table for the AGL400 device is new. 4-64 Revision 10 (Aug 2008) 3.0V LVCMOS wide range support data was added to Table 2-2 • Recommended 2-2 Operating Conditions1. DC and Switching 3.3 V LVCMOS wide range support data was added to Table 2-25 • Summary of 2-24 to Characteristics Maximum and Minimum DC Input and Output Levels Applicable to Commercial 2-26 Advance v0.4 and Industrial Conditions—Software Default Settings to Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings. 3.3 V LVCMOS wide range support data was added to Table 2-28 • Summary of 2-27 Maximum and Minimum DC Input Levels. 3.3 V LVCMOS wide range support text was added to Table2-49·Minimum and 2-39 Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range. 5-7 Revision 27
IGLOO Low Power Flash FPGAs Revision / Version Changes Page DC & Switching, cont’d. Table2-49·Minimum and Maximum DC Input and Output Levels for LVCMOS 2-39 3.3 V Wide Range is new. Revision 9 (Jul 2008) As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core N/A Product Brief v1.1 voltage support. The document was updated to change 1.2V/1.5V to 1.2V to 1.5V. DC and Switching Characteristics Advance v0.3 Revision 8 (Jun 2008) As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core N/A voltage support. The document was updated to change 1.2V/1.5V to 1.2V to 1.5V. DC and Switching Tables have been updated to reflect default values in the software. The default I/O N/A Characteristics capacitance is 5 pF. Tables have been updated to include the LVCMOS 1.2 V I/O Advance v0.2 set. DDR Tables have two additional data points added to reflect both edges for Input DDR setup and hold time. The power data table has been updated to match SmartPower data rather then simulation values. AGL015 global clock delays have been added. Table 2-1 • Absolute Maximum Ratings was updated to combine the VCCI and 2-1 VMV parameters in one row. The word "output" from the parameter description for VCCI and VMV, and table note 3 was added. Table 2-2 • Recommended Operating Conditions1 was updated to add 2-2 references to tables notes 4, 6, 7, and 8. VMV was added to the VCCI parameter row, and table note 9 was added. In Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating 2-3 Temperature1, the maximum operating junction temperature was changed from 110° to 100°. VMV was removed from Table 2-4 • Overshoot and Undershoot Limits1. The 2-3 table title was modified to remove "as measured on quiet I/Os." Table note 2 was revised to remove "estimated SSO density over cycles." Table note 3 was revised to remove "refers only to overshoot/undershoot limits for simultaneous switching I/Os." The "PLL Behavior at Brownout Condition" section is new. 2-4 Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage 2-5 Levels is new. EQ2 was updated. The temperature was changed to 100°C, and therefore the 2-6 end result changed. The table notes for Table 2-9 • Quiescent Supply Current (IDD) Characteristics, 2-7 IGLOO Flash*Freeze Mode*, Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode*, and Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode were updated to remove VMV and include PDC6 and PDC7. VCCI and VJTAG were removed from the statement about IDD in the table note for Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode. Note 2 of Table 2-12 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze 2-9 Mode1 was updated to include VCCPLL. Note 4 was updated to include PDC6 and PDC7. Revision 27 5-8
Datasheet Information Revision / Version Changes Page Revision 8 (cont’d) Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software 2-10 Settings, Table 2-14 • Summary of I/O Input Buffer Power (per pin) – Default I/O through Software Settings, Table 2-15 • Summary of I/O Input Buffer Power (per pin) – 2-11 Default I/O Software Settings, and Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 were updated to change PDC2 to PDC6 and PDC3 to PDC7. The table notes were updated to reflect that power was measured on VCCI. In Table 2-19 • Different Components Contributing to Dynamic Power 2-13 Consumption in IGLOO Devices, the description for PAC13 was changed from Static to Dynamic. Table 2-20 • Different Components Contributing to the Static Power Consumption 2-14, in IGLOO Devices and Table 2-22 • Different Components Contributing to the 2-16 Static Power Consumption in IGLOO Device were updated to add PDC6 and PDC7, and to change the definition for PDC5 to bank quiescent power. Subtitles were added to indicate type of devices and core supply voltage. The "Total Static Power Consumption—PSTAT" section was updated to revise the 2-17 calculation of P , including PDC6 and PDC7. STAT Footnote† was updated to include information about PAC13. The PLL 2-18 Contribution equation was changed from: P = P + P * F to PLL AC13 AC14 CLKOUT P = P + P * F . PLL DC4 AC13 CLKOUT Revision 7 (Jun 2008) The "QN132" package diagram was updated to include D1 to D4. In addition, note 4-28 Packaging v1.5 1 was changed from top view to bottom view, and note 2 is new. Revision 6 (Jun 2008) This document was divided into two sections and given a version number, starting N/A Packaging v1.4 at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview. Pin numbers were added to the "QN68" package diagram. Note 2 was added 4-25 below the diagram. Revision 5 (Mar 2008) The "CS196" package and pin table was added for AGL250. 4-12 Packaging v1.3 Revision 4 (Mar 2008) The "Low Power" section was updated to change "1.2V and 1.5V Core Voltage" I Product Brief v1.0 to "1.2V and 1.5V Core and I/O Voltage." The text "(from 12µW)" was removed from "Low Power Active FPGA Operation." 1.2_V was added to the list of core and I/O voltages in the "Advanced I/O" and I, 1-7 "I/Os with Advanced I/O Standards" section sections. The "Embedded Memory" section was updated to remove the footnote reference I from the section heading and place it instead after "4,608-Bit" and "True Dual-Port SRAM (except ×18)." 5-9 Revision 27
IGLOO Low Power Flash FPGAs Revision / Version Changes Page Revision 3 (Feb 2008) This document was updated to include AGL015 device information. QN68 is a N/A Product Brief rev. 2 new package offered in the AGL015. The following sections were updated: "Features and Benefits" "IGLOO Ordering Information" "Temperature Grade Offerings" "IGLOO Devices" Product Family Table Table 1 • IGLOO FPGAs Package Sizes Dimensions "AGL015 and AGL030" note The "Temperature Grade Offerings" table was updated to include M1AGL600. IV In the "IGLOO Ordering Information" table, the QN package measurements were III updated to include both 0.4 mm and 0.5 mm. In the "General Description" section, the number of I/Os was updated from 288 to 1-1 300. Packaging v1.2 The "QN68" section is new. 4-25 Revision 2 (Jan 2008) The "CS196" package and pin table was added for AGL125. 4-10 Packaging v1.1 Revision 1 (Jan 2008) The "Low Power" section was updated to change the description of low power I, 1-1 Product Brief rev. 1 active FPGA operation to "from 12 µW" from "from 25 µW." The same update was made in the "General Description" section and the "Flash*Freeze Technology" section. Revision 0 (Jan 2008) This document was previously in datasheet Advance v0.7. As a result of moving N/A to the handbook format, Actel has restarted the numbering. Advance v0.7 Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the i, ii, iv (December 2007) Temperature Grade Offerings table were updated to reflect the following: CS196 is now supported for AGL250; device/package support for QN132 is to be determined for AGL250; the CS281 package was added for AGL600 and AGL1000. Table 2 • IGLOO FPGAs Package Sizes Dimensions is new, and package sizes ii were removed from the "I/Os Per Package1" table. The "I/Os Per Package1"table was updated to reflect 77 instead of 79 single- ii ended I/Os for the VG100 package for AGL030. The "Timing Model" was updated to be consistent with the revised timing 2-20 numbers. In Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels 2-26 Applicable to Commercial and Industrial Conditions—Software Default Settings, T was changed to T in notes 1 and 2. J A All AC Loading figures for single-ended I/O standards were changed from N/A Datapaths at 35 pF to 5 pF. The "1.2 V LVCMOS (JESD8-12A)" section is new. 2-74 This document was previously in datasheet Advance v0.7. As a result of moving N/A to the handbook format, Actel has restarted the version numbers. The new version number is Advance v0.1. Table 2-4 • IGLOO CCC/PLL Specification and Table 2-5 • IGLOO CCC/PLL 2-19, Specification were updated. 2-20 Revision 27 5-10
Datasheet Information Revision / Version Changes Page Advance v0.7 The former Table 2-16 • Maximum I/O Frequency for Single-Ended and N/A (continued) Differential I/Os in All Banks in IGLOO Devices (maximum drive strength and high slew selected) was removed. The "During Flash*Freeze Mode" section was updated to include information 2-57 about the output of the I/O to the FPGA core. Table 2-31 • Flash*Freeze Pin Location in IGLOO Family Packages (device- 2-61 independent) was updated to add UC81 and CS281. Flash*Freeze pins were assigned for CS81, CS121, and CS196. Figure 2-40 • Flash*Freeze Mode Type 2 – Timing Diagram was updated to 2-55 modify the LSICC Signal. Information regarding calculation of the quiescent supply current was added to 3-6 the "Quiescent Supply Current" section. Table 3-8 • Quiescent Supply Current (I ) Characteristics, IGLOO 3-6 DD Flash*Freeze Mode† was updated. Table 3-9 • Quiescent Supply Current (I ) Characteristics, IGLOO Sleep Mode 3-6 DD (VCC = 0 V)† was updated. Table 3-11 • Quiescent Supply Current (I ), No IGLOO Flash*Freeze Mode1 3-7 DD was updated. Table 3-115 • Minimum and Maximum DC Input and Output Levels was updated. 3-58 Table 3-156 • JTAG 1532 was updated and Table 3-155 • JTAG 1532 is new. 3-104 The "121-Pin CSP" and "281-Pin CSP" packages are new. 4-5, 4-7 The "81-Pin CSP" table for the AGL030 device was updated to change the G6 pin 4-4 function to IO44RSB1 and the JG pin function to IO45RSB1. The "121-Pin CSP" table for the AGL060 device is new. 4-6 The "256-Pin FBGA" table for the AGL1000 device is new. 4-34 The "281-Pin CSP" table for the AGL 600 device is new. 4-8 The "100-Pin VQFP" table for the AGL060 device is new. 4-18 The "144-Pin FBGA" table for the AGL250 device is new. 4-24 The "144-Pin FBGA" table for the AGL1000 device is new. 4-28 The "484-Pin FBGA" table for the AGL600 device is new. 4-38 The "484-Pin FBGA" table for the AGL1000 device is new. 4-43 Advance v0.6 Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the "IGLOO i, ii, iii, iv (November 2007) Ordering Information", and the Temperature Grade Offerings table were updated to add the UC81 package. The "81-Pin µCSP" table for the AGL030 device is new. 4-3 The "81-Pin CSP" table for the AGL030 device is new. 4-1 Advance v0.5 Table 1 • IGLOO Product Family was updated for AGL030 in the Package Pins i (September 2007) section to change CS181 to CS81. 5-11 Revision 27
IGLOO Low Power Flash FPGAs Revision / Version Changes Page Advance v0.4 Cortex-M1 device information was added to Table 1 • IGLOO Product Family, the i, ii, iii, iv (September 2007) "I/Os Per Package1" table, "IGLOO Ordering Information", and Temperature Grade Offerings. The number of single-ended I/Os for the CS81 package for AGL030 was updated ii to 66 in the "I/Os Per Package1" table. The "Power Conservation Techniques" section was updated to recommend that 2-51 unused I/O signals be left floating. Advance v0.3 In Table 1 • IGLOO Product Family, the CS81 package was added for AGL030. i (August 2007) The CS196 was replaced by the CS121 for AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144. The CS81 and CS121 packages were added to the "I/Os Per Package1" table. ii The number of single-ended I/Os was removed for the CS196 package in AGL060. Table note 6 was moved to the specific packages to which it applies for AGL060: QN132 and FG144. The CS81 and CS121 packages were added to the Temperature Grade Offerings iv table. The temperature grade offerings were removed for the CS196 package in AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144. The CS81 and CS121 packages were added to Table 2-31 • Flash*Freeze Pin 2-61 Location in IGLOO Family Packages (device-independent). Advance v0.2 The words "ambient temperature" were added to the temperature range in the iii, iv "IGLOO Ordering Information", Temperature Grade Offerings, and "Speed Grade and Temperature Grade Matrix" sections. The T parameter in Table 3-2 • Recommended Operating Conditions was 3-2 J changed to T , ambient temperature, and table notes 4–6 were added. A Revision 27 5-12
Datasheet Information Datasheet Categories Categories In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "IGLOO Device Status" table, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows: Product Brief The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information. Advance This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized. Preliminary The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible. Unmarked (production) This version contains information that is considered to be final. Export Administration Regulations (EAR) The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States. Safety Critical, Life Support, and High-Reliability Applications Policy The Microsemi products described in this advance status document may not have completed Microsemi’s qualification process. Microsemi may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Microsemi product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult Microsemi’s Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the Microsemi SoC Products Group’s products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Microsemi sales office for additional reliability information. 5-13 Revision 27
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not Microsemi Corporate Headquarters rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to One Enterprise, Aliso Viejo, independently determine suitability of any products and to test and verify the same. The information provided by Microsemi CA 92656 USA hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely Within the USA: +1 (800) 713-4113 with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP Outside the USA: +1 (949) 380-6100 rights, whether with regard to such information itself or anything described by such information. Information provided in this Sales: +1 (949) 380-6136 document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this Fax: +1 (949) 215-4996 document or to any products and services at any time without notice. E-mail: sales.support@microsemi.com About Microsemi www.microsemi.com Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and © 2016 Microsemi Corporation. All radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; rights reserved. Microsemi and the timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing Microsemi logo are trademarks of devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and Microsemi Corporation. All other scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design trademarks and service marks are the capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800 employees property of their respective owners. globally. Learn more at www.microsemi.com. 51700095-27/05.16