图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: ADS8638SRGER
  • 制造商: Texas Instruments
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

ADS8638SRGER产品简介:

ICGOO电子元器件商城为您提供ADS8638SRGER由Texas Instruments设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 ADS8638SRGER价格参考。Texas InstrumentsADS8638SRGER封装/规格:数据采集 - 模数转换器, 12 Bit Analog to Digital Converter 8 Input 1 SAR 24-VQFN (4x4)。您可以下载ADS8638SRGER参考资料、Datasheet数据手册功能说明书,资料中有ADS8638SRGER 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)

描述

IC ADC 12B SPI 1MSPS 8CH 24VQFN

产品分类

数据采集 - 模数转换器

品牌

Texas Instruments

数据手册

点击此处下载产品Datasheet

产品图片

产品型号

ADS8638SRGER

PCN设计/规格

点击此处下载产品Datasheet

rohs

无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

-

位数

12

供应商器件封装

24-VQFN (4x4)

其它名称

296-29340-6

包装

剪切带 (CT)

安装类型

表面贴装

封装/外壳

24-VFQFN 裸露焊盘

工作温度

-40°C ~ 125°C

数据接口

SPI

标准包装

1

特性

-

电压源

模拟和数字

转换器数

1

输入数和类型

8 个单端

采样率(每秒)

1M

推荐商品

型号:LTC1273ACSW#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LTC2378HMS-18#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:AD9059BRSZ-REEL

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:LTM9007IY-14#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LTC2298IUP#PBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:AD7872JNZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:AD7878JPZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:AD7091RBRMZ-RL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
ADS8638SRGER 相关产品

ADS6149IRGZT

品牌:Texas Instruments

价格:¥895.33-¥1043.43

ADS1110A1IDBVRG4

品牌:Texas Instruments

价格:

LTC1409CSW#TRPBF

品牌:Linear Technology/Analog Devices

价格:

MAX1195ECM+D

品牌:Maxim Integrated

价格:¥45.38-¥45.38

TLC1543IDB

品牌:Texas Instruments

价格:¥23.24-¥43.18

AD7738BRU

品牌:Analog Devices Inc.

价格:

AD976ABNZ

品牌:Analog Devices Inc.

价格:

LTC2231CUP#TRPBF

品牌:Linear Technology/Analog Devices

价格:

PDF Datasheet 数据手册内容提取

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 12-Bit, 1MSPS, 4-/8-Channel, Bipolar-Input, SAR Analog-to-Digital Converter with Software-Selectable Ranges CheckforSamples:ADS8634,ADS8638 FEATURES DESCRIPTION 1 • SelectableInputRange: The ADS8634 and ADS8638 (ADS8634/8) are 12-bit 23 analog-to-digital converters (ADCs) capable of ±10V, ±5V,±2.5V,0Vto10V,or measuring inputs up to ±10V at 1MSPS. Using a 0Vto5V successive approximation register (SAR) core, these Upto±12VwithExternalReference ADCs provide a sample-and-hold front-end with no • NoLatentConversionsUpto1MSPS latency in conversions. The ADS8634 includes an • OutstandingPerformance: input multiplexer (mux) for measuring up to four 12BitsNoMissingCodes inputs.TheADS8638canmeasureuptoeightinputs. INL:±0.9LSB In addition to the input multiplexer, the ADS8634/8 SNR:71.8dB feature an internal temperature sensor, voltage • HighlyIntegrated: reference, and a digital comparator for setting alarm 4-or8-ChannelInputMux thresholds on each input; therefore, a minimal amount of external components are required. A TemperatureSensor simple SPI-compatible interface provides for InternalVoltageReference communication and control. The digital supply AlarmThresholdsforEachChannel operates from 5V all the way down to 1.8V for direct • LowPower: connection to a wide range of processors and 14.45mWat1MSPS controllers. 5.85mWat0.1MSPS Ideal for demanding industrial measurement FlexiblePower-DownMode applications, the ADS8634/8 are fully specified over • SPI™-CompatibleSerialInterface the extended industrial temperature range of –40°C • ExtendedTemperatureRange: to +125°C and are available in a small form-factor QFN-24package. –40°Cto+125°C • SmallFootprint:4mm×4mmQFNPackage APPLICATIONS • IndustrialProcessControls(PLC) • DataAcquisitionSystems • High-Speed,Closed-LoopSystems • DigitalPowerSupplies HVDD AVDD REF DVDD HVDD AVDD REF DVDD Alarm Alarm REF Threshold AIN0 REF Threshold AIN0 AIN1 AIN1 Comparator AL_PD AIN2 Comparator AL_PD AIN3 MUX AIN4 MUX AIN2 ADC ADC SPI CDSIN,,SDCOLUKT, AAIINN56 SPI CDSIN,,SDCOLUKT, AIN3 AIN7 STeenmsopr ADS8634 STeenmsopr ADS8638 AINGND AINGND HVSS AGND REFGND DGND HVSS AGND REFGND DGND 1 Pleasebeawarethatanimportantnoticeconcerningavailability,standardwarranty,anduseincriticalapplicationsofTexas Instrumentssemiconductorproductsanddisclaimerstheretoappearsattheendofthisdatasheet. SPIisatrademarkofMotorola. 2 Allothertrademarksarethepropertyoftheirrespectiveowners. 3 PRODUCTIONDATAinformationiscurrentasofpublicationdate. Copyright©2011,TexasInstrumentsIncorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarilyincludetestingofallparameters.

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriateprecautions.Failuretoobserveproperhandlingandinstallationprocedurescancausedamage. ESDdamagecanrangefromsubtleperformancedegradationtocompletedevicefailure.Precisionintegratedcircuitsmaybemore susceptibletodamagebecauseverysmallparametricchangescouldcausethedevicenottomeetitspublishedspecifications. DEVICECOMPARISON(1) PRODUCT RESOLUTION CHANNELS SAMPLERATE ADS8634 4 12-Bit 1MSPS ADS8638 8 (1) Forthemostcurrentpackageandorderinginformation,seethePackageOptionAddendumattheendofthisdocument,orvisitthe deviceproductfolderatwww.ti.com. ABSOLUTE MAXIMUM RATINGS Overoperatingfree-airtemperaturerange,unlessotherwisenoted.(1) VALUE UNIT AINntoAGNDorAINGNDtoAGND HVSS–0.3toHVDD+0.3 V AVDDtoAGNDorDVDDtoDGND –0.3to7 V HVDDtoAGND –0.3to18 V HVSStoAGND –18to0.3 V HVDDtoHVSS –0.3to33 V DigitalinputvoltagetoDGND –0.3toDVDD+0.3 V DigitaloutputtoDGND –0.3toDVDD+0.3 V Operatingtemperaturerange –40to+125 °C Storagetemperaturerange –65to+150 °C Humanbodymodel(HBM) ±2000 V ESDratings,allpins Chargeddevicemodel(CDM) ±500 V (1) Stressesbeyondthoselistedunderabsolutemaximumratingsmaycausepermanentdamagetothedevice.Thesearestressratings only,andfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderrecommendedoperating conditionsisnotimplied.Exposuretoabsolute–maximum–ratedconditionsforextendedperiodsmayaffectdevicereliability.Theseare stressratingsonlyandfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthosespecifiedintheElectrical Characteristicstableisnotimplied. 2 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 ELECTRICAL CHARACTERISTICS: ADS8634, ADS8638 Minimum/maximumspecificationsatT =–40°Cto+125°C,f =1MSPS,HVDD=10Vto15V,HVSS=–10Vto–15V, A SAMPLE AVDD=4.75Vto5.25V,DVDD=2.7Vto3.6V,andV =2.5V,unlessotherwisenoted.Typicalspecificationsat+25°C, REF f =1MHz,HVDD=10V,HVSS=–10V,AVDD=3.3V,DVDD=3.3V,andV =2.5V,unlessotherwisenoted. SAMPLE REF ADS8634,ADS8638 PARAMETER TESTCONDITIONS MIN TYP MAX UNIT ANALOGINPUT ±2.5 V Bipolarranges,VREF=2.5V ±5 V Full-scaleinputspan(1) ±10 V 0to5 V Unipolarranges,VREF=2.5V 0to10 V AINxabsoluteinputrange HVSS HVDD V AINGNDabsoluteinputrange –0.2 0.2 V Inputcapacitance 8 pF Inputleakagecurrent At+125°C 200 nA SYSTEMPERFORMANCE Resolution 12 Bits Nomissingcodes 12 Bits Integrallinearity –1.5 +0.9/–0.9 1.5 LSB(2) Differentiallinearity –1.0 +0.9/–0.5 1.6 LSB Offseterror(3) –3 ±0.8 3 LSB ppmFS/°C( Offseterrordrift 0.75 4) Gainerror(5) –8 ±2 8 LSB Gainerrordrift 1.2 ppm/°C Noise 0.33 LSB AtFFChoutputcodewith Power-supplyrejection –87 dB 250mVPPand480HzrippleonAVDD Crosstalkonchannel0withchannel0permanentlyselected, Isolation 2kHzfull-scalesinewaveonchannel1,allotherchannels –110 dB crosstalk grounded Crosstalk Crosstalkonchannel0,2kHzfull-scalesinewaveonchannel1, Memorycrosstalk allotherchannelsgrounded,devicescanschannel0and –81 dB channel1alternately SAMPLINGDYNAMICS Conversiontime At20MHzSCLK,DVDD=2.7Vto5.25V 750 ns Acquisitiontime AVDD=2.7Vto5.25V 250 ns Maximumthroughputrate At20MHzSCLK,DVDD=2.7Vto5.25V 1 1 MSPS Aperturedelay 13 ns Stepresponse 250 ns (1) Idealinputspan;doesnotincludegainoroffseterror. (2) LSBmeansleastsignificantbit. (3) Measuredrelativetoanidealfull-scaleinput. (4) ppmFS/°Cisdriftmeasuredinpartspermillionoffull-scalerangeperdegreecentigrade. (5) Doesnotincludereferencedrift. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 3 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com ELECTRICAL CHARACTERISTICS: ADS8634, ADS8638 (continued) Minimum/maximumspecificationsatT =–40°Cto+125°C,f =1MSPS,HVDD=10Vto15V,HVSS=–10Vto–15V, A SAMPLE AVDD=4.75Vto5.25V,DVDD=2.7Vto3.6V,andV =2.5V,unlessotherwisenoted.Typicalspecificationsat+25°C, REF f =1MHz,HVDD=10V,HVSS=–10V,AVDD=3.3V,DVDD=3.3V,andV =2.5V,unlessotherwisenoted. SAMPLE REF ADS8634,ADS8638 PARAMETER TESTCONDITIONS MIN TYP MAX UNIT DYNAMICCHARACTERISTICS At1kHz –81 dB Totalharmonicdistortion(6)(THD) At100kHz –80 dB At1kHz 71 71.8 dB Signal-to-noiseratio(SNR) At100kHz 71.1 dB Signal-to-noiseanddistortionratio At1kHz 70.1 71.3 dB (SINAD) At100kHz 70.5 dB At1kHz –83 dB Spurious-freedynamicrange(SFDR) At100kHz –80 dB Full-powerbandwidth At–3dB 1 MHz DIGITALINPUT/OUTPUT Logicfamily CMOS V VIH 0.7DVDD V VIL 0.3DVDD V Logiclevel VOH With20pFloadonSDO 0.8DVDD V VOL With20pFloadonSDO 0.2DVDD V EXTERNALVOLTAGEREFERENCE 3.0or Referenceinput AVDD, voltagerange VREF 2.0 whichever V isless INTERNALVOLTAGEREFERENCE Referenceoutputvoltage 2.5 V Initialaccuracy –1.2 1.2 % Temperaturedrift 20 ppm/°C Drivecurrent,source(7) 750 µA Drivecurrent,sink 20 µA Driveroutputimpedance 1 Ω Turn-onsettlingtime With10µFdecouplingcapacitorfromREFtoREFGND 9 ms INTERNALTEMPERATURESENSOR Absoluteaccuracy 5 %ofFSR (6) Calculatedonthefirstnineharmonicsoftheinputfrequency. (7) Internalreferenceoutputisshort-circuitprotected.Incaseofshort-circuittoground,thedrivecurrentislimitedtothisvalue. 4 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 ELECTRICAL CHARACTERISTICS: ADS8634, ADS8638 (continued) Minimum/maximumspecificationsatT =–40°Cto+125°C,f =1MSPS,HVDD=10Vto15V,HVSS=–10Vto–15V, A SAMPLE AVDD=4.75Vto5.25V,DVDD=2.7Vto3.6V,andV =2.5V,unlessotherwisenoted.Typicalspecificationsat+25°C, REF f =1MHz,HVDD=10V,HVSS=–10V,AVDD=3.3V,DVDD=3.3V,andV =2.5V,unlessotherwisenoted. SAMPLE REF ADS8634,ADS8638 PARAMETER TESTCONDITIONS MIN TYP MAX UNIT POWER-SUPPLYREQUIREMENTS VAVDD 2.7 3.3 5.25 V VDVDD 1.65 3.3 5.25 V Supplyvoltage VHVDD 10V<VHVDD–VHVSS<30V 5 10 15 V VHVSS 10V<VHVDD–VHVSS<30V –15 –10 0 V AtVAVDD=2.7Vto3.6Vand1MHzthroughput,normalmode 2.5 mA withinternalreferenceandtemperaturesensoroff IAVDD(dynamic) AtVAVDD=4.75Vto5.25Vand1MHzthroughput,normalmode 3.1 3.6 mA withinternalreferenceandtemperaturesensoroff AtVAVDD=2.7Vto3.6VandSCLKoff,normalmodewith 1.45 mA AVDDsupply internalreferenceandtemperaturesensoroff current IAVDD(static) AtVAVDD=4.75Vto5.25VandSCLKoff,normalmodewith 1.5 1.9 mA internalreferenceandtemperaturesensoroff IAVDD(ref)(8) AretfeVrAeVnDcDe=o2n.7aVndtote5m.2p5eVra,taudredistieonnsaolrAoVfDfDcurrentwithinternal 180 µA IAVDD(temp)(9) AtetmVpAeVrDaDtu=re2.s7eVnstoor5o.2n5aVn,dadindtietironnaallreAfVeDreDncceurorfefntwithinternal 400 µA HVDDsupply IHVDD(dynamic) HVDD=15Vand1MSPSthroughput 270 350 µA current IHVDD(static) HVDD=15VanddevicestaticwithSCLKoff 5 µA HVSSsupply IHVSS(dynamic) HVSS=–15Vand1MSPSthroughput 520 µA current IHVSS(static) HVSS=–15VanddevicestaticwithSCLKoff 5 µA DVDDsupply current(10) IDVDD DVDD=3.3V,fSAMPLE=1MSPS,DOUTload=20pF 2.5 mA SCLKoff,internalreferenceandtemperaturesensoroff 10 µA AVDDcurrent SCLKon,internalreferenceandtemperaturesensoroff 160 µA Power-downstate HVDDcurrent 5 µA HVSScurrent 5 µA TEMPERATURERANGE Specifiedperformance –40 +125 °C (8) AddI toI orI (asapplicable),ifinternalreferenceisselected. AVDD(ref) AVDD(dynamic) AVDD(static) (9) AddI toI orI (asapplicable),ifinternaltemperaturesensorisenabled. AVDD(temp) AVDD(dynamic) AVDD(static) (10) I consumesonlydynamiccurrent.I =C ×V ×numberof0→1transitionsinDOUT×f .I isa DVDD DVDD LOAD DVDD SAMPLE DVDD load-dependentcurrent;thereisnocurrentwhentheoutputisnottoggling. THERMAL INFORMATION ADS8634/8RGE THERMALMETRIC(1) RGE UNITS 24PINS θ Junction-to-ambientthermalresistance 32.6 JA θ Junction-to-case(top)thermalresistance 30.5 JCtop θ Junction-to-boardthermalresistance 3.3 JB °C/W ψ Junction-to-topcharacterizationparameter 0.4 JT ψ Junction-to-boardcharacterizationparameter 9.3 JB θ Junction-to-case(bottom)thermalresistance 2.6 JCbot (1) Formoreinformationabouttraditionalandnewthermalmetrics,seetheICPackageThermalMetricsapplicationreport,SPRA953. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 5 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com PARAMETER MEASUREMENT INFORMATION TIMING DIAGRAM 1/f SAMPLE t su(CS-SCLK) CS 1R 1F 2 3 4 5 12 13 14 15 16R 16F SCLK td(CS-DO) th(SCLK-DOUT) td(SCLK-DOUT) tw(SCLK_H) tw(SCLK_L) td(CS-DOHZ) DOUT t t su(DIN-SCLK) h(SCLK-DIN) DIN Acquisition (Internal) t t c (ACQ) Table1. TimingRequirements(1)(2)(3) ADS8634,ADS8638 TEST PARAMETER CONDITIONS MIN TYP MAX UNIT DVDD=1.8V 15 SCLK t Conversiontime DVDD=3V 15 SCLK c DVDD=5V 15 SCLK DVDD=1.8V 250 ns t Acquisitiontime DVDD=3V 250 ns (ACQ) DVDD=5V 250 ns DVDD=1.8V 52.5 ns t Delaytime,CSlowtofirstdata(D0toD15)out DVDD=3V 40.0 ns d(CS-DO) DVDD=5V 30.5 ns DVDD=1.8V 26.0 ns t Setuptime,CSlowtofirstSCLKrisingedge DVDD=3V 18.5 ns su(CS-SCLK) DVDD=5V 15.5 ns DVDD=1.8V 51.5 ns t Delaytime,SCLKfallingtoDOUT DVDD=3V 33.0 ns d(SCLK-DOUT) DVDD=5V 25.3 ns DVDD=1.8V 5.5 ns t Holdtime,SCLKfallingtoDOUTvalid DVDD=3V 5.0 ns h(SCLK-DOUT) DVDD=5V 4.7 ns DVDD=1.8V 7.3 31.0 ns t DelaytimeCShightoDOUThigh-z DVDD=3V 6.4 22.0 ns d(CS-DOHZ) DVDD=5V 5.9 16.4 ns (1) Allspecificationsat–40°Cto+125°C,unlessotherwisenoted. (2) 1.8Vspecificationsapplyfrom1.65Vto1.95V;3Vspecificationsapplyfrom2.7Vto3.6V;and5Vspecificationsapplyfrom4.75Vto 5.25V. (3) With20pFloadonDOUT. 6 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 PARAMETER MEASUREMENT INFORMATION (continued) Table1. TimingRequirements(1)(2)(3)(continued) ADS8634,ADS8638 TEST PARAMETER CONDITIONS MIN TYP MAX UNIT DVDD=1.8V 7.0 ns t Setuptime,DINvalidtoSCLKrisingedge DVDD=3V 6.0 ns su(DIN-SCLK) DVDD=5V 5.0 ns DVDD=1.8V 9.0 ns t Holdtime,SCLKrisingtoDINvalid DVDD=3V 8.0 ns h(SCLK-DIN) DVDD=5V 7.0 ns DVDD=1.8V 25 ns t Pulseduration,SCLKhigh DVDD=3V 20 ns W(SCLK_H) DVDD=5V 20 ns DVDD=1.8V 25 ns t Pulseduration,SCLKlow DVDD=3V 20 ns W(SCLK_L) DVDD=5V 20 ns DVDD=1.8V 16 MHz f SCLKfrequency DVDD=3V 20 MHz SCLK DVDD=5V 20 MHz DVDD=1.8V 0.84 MSPS f Samplingfrequency DVDD=3V 1 MSPS SAMPLE DVDD=5V 1 MSPS POWER-UP TIMING REQUIREMENTS CS 1 2 16 1 2 16 1 2 16 1 2 16 SCLK AL_PD Programmed as PD T d(PWRUP) Power-Down State Power-Down Power-Up Delay Active (Internal) DOUT Invalid Data Invalid Data Invalid Data Valid Data Valid Data Table2. TIMINGREQUIREMENTS(1) ADS8634,ADS8638 PARAMETER MIN TYP MAX UNIT t (2) Power-updelayfromfirstCSafterpower-upcommand 1 µs d(PWRUP) Invalidconversionsafterdeviceisactive(poweredup) 1 Conversion (1) Allspecificationsat–40°Cto+125°C,unlessotherwisenoted. (2) Power-uptimeexcludesinternalreferenceandtemperaturesensor. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 7 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com PIN CONFIGURATIONS RGEPACKAGE 4mm×4mmQFN-24 (TOPVIEW) D EF EFGN L_PD VDD GND OUT R R A D D D 4 3 2 1 0 9 2 2 2 2 2 1 AVDD 1 18 DIN AGND 2 17 SCLK AGND 3 Thermal Pad 16 CS (Bottom Side) NC 4 15 HVSS AINGND 5 14 HVDD NC 6 13 NC 7 8 9 10 11 12 C 3 2 1 0 C N N N N N N AI AI AI AI Figure1. ADS8634PinConfiguration ADS8634PINASSIGNMENTS PINNUMBER NAME FUNCTION DESCRIPTION 1 AVDD Analogpowersupply Analogpowersupply 2,3 AGND Analogpowersupply Analogground Thesepinsarenotinternallyconnected;donotfloatthesepins. 4,6,7,12,13 NC — ItisrecommendedtoconnectthesepinstoAGND. 5 AINGND Input Commonforallanaloginputchannels;actsasgroundsenseterminal 8 AIN3 Analoginput Analoginputchannel3 9 AIN2 Analoginput Analoginputchannel2 10 AIN1 Analoginput Analoginputchannel1 11 AIN0 Analoginput Analoginputchannel0 14 HVDD High-voltagepowersupply High-voltagepositivesupplyformultiplexerchannels 15 HVSS High-voltagepowersupply High-voltagenegativesupplyformultiplexerchannels 16 CS Digitalinput Chipselectinput 17 SCLK Digitalinput Serialclockinput 18 DIN Digitalinput Serialdatainput 19 DOUT Digitaloutput Serialdataoutput 20 DGND Digitalpowersupply Digitalground 21 DVDD Digitalpowersupply DigitalI/Osupply Digitaloutput Activehigh,outputindicatesalarm(programmedasanoutputpin) Activelow,asynchronouspower-down. 22 AL_PD Thedevicefeaturesaninternal,weakpull-upresistorfromtheAL_PDpintoDVDD.The Digitalinput AL_PDpincanalsobefloatedwhenprogrammedasapower-downinput. (Thedefaultconditionforthispinisprogrammedasapower-downinputpin.) Referencegroundinputtodevicewhenanexternalreferenceisselected. 23 REFGND Analoginput Thispinactsasareferencedecouplinggroundterminalwhenaninternalreferenceis selected. Referenceinputtodevicewhenanexternalreferenceisselected. 24 REF Analoginput Thispinactsasareferencedecouplingterminalwhenaninternalreferenceisselected. 8 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 RGEPACKAGE 4mm×4mmQFN-24 (TOPVIEW) D EF EFGN L_PD VDD GND OUT R R A D D D 4 3 2 1 0 9 2 2 2 2 2 1 AVDD 1 18 DIN AGND 2 17 SCLK AGND 3 Thermal Pad 16 CS (Bottom Side) NC 4 15 HVSS AINGND 5 14 HVDD AIN7 6 13 AIN0 7 8 9 10 11 12 6 5 4 3 2 1 N N N N N N AI AI AI AI AI AI Figure2. ADS8638PinConfiguration ADS8638PINASSIGNMENTS PINNUMBER NAME FUNCTION DESCRIPTION 1 AVDD Analogpowersupply Analogpowersupply 2,3 AGND Analogpowersupply Analogground Thispinisnotinternallyconnected;donotfloatthispin. 4 NC — ItisrecommendedtoconnectthispintoAGND. 5 AINGND Input Commonforallanaloginputchannels;actsasgroundsenseterminal 6 AIN7 Analoginput Analoginputchannel7 7 AIN6 Analoginput Analoginputchannel6 8 AIN5 Analoginput Analoginputchannel5 9 AIN4 Analoginput Analoginputchannel4 10 AIN3 Analoginput Analoginputchannel3 11 AIN2 Analoginput Analoginputchannel2 12 AIN1 Analoginput Analoginputchannel1 13 AIN0 Analoginput Analoginputchannel0 14 HVDD High-voltagepowersupply High-voltagepositivesupplyformultiplexerchannels 15 HVSS High-voltagepowersupply High-voltagenegativesupplyformultiplexerchannels 16 CS Digitalinput Chipselectinput 17 SCLK Digitalinput Serialclockinput 18 DIN Digitalinput Serialdatainput 19 DOUT Digitaloutput Serialdataoutput 20 DGND Digitalpowersupply Digitalground 21 DVDD Digitalpowersupply DigitalI/Osupply Digitaloutput Activehigh,outputindicatingalarm(programmedasanoutputpin) 22 AL_PD Activelow,asynchronouspower-down Digitalinput (programmedasaninputpin,defaultcondition) Referencegroundinputtodevicewhenanexternalreferenceisselected. 23 REFGND Analoginput Thispinactsasreferencedecouplinggroundterminalwhenaninternalreferenceis selected. Referenceinputtodevicewhenanexternalreferenceisselected. 24 REF Analoginput Thispinactsasreferencedecouplingterminalwhenaninternalreferenceisselected. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 9 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com TYPICAL CHARACTERISTICS AtT =+25°C,internalreference=2.5V,channel0,range=±2.5V,AVDD=2.7V,DVDD=1.8V,HVDD=10V,HVSS A =–10V,andf =1MSPS,unlessotherwisenoted. SAMPLE DNLvsANALOGSUPPLYVOLTAGE DNLvsSIGNALRANGE 1.6 1.6 1.4 1.4 B) 1.2 Maximum DNL B) 1.2 Maximum DNL LS 1 LS 1 y ( 0.8 y ( 0.8 arit 0.6 arit 0.6 e e nlin 0.4 nlin 0.4 o 0.2 o 0.2 N N al 0 al 0 nti −0.2 Minimum DNL nti −0.2 Minimum DNL e e er −0.4 er −0.4 Diff −0.6 Diff −0.6 −0.8 −0.8 −1 −1 2.7 3.2 3.7 4.2 4.7 5.2 5.7 ±2.5V ±5V ±10V 0−5V 0−10V AVDD (V) Signal Range G013 G014 Figure3. Figure4. DNLvsREFERENCEVOLTAGE DNLvsCHANNELNUMBER 1.6 1.6 1.4 1.4 B) 1.2 Maximum DNL B) 1.2 Maximum DNL LS 1 LS 1 y ( 0.8 y ( 0.8 arit 0.6 arit 0.6 e e nlin 0.4 nlin 0.4 o 0.2 o 0.2 N N al 0 al 0 nti −0.2 Minimum DNL nti −0.2 Minimum DNL e e er −0.4 er −0.4 Diff −0.6 Diff −0.6 −0.8 −0.8 −1 −1 2 2.2 2.4 2.6 2.8 3 0 1 2 3 4 5 6 7 Reference Voltage (V) Channel Number G015 G016 Figure5. Figure6. DNLvsFREE-AIRTEMPERATURE DNLvsPOSITIVEHIGH-VOLTAGESUPPLY 1.6 1.6 1.4 1.4 Maximum DNL B) 1.2 Maximum DNL B) 1.2 LS 1 LS 1 y ( 0.8 y ( 0.8 arit 0.6 arit 0.6 e e nlin 0.4 nlin 0.4 o 0.2 o 0.2 N N al 0 al 0 enti −0.2 Minimum DNL enti −0.2 Minimum DNL er −0.4 er −0.4 Diff −0.6 Diff −0.6 −0.8 −0.8 −1 −1 −40 −25 −10 5 20 35 50 65 80 95 110 125 2.5 5 7.5 10 12.5 15 Free-Air Temperature (°C) HVDD, Positive High-Voltage Supply (V) G017 G018 Figure7. Figure8. 10 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 TYPICAL CHARACTERISTICS (continued) AtT =+25°C,internalreference=2.5V,channel0,range=±2.5V,AVDD=2.7V,DVDD=1.8V,HVDD=10V,HVSS A =–10V,andf =1MSPS,unlessotherwisenoted. SAMPLE INLvsANALOGSUPPLYVOLTAGE INLvsSIGNALRANGE 1.5 1.5 1.2 Maximum INL 1.2 Maximum INL B) 0.9 B) 0.9 S S y (L 0.6 y (L 0.6 arit 0.3 arit 0.3 e e Nonlin −0.30 Minimum INL Nonlin −0.30 Minimum INL gral −0.6 gral −0.6 e e nt −0.9 nt −0.9 I I −1.2 −1.2 −1.5 −1.5 2.7 3.2 3.7 4.2 4.7 5.2 5.7 ±2.5V ±5V ±10V 0−5V 0−10V AVDD (V) Signal Range G019 G020 Figure9. Figure10. INLvsREFERENCEVOLTAGE INLvsCHANNELNUMBER 1.5 1.5 1.2 Maximum INL 1.2 Maximum INL B) 0.9 B) 0.9 S S y (L 0.6 y (L 0.6 arit 0.3 arit 0.3 e e Nonlin −0.30 Minimum INL Nonlin −0.30 Minimum INL gral −0.6 gral −0.6 e e nt −0.9 nt −0.9 I I −1.2 −1.2 −1.5 −1.5 2 2.2 2.4 2.6 2.8 3 0 1 2 3 4 5 6 7 Reference Voltage (V) Channel Number G021 G022 Figure11. Figure12. INLvsFREE-AIRTEMPERATURE INLvsPOSITIVEHIGH-VOLTAGESUPPLY 1.5 1.5 1.2 Maximum INL 1.2 Maximum INL B) 0.9 B) 0.9 S S y (L 0.6 y (L 0.6 arit 0.3 arit 0.3 e e Nonlin −0.30 Minimum INL Nonlin −0.30 Minimum INL gral −0.6 gral −0.6 e e nt −0.9 nt −0.9 I I −1.2 −1.2 −1.5 −1.5 −40 −25 −10 5 20 35 50 65 80 95 110 125 2.5 5 7.5 10 12.5 15 Free-Air Temperature (°C) HVDD, Positive High-Voltage Supply (V) G023 G024 Figure13. Figure14. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 11 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com TYPICAL CHARACTERISTICS (continued) AtT =+25°C,internalreference=2.5V,channel0,range=±2.5V,AVDD=2.7V,DVDD=1.8V,HVDD=10V,HVSS A =–10V,andf =1MSPS,unlessotherwisenoted. SAMPLE OFFSETERRORvsANALOGSUPPLYVOLTAGE OFFSETERRORvsSIGNALRANGE 2.5 2.5 2 2 1.5 1.5 B) 1 B) 1 S S L 0.5 L 0.5 Error ( 0 Error ( 0 et −0.5 et −0.5 s s Off −1 Off −1 −1.5 −1.5 −2 −2 −2.5 −2.5 2.7 3.2 3.7 4.2 4.7 5.2 5.7 ±2.5V ±5V ±10V 0−5V 0−10V AVDD (V) Signal Range G025 G026 Figure15. Figure16. OFFSETERRORvsREFERENCEVOLTAGE OFFSETERRORvsCHANNELNUMBER 2.5 2.5 2 2 1.5 1.5 B) 1 B) 1 S S L 0.5 L 0.5 Error ( 0 Error ( 0 et −0.5 et −0.5 s s Off −1 Off −1 −1.5 −1.5 −2 −2 −2.5 −2.5 2 2.2 2.4 2.6 2.8 3 0 1 2 3 4 5 6 7 Reference Voltage (V) Channel Number G027 G028 Figure17. Figure18. OFFSETERRORvsFREE-AIRTEMPERATURE OFFSETERRORvsPOSITIVEHIGH-VOLTAGESUPPLY 2.5 2.5 2 2 1.5 1.5 B) 1 B) 1 S S L 0.5 L 0.5 Error ( 0 Error ( 0 et −0.5 et −0.5 s s Off −1 Off −1 −1.5 −1.5 −2 −2 −2.5 −2.5 −40 −25 −10 5 20 35 50 65 80 95 110 125 2.5 5 7.5 10 12.5 15 Free-Air Temperature (°C) HVDD, Positive High-Voltage Supply (V) G029 G030 Figure19. Figure20. 12 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 TYPICAL CHARACTERISTICS (continued) AtT =+25°C,internalreference=2.5V,channel0,range=±2.5V,AVDD=2.7V,DVDD=1.8V,HVDD=10V,HVSS A =–10V,andf =1MSPS,unlessotherwisenoted. SAMPLE GAINERRORvsANALOGSUPPLYVOLTAGE GAINERRORvsSIGNALRANGE 8 8 6 6 4 4 B) B) S 2 S 2 L L Error ( 0 Error ( 0 ain −2 ain −2 G G −4 −4 −6 −6 −8 −8 2.7 3.2 3.7 4.2 4.7 5.2 5.7 ±2.5V ±5V ±10V 0−5V 0−10V AVDD (V) Signal Range G031 G032 Figure21. Figure22. GAINERRORvsREFERENCEVOLTAGE GAINERRORvsCHANNELNUMBER 8 8 6 6 4 4 B) B) S 2 S 2 L L Error ( 0 Error ( 0 ain −2 ain −2 G G −4 −4 −6 −6 −8 −8 2 2.2 2.4 2.6 2.8 3 0 1 2 3 4 5 6 7 Reference Voltage (V) Channel Number G033 G034 Figure23. Figure24. GAINERRORvsFREE-AIRTEMPERATURE GAINERRORvsPOSITIVEHIGH-VOLTAGESUPPLY 8 8 6 6 4 4 B) B) S 2 S 2 L L Error ( 0 Error ( 0 ain −2 ain −2 G G −4 −4 −6 −6 −8 −8 −40 −25 −10 5 20 35 50 65 80 95 110 125 2.5 5 7.5 10 12.5 15 Free-Air Temperature (°C) HVDD, Positive High-Voltage Supply (V) G035 G036 Figure25. Figure26. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 13 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com TYPICAL CHARACTERISTICS (continued) AtT =+25°C,internalreference=2.5V,channel0,range=±2.5V,AVDD=2.7V,DVDD=1.8V,HVDD=10V,HVSS A =–10V,andf =1MSPS,unlessotherwisenoted. SAMPLE SNRvsANALOGSUPPLYVOLTAGE SNRvsSIGNALRANGE 72 72 71.8 71.8 B) 71.6 B) 71.6 d d o ( 71.4 o ( 71.4 Rati 71.2 Rati 71.2 e e s 71 s 71 oi oi N N o- 70.8 o- 70.8 al-t 70.6 al-t 70.6 n n g g Si 70.4 Si 70.4 70.2 70.2 70 70 2.7 3.2 3.7 4.2 4.7 5.2 5.7 ±2.5V ±5V ±10V 0−5V 0−10V AVDD (V) Signal Range G037 G038 Figure27. Figure28. SNRvsREFERENCEVOLTAGE SNRvsCHANNELNUMBER 72 72 71.8 71.8 B) 71.6 B) 71.6 d d o ( 71.4 o ( 71.4 Rati 71.2 Rati 71.2 e e s 71 s 71 oi oi N N o- 70.8 o- 70.8 al-t 70.6 al-t 70.6 n n g g Si 70.4 Si 70.4 70.2 70.2 70 70 2 2.2 2.4 2.6 2.8 3 0 1 2 3 4 5 6 7 Reference Voltage (V) Channel Number G039 G040 Figure29. Figure30. SNRvsFREE-AIRTEMPERATURE SNRvsPOSITIVEHIGH-VOLTAGESUPPLY 72 72 71.8 71.8 B) 71.6 B) 71.6 d d o ( 71.4 o ( 71.4 Rati 71.2 Rati 71.2 e e s 71 s 71 oi oi N N o- 70.8 o- 70.8 al-t 70.6 al-t 70.6 n n g g Si 70.4 Si 70.4 70.2 70.2 70 70 −40 −25 −10 5 20 35 50 65 80 95 110 125 2.5 5 7.5 10 12.5 15 Free-Air Temperature (°C) HVDD, Positive High-Voltage Supply (V) G041 G042 Figure31. Figure32. 14 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 TYPICAL CHARACTERISTICS (continued) AtT =+25°C,internalreference=2.5V,channel0,range=±2.5V,AVDD=2.7V,DVDD=1.8V,HVDD=10V,HVSS A =–10V,andf =1MSPS,unlessotherwisenoted. SAMPLE SNRvsINPUTFREQUENCY SINADvsANALOGSUPPLYVOLTAGE 72 72 71.8 B) 71.8 d B) 71.6 n ( 71.6 o (d 71.4 ortio 71.4 Rati 71.2 Dist 71.2 e d s 71 n 71 Noi e a nal-to- 7700..68 o-Nois 7700..68 Sig 70.4 al-t 70.4 n g 70.2 Si 70.2 70 70 0 15 30 45 60 75 90 105 2.7 3.2 3.7 4.2 4.7 5.2 5.7 fIN, Input Frequency (kHz) G043 AVDD (V) G044 Figure33. Figure34. SINADvsSIGNALRANGE SINADvsREFERENCEVOLTAGE 72 72 B) 71.8 B) 71.5 d d n ( 71.6 n ( o o 71 orti 71.4 orti Dist 71.2 Dist 70.5 d d n 71 n 70 a a e e ois 70.8 ois 69.5 N N al-to- 7700..46 al-to- 69 n n g g 68.5 Si 70.2 Si 70 68 ±2.5V ±5V ±10V 0−5V 0−10V 2 2.2 2.4 2.6 2.8 3 Signal Range Reference Voltage (V) G045 G046 Figure35. Figure36. SINADvsCHANNELNUMBER SINADvsFREE-AIRTEMPERATURE 72 72 B) 71.5 B) 71.5 d d n ( n ( o 71 o 71 orti orti Dist 70.5 Dist 70.5 d d n 70 n 70 a a e e ois 69.5 ois 69.5 N N al-to- 69 al-to- 69 n n g 68.5 g 68.5 Si Si 68 68 0 1 2 3 4 5 6 7 −40 −25 −10 5 20 35 50 65 80 95 110 125 Channel Number Free-Air Temperature (dB) G047 G048 Figure37. Figure38. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 15 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com TYPICAL CHARACTERISTICS (continued) AtT =+25°C,internalreference=2.5V,channel0,range=±2.5V,AVDD=2.7V,DVDD=1.8V,HVDD=10V,HVSS A =–10V,andf =1MSPS,unlessotherwisenoted. SAMPLE SINADvsPOSITIVEHIGH-VOLTAGESUPPLY SINADvsINPUTFREQUENCY 72 72 B) 71.5 B) 71.5 d d n ( n ( o 71 o 71 orti orti Dist 70.5 Dist 70.5 d d n 70 n 70 a a e e ois 69.5 ois 69.5 N N al-to- 69 al-to- 69 n n g 68.5 g 68.5 Si Si 68 68 2.5 5 7.5 10 12.5 15 0 15 30 45 60 75 90 105 HVDD, Positive High-Voltage Supply (V) G049 fIN, Input Frequency (kHz) G050 Figure39. Figure40. THDvsANALOGSUPPLYVOLTAGE THDvsSIGNALRANGE −82 −75 −82.5 −76 B) B) −77 d −83 d n ( n ( −78 o −83.5 o storti −84 storti −−8709 Di Di c −84.5 c −81 moni −85 moni −82 Har −85.5 Har −83 otal −86 otal −−8854 T T −86.5 −86 −87 −87 2.7 3.2 3.7 4.2 4.7 5.2 5.7 ±2.5V ±5V ±10V 0−5V 0−10V AVDD (V) Signal Range G051 G052 Figure41. Figure42. THDvsREFERENCEVOLTAGE THDvsCHANNELNUMBER −75 −75 −76 −76 B) −77 B) −77 d d n ( −78 n ( −78 o o orti −79 orti −79 st −80 st −80 Di Di c −81 c −81 oni −82 oni −82 m m ar −83 ar −83 H H al −84 al −84 ot −85 ot −85 T T −86 −86 −87 −87 2 2.2 2.4 2.6 2.8 3 0 1 2 3 4 5 6 7 Reference Voltage (V) Channel Number G053 G054 Figure43. Figure44. 16 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 TYPICAL CHARACTERISTICS (continued) AtT =+25°C,internalreference=2.5V,channel0,range=±2.5V,AVDD=2.7V,DVDD=1.8V,HVDD=10V,HVSS A =–10V,andf =1MSPS,unlessotherwisenoted. SAMPLE THDvsFREE-AIRTEMPERATURE THDvsPOSITIVEHIGH-VOLTAGESUPPLY −75 −75 −76 B) −77 B) −77 d d n ( −78 n ( o o orti −79 orti −79 st −80 st Di Di c −81 c −81 oni −82 oni m m ar −83 ar −83 H H al −84 al ot −85 ot −85 T T −86 −87 −87 −40 −25 −10 5 20 35 50 65 80 95 110 125 2.5 5 7.5 10 12.5 15 Free-Air Temperature (°C) HVDD, Positive High-Voltage Supply (V) G055 G056 Figure45. Figure46. THDvsINPUTFREQUENCY SFDRvsANALOGSUPPLYVOLTAGE −75 88 dB) −−7776 e (dB) 87.5 n ( −78 ng 87 o a orti −79 c R 86.5 st −80 mi Di a armonic −−−888321 Free Dyn 858.56 Total H −−−888654 Spurious- 848.55 −87 84 0 15 30 45 60 75 90 105 2.7 3.2 3.7 4.2 4.7 5.2 5.7 fIN, Input Frequency (kHz) G057 AVDD (V) G058 Figure47. Figure48. SFDRvsSIGNALRANGE SFDRvsREFERENCEVOLTAGE 88 88 B) 87.5 B) 87.5 d d e ( 87 e ( 87 ng 86.5 ng 86.5 a a R 86 R 86 c c mi 85.5 mi 85.5 a a n 85 n 85 y y D D e 84.5 e 84.5 Fre 84 Fre 84 us- 83.5 us- 83.5 o o uri 83 uri 83 Sp 82.5 Sp 82.5 82 82 ±2.5V ±5V ±10V 0−5V 0−10V 2 2.2 2.4 2.6 2.8 3 Signal Range Reference Voltage (V) G059 G060 Figure49. Figure50. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 17 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com TYPICAL CHARACTERISTICS (continued) AtT =+25°C,internalreference=2.5V,channel0,range=±2.5V,AVDD=2.7V,DVDD=1.8V,HVDD=10V,HVSS A =–10V,andf =1MSPS,unlessotherwisenoted. SAMPLE SFDRvsCHANNELNUMBER SFDRvsFREE-AIRTEMPERATURE 88 88 dB) 87.5 dB) e ( e ( 87 ng 87 ng a a R R 86 c 86.5 c mi mi a a n 86 n 85 y y D D Free 85.5 Free 84 us- 85 us- o o puri 84.5 puri 83 S S 84 82 0 1 2 3 4 5 6 7 −40 −25 −10 5 20 35 50 65 80 95 110 125 Channel Number Free-Air Temperature (°C) G061 G062 Figure51. Figure52. SFDRvsPOSITIVEHIGH-VOLTAGESUPPLY SFDRvsINPUTFREQUENCY 88 90 B) B) d d e ( 87 e ( 89 g g n n a a R 86 R 88 c c mi mi a a n 85 n 87 y y D D e e Fre 84 Fre 86 s- s- u u o o uri 83 uri 85 p p S S 82 84 2.5 5 7.5 10 12.5 15 0 15 30 45 60 75 90 105 HVDD, Positive High-Voltage Supply (V) G063 fIN, Input Frequency (kHz) G064 Figure53. Figure54. ANALOGSUPPLYCURRENT(Dynamic) CROSSTALKvsINPUTFREQUENCY vsANALOGSUPPLYVOLTAGE −70 3.5 −80 Memory Crosstalk mA) 3 nt ( stalk (dB) −90 Isolation Crosstalk mic Curre 2.5 os −100 na 2 Cr Dy D D −110 V 1.5 A HVDD = 15V HVSS = −15V −120 1 0 15 30 45 60 75 90 105 2.7 3.2 3.7 4.2 4.7 5.2 5.7 fIN, Input Frequency (kHz) G065 AVDD (V) G001 Figure55. Figure56. 18 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 TYPICAL CHARACTERISTICS (continued) AtT =+25°C,internalreference=2.5V,channel0,range=±2.5V,AVDD=2.7V,DVDD=1.8V,HVDD=10V,HVSS A =–10V,andf =1MSPS,unlessotherwisenoted. SAMPLE ANALOGSUPPLYCURRENT(Dynamic) ANALOGSUPPLYCURRENT(Dynamic) vsFREE-AIRTEMPERATURE vsSAMPLERATE 2.4 3.5 HVDD = 15V HVDD = 15V A) HVSS = −15V A) 3 HVSS = −15V m m nt ( 2.35 nt ( 2.5 e e Curr Curr 2 c 2.3 c mi mi a a 1.5 n n y y D D DD 2.25 DD 1 V V A A 0.5 2.2 0 −40 −25 −10 5 20 35 50 65 80 95 110 125 0 0.2 0.4 0.6 0.8 1 Free-Air Temperature (°C) G002 fSAMPLE, Sample Rate (MSPS) G003 Figure57. Figure58. ANALOGSUPPLYCURRENT(Static) POSITIVEHIGH-VOLTAGESUPPLYCURRENT(Dynamic) vsANALOGSUPPLYVOLTAGE vsANALOGSUPPLYVOLTAGE 1.8 0.5 HVDD = 15V HVSS = −15V A) mA) 0.45 urrent (m 1.6 Current ( 0.4 c C 1.4 mic 0.35 VDD Stati 1.2 DD Dyna 0.3 A HV 0.25 1 0.2 2.7 3.2 3.7 4.2 4.7 5.2 5.7 2.7 3.2 3.7 4.2 4.7 5.2 5.7 AVDD (V) AVDD (V) G004 G005 Figure59. Figure60. POSITIVEHIGH-VOLTAGESUPPLYCURRENT(Dynamic) POSITIVEHIGH-VOLTAGESUPPLYCURRENT(Dynamic) vsFREE-AIRTEMPERATURE vsPOSITIVEHIGH-VOLTAGESUPPLY 0.5 1 HVDD = 15V HVDD = 15V HVSS = −15V HVSS = −15V mA) 0.45 mA) 0.8 ent ( 0.4 ent ( urr urr 0.6 C C c 0.35 c mi mi na na 0.4 Dy 0.3 Dy D D D D HV 0.25 HV 0.2 0.2 0 −40 −25 −10 5 20 35 50 65 80 95 110 125 5 7 9 11 13 15 Free-Air Temperature (°C) HVDD, Positive High-Voltage Supply (V) G006 G007 Figure61. Figure62. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 19 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com TYPICAL CHARACTERISTICS (continued) AtT =+25°C,internalreference=2.5V,channel0,range=±2.5V,AVDD=2.7V,DVDD=1.8V,HVDD=10V,HVSS A =–10V,andf =1MSPS,unlessotherwisenoted. SAMPLE POSITIVEHIGH-VOLTAGESUPPLYCURRENT(Dynamic) NEGATIVEHIGH-VOLTAGESUPPLYCURRENT(Dynamic) vsSAMPLERATE vsANALOGSUPPLYVOLTAGE 0.5 −0.2 HVDD = 15V HVSS = −15V mA) 0.4 mA)−0.25 ent ( ent ( −0.3 urr 0.3 urr C C c c −0.35 mi mi na 0.2 na Dy Dy −0.4 D S D S HV 0.1 HV−0.45 0 −0.5 0 0.2 0.4 0.6 0.8 1 2.7 3.2 3.7 4.2 4.7 5.2 5.7 fSAMPLE, Sample Rate (MSPS) G008 AVDD (V) G009 Figure63. Figure64. NEGATIVEHIGH-VOLTAGESUPPLYCURRENT(Dynamic) NEGATIVEHIGH-VOLTAGESUPPLYCURRENT(Dynamic) vsFREE-AIRTEMPERATURE vsNEGATIVEHIGH-VOLTAGESUPPLY −0.3 0 HVDD = 15V −0.05 mA) mA) −0.1 nt (−0.35 nt (−0.15 e e urr urr −0.2 C C c −0.4 c −0.25 mi mi na na −0.3 y y SS D−0.45 SS D−0.35 V V −0.4 H H −0.45 −0.5 −0.5 −40 −25 −10 5 20 35 50 65 80 95 110 125 −15 −12 −9 −6 −3 0 Free-Air Temperature (°C) HVSS, Negative High-Voltage Supply (V) G010 G011 Figure65. Figure66. NEGATIVEHIGH-VOLTAGESUPPLYCURRENT(Dynamic) vsSAMPLERATE DNL 0 1.6 HVDD = 15V 1.4 nt (mA) −0.1 HVSS = −15V y (LSB) 01..812 urre −0.2 earit 0.6 mic C onlin 00..24 S Dyna −0.3 ential N −0.20 HVS −0.4 Differ −−00..64 −0.8 −0.5 −1 0 0.2 0.4 0.6 0.8 1 0 512 1024 1536 2048 2560 3072 3584 4095 fSAMPLE, Sample Rate (MSPS) G012 ADC Output Code (LSB) G066 Figure67. Figure68. 20 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 TYPICAL CHARACTERISTICS (continued) AtT =+25°C,internalreference=2.5V,channel0,range=±2.5V,AVDD=2.7V,DVDD=1.8V,HVDD=10V,HVSS A =–10V,andf =1MSPS,unlessotherwisenoted. SAMPLE INL SPECTRALRESPONSE 1.5 0 1.2 −10 −20 SB) 0.9 −30 y (L 0.6 B) −40 earit 0.3 e (d −−6500 Nonlin −0.30 mplitud −−8700 gral −0.6 A −90 nte −0.9 −100 I −110 −1.2 −120 −1.5 −130 0 512 1024 1536 2048 2560 3072 3584 4095 0 50 100 150 200 250 300 350 400 450 500 ADC Output Code (LSB) G067 fIN, Input Frequency (kHz) G068 Figure69. Figure70. TEMPERATURESENSOROUTPUTvsFREE-AIRTEMPERATURE 3900 3875 3850 e d Co 3825 ut utp 3800 O C, 3775 D A 3750 3725 3700 −40 −25 −10 5 20 35 50 65 80 95 110 125 Free-Air Temperature (°C) G069 Figure71. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 21 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com OVERVIEW The ADS8634 and ADS8638 are 12-bit, 4- and 8-channel devices, respectively. The ADS8634/8 feature software-selectable bipolar and unipolar ranges, an internal reference with an option to use an external reference, and an internal temperature sensor. Independent power-down control for the internal reference and temperature sensor blocks allows for optimal power based on application. The following sections describe the individualblocksandoperation. MULTIPLEXER AND ANALOG INPUT The ADS8634/8 feature single ended inputs with ground sense and a 4-/8-channel, single-pole multiplexer, respectively. The ADC samples the difference voltage between analog input pins AINx and the ground sense pin AINGND. The ADS8634/8 can scan these analog inputs in either manual or auto-scan mode. In manual mode, the channel is selected for every sample via a register write; in auto-scan mode, the channel number is incremented automatically on every CS falling edge after the present channel is sampled. It is possible to select theanaloginputsforanautoscanwithregistersettings.Thedevicesautomaticallyscanonlytheselectedanalog inputsinascendingorder. The ADS8634/8 offer multiple software-programmable ranges ±10V, ±5V, ±2.5V, 0V to 5V, and 0V to 10V with a 2.5V reference. Any of these ranges can be assigned to any analog input (for instance, ±10V can be assigned to AIN1, ±2.5V to AIN2, 0V to 10V can be assigned to AIN3, and so on). During a scan (either auto or manual), the programmed signal range is assigned to the selected channel. The range selection, however, can be temporarily overridden using the DIN line for a particular scan. This feature is useful for zooming into a narrow range when needed.RefertoTable11forconfigurationregistersettings. 22 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 Figure 72 shows electrostatic discharge (ESD) diodes connected to the HVDD and HVSS supplies. Make sure thesediodesdonotturnonbykeepingtheanaloginputswithinthespecifiedrange. HVDD AIN0 HVSS Temperature Sensor HVDD AIN1 HVSS SAR ADC HVDD AIN3/7 HVSS HVDD AINGND HVSS Figure72. AnalogInputs Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 23 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com The ADS8634/8 sample the voltage difference (V – V ) between the selected analog input channel and AINx AINGND the AINGND pin. The ADS8634/8 allow a ±0.2V range on AINGND. This feature is useful in modular systems where the sensor/signal conditioning block is removed from the ADC and when there could be a difference in the ground potential of the sensor/signal condioner from the ADC ground. In such cases, it is recommended to run separatewiresfromtheAINGNDterminalofthedevicetothesensor/signalconditionerground. REFERENCE The ADS8634/8 measure the analog input signals relative to the voltage reference using either an internal precision 2.5V voltage reference (Figure 73) or an external voltage reference (Figure 74). Binary-weighted capacitors are switched onto the reference terminal during conversion. The switching frequency is the same as the SCLK frequency. Whether it is an internal or external reference, be sure to decouple the REF terminal to REFGNDwitha10µFcapacitor.PlacethecapacitorclosetotheREFPandREFGNDpins. AVDD AGND Internal Reference Configuration REF Register 10 F REFGND ADC Figure73. OperationUsingTheInternalReference (RefertoTable11formoredetailsontheconfigurationregistersettings) AVDD AGND Internal Reference AVDD Plane Configiguration REF REF30/50xx Register 1 F REFGND AGND ADC Plane Figure74. OperationUsinganExternalReference (RefertoTable11formoredetailsontheconfigigurationregistersettings) 24 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 These devices allow the use of an external reference in the range of 2.0V to 3.0V. The nominal input ranges ±10V, ±5V, ±2.5V, 0V to 5V, and 0V to 10V assume a 2.5V reference; a different reference voltage scales the full-scale ranges proportionately. For example, if a 3.0V reference is used and the ±10V range is selected, the actualinputrangeisscaledby(3.0/2.5)forafull-scalerangeof±12V. The internal reference can be enabled/disabled through the configuration register. The reference block is powered down when the internal reference is disabled. Ensure that the internal reference is disabled when the externalreferenceisconnected.Theexternalreferenceisthedefaultselectionafterpower-onorreset. TEMPERATURE SENSOR The ADS8634/8 feature an on-chip temperature sensoras shown in Figure 75. The device temperature can be read at any time during a scan, either in auto or manual mode.There are three registers associated with the temperature sensor operation. The temperature sensor can be enabled/disabled through the Aux-Config configuration register. Disabling the temperature sensor powers down the temperature block. It is necessary to enable (power up) the temperature sensor at least one cycle before the device temperature sensor is selected with the channel sequencing control registers (manual/auto). This selection overrides the input channel scan sequence and range selection and connects the ADC input to an internal temperature sensor. The temperature sensor must be deselected with channel sequencing control registers (manual/auto) to resume normal scanning. In case of auto-sequencing, the device starts scanning from where it left off before the temperature measurement.Thetemperaturesensorisdisabledbydefaultafterpower-onorreset. AVDD AGND Ch Seq Control Config Reg Reg Temp Sensor AIN0 AIN1 AIN2 ADC AIN3/7 AINGND Figure75. ReadingtheADS8634/8Temperature (RefertoTable11formoredetailsonconfigurationregistersettings) Thetemperaturesensortransferfunctionfollowsastraightline,asshowninEquation1: OutputCode=m ×DeviceTemperaturein°C+C (1) REF REF Equation1canbere-writtenasEquation2: DeviceTemperaturein°C=(OutputCode–C )/m REF REF where: m =theslope, REF andC =theoffset(inADCoutputcode)ofthetemperaturesensortransferfunction (2) REF Both m and C change with the reference voltage. The initial values of m and C at a 2.5V reference REF REF REF REF are:m =0.47andC =3777.2 REF_2.5 REF_2.5 Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 25 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com Values of m and C for any reference voltage other than 2.5V can be calculated using Equation 3 and REF REF Equation4: m =m ×2.5/V (3) REF REF_2.5 REF C =(C –3584)×2.5/V +3584 (4) REF REF_2.5 REF Forexample,ata2Vreference: m =0.47×2.5/2=0.59and REF_2 C =(3777.2– 3584)× 2.5/2+3584=3825.5 REF_2 For the reference voltage used, Equation 2 can be rewritted using m and C as calculated in Equation 3 REF REF andEquation4. Table3canbeusedasquickreferencefortemperaturesensortransferfunctionattypicalreferencevalues. Table3.TemperatureSensorTransferFunctionatTypicalReferenceValues REFERENCEVOLTAGE(V) TRANSFERFUNCTION 2 Devicetemperaturein°C=(outputcode–3825.5)/0.59 2.5 Devicetemperaturein°C=(outputcode–3777.2)/0.47 3 Devicetemperaturein°C=(outputcode–3745.0)/0.39 DATA FORMAT The ADS8634/8 output 12-bits of ADC conversion results in binary format (MSB first) for all ranges, as shown in Table4.Figure76showstheADCtransferfunctionforbipolarsignalranges.Theunipolarrangeoutputisshown inTable5andFigure77showsthetransferfunction. Table4.BipolarRangeIdealOutputCodes(1) INPUTSIGNAL(AINx–AINGND) IDEALOUTPUTCODE ±10VRANGE(V) ±5VRANGE(V) ±2.5VRANGE(V) ≥10×(211–1)/211(2) ≥5×(211–1)/211 ≥2.5×(211–1)/211 FFFh 10/211 5/211 2.5/211 801h 0 0 0 800h –10/211 –5/211 –2.5/211 7FFh ≤–10×(211–1)/211 ≤–5×(211–1)/211 ≤–2.5×(211–1)/211 000h (1) Excludesnoise,offsetandgainerrors. (2) LSBsizeforthebipolarranges=positive(ornegative)full-scale/211.TheADS8634/8offer12-bitresolutionacrosstheentirerangefrom positivefull-scaletonegativefull-scale;inotherwords,theresolutionforhalfrangefrom'0'topositive(ornegative)full-scaleis11bits. Forexample,a1LSBfora±10Vrangeis10/211. Table5.UnipolarRangeIdealOutputCodes(1) INPUTSIGNAL(AINx–AINGND) 0VTO10VRANGE(V) 0VTO5VRANGE(V) IDEALOUTPUTCODE ≥10×(212–1)/212 ≥5×(212–1)/212 FFFh 10/212 5/212 001h <10/212 <5/212 000h (1) Excludesnoise,offsetandgainerrors. 26 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 FFFh e d o C C 800h D A 001h Negative 0 Positive FSR + 1LSB FSR 1LSB Analog Input (AINx AINGND) Figure76. TransferFunctionforBipolarSignalRanges FFFh e d o C 800h C D A 001h 1LSB FSR/2 FSR –1LSB Analog Input (AINx AINGND) Figure77. TransferFunctionforUnipolarSignalRanges Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 27 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com AL_PD: USER-CONFIGURABLE PIN The ADS8634/8 feature a user-configurable AL_PD pin. This pin can either be configured as an alarm output (AL) or as a power-down control pin (PD). Refer to the Page 0, Register Descriptions for the ADS8638 and Page 0,RegisterDescriptionsfortheADS8634sectionsfordetails. When programmed as an alarm output, an active-high alarm is flagged on this pin if there is a high or low alarm onanychannel.TheAlarmFunctionalitysectiondescribesthepindetails. When programmed as PD, the AL_PD pin functions as an active-low power-down input pin. Powering down through this pin is asynchronous. The devices power down immediately after the pin goes low. The Power-Down Functionalitysectiondescribesthepindetails. ThispinisconfiguredasaPDinputbydefaultafterpower-onorreset. AlarmFunctionality The ADS8634/8 output an active-high alarm on the AL_PD pin when it is programmed as an AL. AL is synchronous and changes its state on the 16th SCLK rising edge. A high level on AL indicates there is an active alarm on one or more channels. This pin can be wired to interrupt the host input. When an alarm interrupt is received,thealarmflagregistersarereadtodeterminewhichchannelshaveanalarm. The ADS8634/8 feature independently-programmable alarms for each channel. There are two alarms per channel(lowandhighalarm)andeachalarmthresholdhasaseparatehysteresissetting. The ADS8634/8 set a high alarm when the digital output for a particular channel exceeds the high alarm upper limit(highalarmthresholdT+hysteresisH).Thealarmresetswhenthedigitaloutputforthechannelislessthan orequaltothehighalarmlowerlimit(highalarmT– H).ThisfunctionisshowninFigure78. H_ALARM On m ar Al H_ALARM Off (T –H) (T + H + 1) ADC Output NOTE:T=alarmthresholdandH=hysteresis. Figure78. High-AlarmHysteresis Similarly, the lower alarm is triggered when the digital output for a particular channel falls below the low alarm lowerlimit(lowalarmthresholdT–H).Thealarmresetswhenthedigitaloutputforthechannelisgreaterthanor equaltothelowalarmhigherlimit(lowalarmT+H).ThisfunctionisshowninFigure79. L_ALARM On m Alar L_ALARM Off (T – H –1) (T + H) ADC Output NOTE:T=alarmthresholdandH=hysteresis. Figure79. Low-AlarmHysteresis 28 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 Figure 80 shows a functional block diagram for a single-channel alarm. For each high and low alarm there are two flags: Active Alarm Flag and Tripped Alarm Flag; refer to the Alarm Flags for the ADS8638 (Read-Only) and Alarm Flags for the ADS8634 (Read-Only) sections for more details. The active alarm flag is triggered when an alarm condition is encountered for a particular channel; the active alarm flag resets when the alarm shuts off. A tripped alarm flag sets an alarm condition in the same manner as it does for an active alarm flag; however, it remainslatchedandresetsonlywhentheappropriatealarmflagregisterisread. nel ms Alarm Threshold anar AL_PD Channel n hAl Hysteresi+s /C-hanneln All CH/L Progarsa mAmlaremd Output Active Alarm Flag + Channel n ADC Output Channel n SC1L6Kth S Q TrippCehda Anlnaerml n Flag R Q Alarm Flag Read SDO ADC Figure80. AlarmFunctionality Power-DownFunctionality The ADS8634/8 feature a power-down/up control through the programmable AL_PD pin or the channel sequencing control registers; see the Channel Sequencing Control Registers for the ADS8638 and Channel Sequencing Control Registers for the ADS8634 sections for more details. This feature is extremely useful for saving power while running the ADS8634/8 at a slower speed, or for acquiring data at full-speed in bursts and then waiting in a power-down state for the next acquisition start event. Figure 81 through Figure 84 describe entrytoandexitfromthepower-downstate. The AL_PD pin can be programmed as a power-down control pin. The AL_PD pin, when programmed as PD, is shown in Figure 81. A low on AL_PD powers down the device immediately; this action is asynchronous operation.DataonDOUTarenotvalidwhenthedeviceisinapower-downstate. AL_PD Programmed as PD Power-Down State Active Power-Down (Internal) DOUT Valid data terminates on power down. Figure81. Power-DownUsingtheAL_PDPin Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 29 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com A high level on AL_PD acts as a power-up request and the power-up sequence begins on the next CS falling edge. The device is active after t . The first valid acquisition initiates in the first data frame (with a CS d(PWRUP) falling edge) after a power-up delay. The first valid data are presented in the second data frame after the device attainsanactivestate,asshowninFigure82. CS 1 2 16 1 2 16 1 2 16 1 2 16 SCLK AL_PD Programmed as PD T d(PWRUP) Power-Down State Power-Down Power-Up Delay Active (Internal) DOUT Invalid Data Invalid Data Invalid Data Valid Data Valid Data Figure82. Power-UpViatheAL_PDPin The power-down/up operation can also be controlled with register settings. See the Channel Sequencing Control Registers for the ADS8638 and Channel Sequencing Control Registers for the ADS8634 sections for details. Figure83illustratespower-downandpower-upcommandsforquickreference. CS 1 2 15 16 SCLK DIN Power-Down Command Power-Down State Active Power-Down (Internal) DOUT Valid Data Figure83. Power-DownViaRegisterWrite After receiving a valid power-down command, the device enters a power-down state on 16th SCLK falling edge. AnexampleofthiscommandisgiveninTable6. Table6.Power-DownCommandExample RD/ REGISTERADDRESS WR DATA PIN Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 DIN 0 0 0 0 1 0 X 0 0 X X X 1 1 1 X Auto/manualsequence W 0 X X X Power-down X 30 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 The serial interface is active even during a device power-down state. Commands can be issued via the DIN pin duringapower-downstate. A power-up command (through DIN) is acknowledged on the next CS falling edge and a power-up sequence initiates. An example of this command is given in Table 7. The device is in an active state after t and d(PWRUP) initiates a valid acquisition in the first data frame (initiated with a CS falling edge) after a power-up delay. The first valid data are presented in the second data frame after the device attains an active state, as shown in Figure84. Table7.Power-UpCommandExample RD/ REGISTERADDRESS WR DATA PIN Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Anycombinationfrom DIN 0 0 0 0 1 0 X 0 0 X X X X 000to110,except111 Auto/manualsequence W 0 X X X Power-up X CS 1 2 16 1 2 16 1 2 16 1 2 16 1 2 16 SCLK Operation Commands Except Power-Down Command DIN Power-Up Operation Operation Operation Operation Command Command Command Command Command t d(PWRUP) Power-Down State Power-Down Power-Up Delay Active (Internal) DOUT Invalid Data Invalid Data Invalid Data Valid Data Valid Data Figure84. Power-UpViaRegisterWrite Use only one method (DIN pin or register settings) for power-down/up control. Do not combine these two methods or the results may be confusing. Do not issue a power-down command through DIN while using the AL_PD pin. Similarly, do not pull the AL_PD pin low while using the register write method for power-down/up control. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 31 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com DEVICE OPERATION The ADS8634/8 are 12-bit, 4-/8-channel devices. Each frame begins with a CS falling edge. The ADS8634/8 sample the input signal from the selected channel on the CS falling edge and initiate conversion. SCLK is used for conversion and data are output on the DOUT line while conversion is in process. The 16-bit data word contains a 4-bit channel address followed by the 12-bit conversion result in MSB-first format. The MSB of the 4-bit channel address is output on the CS falling edge; the remaining address bits are clocked out serially for three SCLK falling edges. The MSB of the 12-bit conversion result is output on the fourth SCLK falling edge. Afterwards, the next lower data bits are ouput serially on every subsequen SCLK falling edge. Each data bit can be read (latched) immediately on the next SCLK falling edge from the SCLK falling edge on which the respective data bits are output. For example, if the MSB of a 12-bit data word is output on the fourth SCLK falling edge then thesamewordcanbelatchedonthefifthSCLKfallingedge.RefertotheHoldtime,SCLKfallingtoDOUTvalid, andDelaytime,SCLKfallingtoDOUTparametersintheTimingRequirementssection. The16-bitwordisreadontheDINpinwhilethedataareoutputontheDOUTpin.DINdataarelatchedonevery SCLKrisingedge,startingwiththefirstclock,asshowninFigure85. Sample n Sample n + 1 CS 1 4 8 12 15 16 SCLK DOUT A3 A0 D11 D0 A3 Ch Address Conversion Result For Sample n DIN B15 B0 B15 ADC Phase Conversion n Acquisition n+1 Conversion n+1 (Internal) AL_PD (Programmed as an alarm Figure85. ADS8634/8Operation Device configuration and operation mode are controlled through register settings. It is recommended to write to the configuration registers after powering on the device. The configuration information is retained until the devices are powered off or reset. Note that powering down the device with either the AL_PD pin or a register writedoesnoterasethedeviceconfiguration. The ADS8634/8 feature an AL_PD pin that functions as a alarm output/power-down pin. The pin can be programmed as an alarm output (AL) or it can be programmed as a power-down control pin (PD). When AL_PD isprogrammedasanalarmoutput,itisrefreshedonevery16thSCLKrisingedge. 32 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 CHANNEL SEQUENCING MODES The ADS8634/8 offer two channel sequencing modes: auto and manual. In auto-scan mode, the channel number automatically increments every frame. In manual mode, the channel is selected for every frame of a register write. The analog inputs can be selected for an automatic scan with a register setting. The device automatically scansonlytheselectedanaloginputsinascendingorder. The auto-mode sequence can be reset at any time during an automatic scan (refer to the Auto register in the PAGE-0 Register Map for the ADS8638 section ). When the reset command has been received, the ongoing auto-modesequenceisresetandrestartsitfromthelowestselectedchannelinthesequence. Figure 86 shows the DIN command sequence for transitions from auto to manual mode. Figure 87 shows the DIN command sequence for transitions from manual to auto-scan mode. Note that each DIN command is executedonthenextCSfallingedge. Ch 5 Ch 0 Ch 5 Ch 1 Ch 0 Sample Sample Sample Sample Sample CS SCLK DOUT Ch 5 Data Ch 0 Data Ch 5 Data Ch 1 Data Ch 0 Data DIN Auto/0000h Man Ch 1 Man Ch 0 Man Ch 3 Man Ch 7 Selected Ch 0 Ch 5 Ch 1 Ch 0 Ch 3 Channel Auto Scan Manual Scan Figure86. TransitionfromAutotoManualMode(Channels0and5areselectedforautosequence) Ch n 1 Ch n Ch 3 Ch 2 Ch 5 Sample Sample Sample Sample Sample CS SCLK DOUT Ch n 1 Data Ch n Data Ch 3 Data Ch 2 Data Ch 5 Data DIN Man Ch3 Auto 0000h 0000h 0000h Selected Ch n Ch 3 Ch 2 Ch 5 Ch 2 Channel Manual Scan Auto Scan Figure87. TransitionfromManualtoauto-scanmode(Channels2and5areselectedforautosequence) Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 33 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com DEVICE TEMPARATURE READ The ADS8634/8 feature an internal temperature sensor. The device temperature can be read at any time during any scan. It is essential to enable (power-up) the internal temperature at least one cycle before selecting the temperature sensor for the device temperature measurement. The temperature sensor must be deselected after temperature measurement. The device resumes the channel sequence from where it left the scan after deselection of the temperature sensor. Do not disable (power-down) the temperature sensor before it is deselected. Figure 88 illustrates a typical command sequence for device temperature measurement during an autoscan. Ch 3 Ch 0 Ch 3 Ch 0 Temperature Sample Sample Sample Sample Sample CS SCLK DOUT Ch 3 Data Ch 0 Data Ch 3 Data Ch 0 Data Temp Data DIN Auto/0000h Aux (TS Enable) Sel Temp Sensor Deselect Temp Auto/0000h Sensor Selected Ch 0 Ch 3 Ch 0 Temp Sensor Ch 3 Channel Auto Scan Temp Sensor Auto Scan Figure88. ReadingTemperatureDuringAutoScan(Channels0and3areselectedforautosequence) SPI INTERFACE The ADS8634/8 employ a four-wire SPI-compatible interface. Apart from the interface, CS and SCLK also performanADCcontrolfunction. The data frame is synchronized with the CS falling edge. A low level on CS releases the DOUT pin from three-state and the ADC conversion results are output on the DOUT line. Data bits are clocked out on the falling edges of SCLK. The ADS8634/8 sample the analog input signal on the falling edge of CS and conversion is performedusingSCLK. DOUT is the serial data output line. Depending on register settings,the ADC conversion results are output along withtheselectedchanneladdressorregisterdataontheDOUTpin.Thedataoutputframealwaysconsistsof16 bits.TheSDOlinegoestothree-stateafterallthe16-bitsofdataframeareoutputorafterCSgoeshigh. DIN is a serial data input line. It is used to program various registers for either device configuration or for dynamicchangesapplicableonthenextimmediateCSfallingedge. 34 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 DOUT DATA FORMAT Thedeviceoutputs16-bitdataineverycycle.Table8showstheDOUTdataformat. Table8.DOUTDataFormat CHANNELADDRESS CONVERSIONRESULT PIN Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 ADDR ADDR ADDR ADDR D11 D0 DOUT D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 3 2 1 0 (MSB) (LSB) BitDescriptionfortheADS8638DOUTData Bits[15:12] Channel/temperaturesensoraddress Thesebitsrepresenttheadressofchannelortemperaturesensor. 0000=Channel0 0001=Channel1 0010=Channel2 0011=Channel3 0100=Channel4 0101=Channel5 0110=Channel6 0111=Channel7 1111=Temperaturesensor Bits[11:0] Conversionresultforthechannel/temperaturesensorrepresentedbybits[15:12],inMSB-firstformat BitDescriptionfortheADS8634DOUTData Bits[15:12] Channel/temperaturesensoraddress Thesebitsrepresenttheadressofchannelortemperaturesensor. 000X=Channel0 001X=Channel1 010X=Channel2 011X=Channel3 1111=Temperaturesensor Bits[11:0] Conversionresultforthechannel/temperaturesensorrepresentedbybits[15:12],inMSB-firstformat Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 35 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com DIN DATA FORMAT (SPI COMMAND WORD) Device registers can be written to and read from. There must be a minimum of 16 SCLKs after the CS falling edge for any read or write operation. The device receives the command (as shown in Table 9 and Table 10) through DIN where the first seven bits (bits[15:9]) represent the register address and the eighth bit (bit 8) is the read/write instruction. For a write cycle, the next eight bits (bits[7:0]) in the DIN are the desired data for the addressed register (Table 9). For a read cycle, the next eight bits (bits[7:0]) in the DIN are don’t care. DOUT outputs the 8-bit data from the addressed register (Table 10) during these eight clocks, corresponding to bits[7:0]. Table9.WriteCycleCommandWord RD/ REGISTERADDRESS DATA WR PIN Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 ADDR ADDR ADDR ADDR ADDR ADDR ADDR DIN R/W DIN7 DIN6 DIN5 DIN4 DIN3 DIN2 DIN1 DIN0 6 5 4 3 2 1 0 Table10.ReadCycleCommandWord RD/ REGISTERADDRESS DATA WR PIN Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 ADDR ADDR ADDR ADDR ADDR ADDR ADDR DIN R/W X X X X X X X X 6 5 4 3 2 1 0 DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT DOUT X X X X X X X X 7 6 5 4 3 2 1 0 36 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 SPI REGISTER WRITE CYCLE Figure 89 shows a timing diagram of the SPI write cycle. The device executes the command on the first CS falling edge after a command write cycle. The only exception to this command execution timing is the power-downcommand.Thepower-downcommand(througharegisterwrite)isexecutedonthe16thfallingedge ofSCLK.Thisfallingedgeoccursimmediatelyafterthelastcommandbitiswrittentothedevice. CS SCLK DIN A6 A5 A0 W D7 D6 D1 D0 DOUT Figure89. WriteCycle SPI REGISTER READ CYCLE Figure90showsatimingdiagramoftheSPIreadcycle. CS SCLK DIN A6 A5 A0 R D7 D6 D1 D0 DOUT D7 D6 D1 D0 Figure90. ReadCycle Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 37 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com REGISTER MAP: ADS8638 The ADS8638 internal registers are mapped in two pages: page 0 and page 1. Page 0 is selected by default at power-up and after reset. Any register read/write operation performed while on page 0 addresses the page 0 registers.Writing01htoregisteraddress7Fhselectspage1foranyfurtherregisteroperations. Page 0 registers are used to select the channel sequencing mode, program the configuration registers, and read the alarm flags. Page 1 resisters are used to program alarm thresholds for each channel and for the temperature sensor.Table11detailspage0andTable12detailspage1. Table11.ADS8638Page0RegisterMap REGISTER DEFAULT ADDRESS VALUE(1) BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 REGISTER BITS[15:9] ChannelSequencingControlRegisters SelTemp Manual 04h 00h 0 ChannelSelect[2:0] RangeSelect[2:0] Sensor SelTemp Auto 05h 00h Reset-Seq 0 0 0 RangeSelect[2:0] Sensor HoldingtheDINlinelowcontinuously(equivalenttowriting'0'toall16bits)duringdeviceoperationasperFigure85continuesdeviceoperationinthelastselectedmode(autoor manual). ConfigurationRegisters Reset-Device 01h 00h 0 0 0 0 0 0 0 Reset-Dev Temp Aux-Config 06h 08h 0 0 0 0 AL_PD IntVREF Sensor 0 Control Enable Enable Auto-MdCh-Sel 0Ch 00h SelCh0 SelCh1 SelCh2 SelCh3 SelCh4 SelCh5 SelCh6 SelCh7 Ch0-1Range 10h 11h 0 RangeSelectCh0[2:0] 0 RangeSelectCh1[2:0] Ch2-3Range 11h 11h 0 RangeSelectCh2[2:0] 0 RangeSelectCh3[2:0] Ch4-5Range 12h 11h 0 RangeSelectCh4[2:0] 0 RangeSelectCh5[2:0] Ch6-7Range 13h 11h 0 RangeSelectCh6[2:0] 0 RangeSelectCh7[2:0] AlarmFlagRegisterss(Read-Only) Tripped Tripped ActiveAlarm ActiveAlarm AlarmFlag AlarmFlag Flag Flag Temp-Flag 20h 00h 0 0 0 0 Temperature Temperature Temperature Temperature Low High Low High Tripped Tripped Tripped Tripped Tripped Tripped Tripped Tripped Ch0-3Tripped-Flag 21h 00h AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag Ch0Low Ch0High Ch1Low Ch1High Ch2Low Ch2High Ch3Low Ch3High ActiveAlarm ActiveAlarm ActiveAlarm ActiveAlarm ActiveAlarm ActiveAlarm ActiveAlarm ActiveAlarm Ch0-3Active-Flag 22h 00h FlagCh0 FlagCh0 FlagCh1 FlagCh1 FlagCh2 FlagCh2 FlagCh3 FlagCh3 Low High Low High Low High Low High Tripped Tripped Tripped Tripped Tripped Tripped Tripped Tripped Ch4-7Tripped-Flag 23h 00h AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag Ch4Low Ch4High Ch5Low Ch5High Ch6Low Ch6High Ch7Low Ch7High ActiveAlarm ActiveAlarm ActiveAlarm ActiveAlarm ActiveAlarm ActiveAlarm ActiveAlarm ActiveAlarm Ch4-7Active-Flag 24h 00h FlagCh4 FlagCh4 FlagCh5 FlagCh5 FlagCh6 FlagCh6 FlagCh7 FlagCh7 Low High Low High Low High Low High PageSelectionRegister Page 7Fh 00h 0 0 0 0 0 0 0 PageAddr (1) Allregistersareresettothedefaultvaluesatpower-onoratdeviceresetusingtheregistersettingsmethod. 38 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 Table12.ADS8638Page1RegisterMap REGISTER DEFAULT ADDRESS VALUE(1) BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 REGISTER BITS[15:9] AlarmThresholdRegisters TLAMSB 00h 00h TLAHysteresis[3:0] TLA[11:8] TLALSB 01h 00h TLA[7:0] THAMSB 02h 00h THAHysteresis[3:0] THA[11:8] THALSB 03h 00h THA[7:0] Ch0LAMSB 04h 00h Ch0-LAHysteresis[3:0] Ch0-LA[11:8] Ch0LALSB 05h 00h Ch0-LA[7:0] Ch0HAMSB 06h 00h Ch0-HAHysteresis[3:0] Ch0-HA[11:8] Ch0HALSB 07h 00h Ch0-HA[7:0] Ch1LAMSB 08h 00h Ch1-LAHysteresis[3:0] Ch1-LA[11:8] Ch1LALSB 09h 00h Ch1-LA[7:0] Ch1HAMSB 0Ah 00h Ch1-HAHysteresis[3:0] Ch1-HA[11:8] Ch1HALSB 0Bh 00h Ch1-HA[7:0] Ch2LAMSB 0Ch 00h Ch2-LAHysteresis[3:0] Ch2-LA[11:8] Ch2LALSB 0Dh 00h Ch2-LA[7:0] Ch2HAMSB 0Eh 00h Ch2-HAHysteresis[3:0] Ch2-HA[11:8] Ch2HALSB 0Fh 00h Ch2-HA[7:0] Ch3LAMSB 10h 00h Ch3-LAHysteresis[3:0] Ch3-LA[11:8] Ch3LALSB 11h 00h Ch3-LA[7:0] Ch3HAMSB 12h 00h Ch3-HAHysteresis[3:0] Ch3-HA[11:8] Ch3HALSB 13h 00h Ch3-HA[7:0] Ch4LAMSB 14h 00h Ch4-LAHysteresis[3:0] Ch4-LA[11:8] Ch4LALSB 15h 00h Ch4-LA[7:0] Ch4HAMSB 16h 00h Ch4-HAHysteresis[3:0] Ch4-HA[11:8] Ch4HALSB 17h 00h Ch4-HA[7:0] Ch5LAMSB 18h 00h Ch5-LAHysteresis[3:0] Ch5-LA[11:8] Ch5LALSB 19h 00h Ch5-LA[7:0] Ch5HAMSB 1Ah 00h Ch5-HAHysteresis[3:0] Ch5-HA[11:8] Ch5HALSB 1Bh 00h Ch5-HA[7:0] Ch6LAMSB 1Ch 00h Ch6-LAHysteresis[3:0] Ch6-LA[11:8] Ch6LALSB 1Dh 00h Ch6-LA[7:0] Ch6HAMSB 1Eh 00h Ch6-HAHysteresis[3:0] Ch6-HA[11:8] Ch6HALSB 1Fh 00h Ch6-HA[7:0] Ch7LAMSB 20h 00h Ch7-LAHysteresis[3:0] Ch7-LA[11:8] Ch7LALSB 21h 00h Ch7-LA[7:0] Ch7HAMSB 22h 00h Ch7-HAHysteresis[3:0] Ch7-HA[11:8] Ch7HALSB 23h 00h Ch7-HA[7:0] PageSelectionRegister Page 7Fh 00h 0 0 0 0 0 0 0 PageAddr (1) Allregistersareresettothedefaultvaluesatpower-onoratdeviceresetusingtheregistersettingsmethod. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 39 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com PAGE 0 REGISTER DESCRIPTIONS: ADS8638 Thissectionprovidesbit-by-bitdescriptionsofeachpage0register. ChannelSequencingControlRegistersfortheADS8638 There are two modes for channel sequencing: auto and manual mode. In auto-scan mode, the device automatically scans the preselected channels in sequential order with a new channel selected for every conversion. In manual mode, the channel is manually selected for the next conversion. In both modes, the preselected signal range is considered for each channel independently. Note that the range can be temporarily overriden. Manual:ManualModeRegister(Address=04h;Page0) 7 6 5 4 3 2 1 0 SelTemp 0 ChannelSelect[2:0] RangeSelect[2:0] Sensor This register selects device operation in manual scan mode, selects the channel for the next conversion, allows the preselected signal range to be temporarily overriden for the next conversion, and enables the device temperaturetoberead. Bit7 Mustalwaysbesetto'0' Bits[6:4] ChannelSelect[2:0] Thesebitsselectthechannelforacquisitionduringthenextframe. Forexample,ifthisregisteriswritteninframenumbern,thentheaddressedchannelsignalisacquiredinframe numbern+1andtheconversionresultisavailableinframenumbern+2. 000=Channel0 001=Channel1 010=Channel2 011=Channel3 100=Channel4 101=Channel5 110=Channel6 111=Channel7 Bits[3:1] RangeSelect[2:0] Thesebitsselectthesignalrangeforthechannelacquiredinthenextframe. Forexample,ifthisregisteriswritteninframenumbern,thentheselectedrangeisapplicableforframenumbern +1.Thisisadynamicrangeselectionandoverridesselectionthroughtheconfigurationregisters(address10hto 13h,page0)onlyforthenextframe. 000=Rangesasselectedthroughtheconfigurationregisters(address10hto13h,page0) 001=Rangeissetto±10V 010=Rangeissetto±5V 011=Rangeissetto±2.5V 100=Reserved;donotusethissetting 101=Rangeissetto0Vto10V 110=Rangeissetto0Vto5V 111=Powersdownthedeviceimmediatelyafterthe16thSCLKfallingedge Bit0 SelTempSensor Thisbitselectsthetemperaturesensorforacquisitioninthenextframe.Thisselectionoverrideschannelselection throughbits[6:4].Rangeselectionisnotapplicableforthetemperaturesensor. 0=Nextconversionasperselectionthroughbits[3:1] 1=Thetemperaturesensorisselectedforacquisitioninthenextframe 40 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 Auto:Auto-ScanModeRegister(Address=05h;Page0) 7 6 5 4 3 2 1 0 SelTemp Reset-Seq 0 0 0 RangeSelect[2:0] Sensor This register selects device operation in auto-scan mode, allows the preselected signal range to be temporarily overridenforthenextconversion,andenablesthedevicetemperaturetoberead. Bit7 Reset-Seq Thisbitresetstheauto-modesequencecounter. Thecounterisresettothelowestchannelnumberintheselectedsequence. Forexample,iftheAuto-MdCh-Selregisterisprogrammedto01101100(theauto-modesequencechannelsare2, 3,5,6,2,3,5,6…2,3,5,6),and,iftheReset-Seqbitisprogrammedto'1'inframenwhilechannel3issampled, thentheauto-modesequencecounterisresettochannel2inframen+1.Thissettingmeansthatchannel2is sampledinsteadofchannel5inframen+1. 0=Noreset(continuethesequencefromthepresentchannelnumber) 1=Resetthechannelsequncingcounter Bits[6:4] Mustalwaysbesetto'0' Bits[3:1] RangeSelect[2:0] Thesebitsselectthesignalrangeforthechannelacquiredinthenextframe. Forexample,ifthisregisteriswritteninframenumbern,thentheselectedrangeisapplicableforframenumber n+1.Thisisadynamicrangeselectionandoverridesselectionthroughtheconfigurationregisters(address10hto 13h,page0)onlyforthenextframe. 000=Rangesasselectedthroughtheconfigurationregisters(address10hto13h) 001=Rangeissetto±10V 010=Rangeissetto±5V 011=Rangeissetto±2.5V 100=Reserved;donotusethissetting 101=Rangeissetto0Vto10V 110=Rangeissetto0Vto5V 111=Powersdownthedeviceimmediatelyafterthe16thSCLKfallingedge Bit0 SelTempSensor Thisbitselectsthetemperaturesensorforacquisitioninthenextframe. Thisselectionoverridesthechannelselectionthroughtheautosequenceonlyforthenextframe.Theauto-mode sequencecontinuesfromwhereitwasinterruptedafterthetemperaturesensingframe. Forexample,iftheprogrammedautosequenceischannels0,1,3,0,1,3…0,1,3,andifthetemperaturesensor isselectedinframenumbernwhilechannel0issampled,thenthetemperaturesensorissampledinframen+1. Theautosequenceresumesfromframen+2samplingchannel1. Rangeselectionisnotapplicableforthetemperaturesensor. 0=Nextconversionasselectedthroughbits[3:1] 1=Thetemperaturesensorisselectedforacquisitioninthenextframe Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 41 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com ContinuedOperationintheSelectedModefortheADS8638 Holding the DIN line low continuously (equivalent to writing '0' to all 16 bits) during device operation as per Figure 85, continues device operation in the last selected mode (auto or manual). The device follows the range selection from the configuration registers (address 10h to 13h). The the internal temperature sensor continues to bereadifthetemperaturesensorwasselectedduringthelastauto/manualmodeframe. ConfigurationRegistersfortheADS8638 The configuration registers allow device configuration (signal range selection for individual channels, selection of channels for auto sequence, enabling/disabling of the internal reference and temperature sensor, and configuration of the AL_PD pin as either an alarm output or a power-down input). All registers can be reset to the defaultvaluesusingtheconfigurationregister. Reset-Device:DeviceResetRegister(Address=01h;Page0) 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 Reset-Dev This register resets the device and assigns default values to all internal registers. The reset value for this register is00h;asaresult,thisbitisself-clearing. Bits[7:1] Mustalwaysbesetto'0' Bit0 Reset-Dev Thisbitinitiatesasoftwareresetimmediatelyafterthe16thSCLKfallingedge. AllregistersinthedeviceareassignedtheresetvaluesmentionedinTable11andTable12. 0=Noreset 1=Devicereset Aux-Config:DeviceAuxiliaryBlocksEnable/DisableControlRegister(Address=06h;Page0) 7 6 5 4 3 2 1 0 0 0 0 0 AL_PDControl IntV Enable TempSensorEnable 0 REF This register controls the functionality of the AL_PD pin and enables/disables blocks such as the internal referenceandinternaltemperaturesensor. Bits[7:4] Mustalwaysbesetto'0' Bit3 AL_PDControl ThisbitcontrolsthefunctionalityoftheAL_PDpin. 0=AL_PDpinfunctionsasanalarmoutputpin 1=AL_PDpinfunctionsasapower-downcontrolpin Bit2 IntV Enable REF ThisbitpowersuptheinternalV . REF 0=Internalreferenceblockispowereddownatthenextframe 1=Internalreferenceblockispoweredupatthenextframe Bit1 TempSensorEnable Thisbitpowersuptheinternaltemperaturesensor. 0=Internaltemperaturesensorblockispowereddownfromthenextframe 1=Internaltemperaturesensorblockispoweredupfromthenextframe Bit0 Mustalwaysbesetto'0' 42 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 Auto-MdCh-Sel:ChannelSelectionRegisterforAuto-ScanMode(Address=0Ch;Page0) 7 6 5 4 3 2 1 0 SelCh0 SelCh1 SelCh2 SelCh3 SelCh4 SelCh5 SelCh6 SelCh7 This register selects the channels for the auto-mode sequence. The device scans only the selected channels in ascending order during auto-scan mode, starting with the lowest channel selected. For example, if the Auto-Md Ch-Sel register is programmed to 01100100, then the auto-mode sequence is channels 2, 5, 6, 2, 5, 6…2, 5, 6. In this case, the sequence always starts at channel 2. Channel 0 is selected if this register is programmed to 00000000. Bit7 SelCh0 Thisbitselectschannel0. 0=Channel0notselected 1=Channel0selected Bit6 SelCh1 Thisbitselectschannel1. 0=Channel1notselected 1=Channel1selected Bit5 SelCh2 Thisbitselectschannel2. 0=Channel2notselected 1=Channel2selected Bit4 SelCh3 Thisbitselectschannel3. 0=Channel3notselected 1=Channel3selected Bit3 SelCh4 Thisbitselectschannel4. 0=Channel4notselected 1=Channel4selected Bit2 SelCh5 Thisbitselectschannel5. 0=Channel5notselected 1=Channel5selected Bit1 SelCh6 Thisbitselectschannel6. 0=Channel6notselected 1=Channel6selected Bit0 SelCh7 Thisbitselectschannel7. 0=Channel7notselected 1=Channel7selected Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 43 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com Ch0-1RangetoCh6-7Range:RangeSelectionRegistersforChannels0to7 (Address=10hto13h;Page0) REGISTER ADDRESSONPAGE0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Ch0-1Range 10h 0 RangeSelectCh0[2:0] 0 RangeSelectCh1[2:0] Ch2-3Range 11h 0 RangeSelectCh2[2:0] 0 RangeSelectCh3[2:0] Ch4-5Range 12h 0 RangeSelectCh4[2:0] 0 RangeSelectCh5[2:0] Ch6-7Range 13h 0 RangeSelectCh6[2:0] 0 RangeSelectCh7[2:0] A selection of signal ranges are featured for each channel. The selected range is automatically assigned for a channel during conversion, regardless of the channel scan mode (auto or manual). These registers (Ch0-1 RangetoCh6-7Range)allowforrangeselectionofallchannels. Bit7 Mustalwaysbesetto'0' Bits[6:4] RangeSelectChn[2:0] Thesebitsselectthesignalrangeforchanneln,wherenis0,2,4,or6,dependingontheregisteraddress. 000=Reserved;donotusethissetting 001=Rangeissetto±10V 010=Rangeissetto±5V 011=Rangeissetto±2.5V 100=Reserved;donotusethissetting 101=Rangeissetto0Vto10V 110=Rangeissetto0Vto5V 111=Reserved;donotusethissetting Bit3 Mustalwaysbesetto'0' Bits[2:0] RangeSelectChm[2:0] Thesebitsselectthesignalrangeforchannelm,wheremis1,3,5,or7,dependingontheregisteraddress. 000=Reserved;donotusethissetting 001=Rangeissetto±10V 010=Rangeissetto±5V 011=Rangeissetto±2.5V 100=Reserved;donotusethissetting 101=Rangeissetto0Vto10V 110=Rangeissetto0Vto5V 111=Reserved;donotusethissetting 44 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 AlarmFlagRegistersfortheADS8638(Read-Only) The alarm conditions related to individual channels are stored in these registers. The flags can be read when an alarm interrupt is received on the AL_PD pin. There are two types of flag for every alarm: active and tripped. The active flag is set to '1' under the alarm condition (when data cross the alarm limit) and remains so as long as the alarm condition persists. The tripped flag turns on the alarm condition similar to the active flag, but it remains set untilitisread.Thisfeaturerelievesthedevicefromhavingtotrackalarms. TempFlag:AlarmFlagsRegisterforTemperatureSensor(Address=20h;Page0) 7 6 5 4 3 2 1 0 TrippedAlarmFlag TrippedAlarmFlag ActiveAlarmFlag ActiveAlarmFlag 0 0 0 0 TemperatureLow TemperatureHigh TemperatureLow TemperatureHigh The Temp Flag register stores the alarm flags for the temperature sensor. There are two alarm thresholds, and for each threshold there are two flags. An active alarm flag is enabled when an alarm is triggered (when data cross the alarm threshold) and remains enabled as long as the alarm condition persists. A tripped alarm flag is enabledinthesamemannerasanactivealarmflag,butitremainslatcheduntilitisread. Bit7 TrippedAlarmFlagTemperatureLow Thisbitindicatesthetrippedlowalarmflagstatusforthetemperaturesensor. 0=Noalarmdetected 1=Alarmdetected Bit6 TrippedAlarmFlagTemperatureHigh Thisbitindicatesthetrippedhighalarmflagstatusforthetemperaturesensor. 0=Noalarmdetected 1=Alarmdetected Bit5 ActiveAlarmFlagTemperatureLow Thisbitindicatestheactivelowalarmflagstatusforthetemperaturesensor. 0=Noalarm 1=Alarmdetected Bit4 ActiveAlarmFlagTemperatureHigh Thisbitindicatestheactive-highalarmflagstatusforthetemperaturesensor. 0=Noalarmdetected 1=Alarmdetected Bits[3:0] Alwaysread'0' Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 45 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com Ch0-3Tripped-FlagtoCh4-7Active-Flag:AlarmFlagsRegisterforChannels0to7 (Address=21hto24h;Page0) ADDRESS REGISTER ONPAGE0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Ch0-3 Tripped Tripped Tripped Tripped Tripped Tripped Tripped Tripped Tripped- 21h AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag Flag Ch0Low Ch0High Ch1Low Ch1High Ch2Low Ch2High Ch3Low Ch3High Active Active Active Active Active Active Active Active Ch0-3 22h AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag Active-Flag Ch0Low Ch0High Ch1Low Ch1High Ch2Low Ch2High Ch3Low Ch3High Ch4-7 Tripped Tripped Tripped Tripped Tripped Tripped Tripped Tripped Tripped- 23h AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag Flag Ch4Low Ch4High Ch5Low Ch5High Ch6Low Ch6High Ch7Low Ch7High Active Active Active Active Active Active Active Active Ch4-7 24h AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag AlarmFlag Active-Flag Ch4Low Ch4High Ch5Low Ch5High Ch6Low Ch6High Ch7Low Ch7High There are two alarm thresholds (high and low) per channel, with two flags for each threshold. An active alarm flag is enabled when an alarm is triggered (when data cross the alarm threshold) and remains enabled as long as the alarm condition persists. A tripped alarm flag is enabled in the same manner as an active alarm flag, but it remains latched until it is read. Registers 21h to 24h on page 0 store the active and tripped alarm flags for all eightchannels. Bits[7:0] Active/TrippedAlarmFlagChnHigh/Low Eachindividualbitindicatesanactive/tripped,high/lowalarmflagstatusforeachchannel,aspertheAlarmFlags Registerforchannels0to7. 0=Noalarmdetected 1=Alarmdetected PageSelectionRegisterfortheADS8638 Theregistersarearrangedontwopages:page0andpage1.Thepageregisterselectstheregisterpage. Page:PageSelectionRegister(Address=7Fh;Page0) 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 PageAddr Bits[7:1] Mustalwaysbesetto'0' Bit0 PageAddr Thisbitselectsthepageaddress. 0=Selectspage0forthenextregisterreadorwritecommand;allregisterread/writeoperationsafterthisare performedonthepage0registersuntilpage1isselected 1=Selectspage1forthenextregisterreadorwritecommand;allregisterread/writeoperationsafterthisare performedonthepage1registersuntilpage0isselected 46 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 PAGE 1 REGISTER DESCRIPTIONS: ADS8638 Thissectionprovidesbit-by-bitdescriptionsofeachpage1register.Asdescribedearlier,thedeviceregistersare mapped to two pages. Page 0 is selected by default at power-up and after reset. Page 1 can be selected by writing 01h to register address 7Fh. After selecting page 1, any register read/write action addresses the page 1 registers.Writing00htoregisteraddress7Fhselectspage0foranyfurtherregisteroperations. AlarmThresholdSettingRegistersfortheADS8638 The ADS8634/8 feature high and low alarms individually for the temperature sensor and each of the eight channels.Eachalarmthresholdis12bitswidewitha4-bithysteresis.This16-bitsettingisaccomplishedthrough two8-bitregistersassociatedwitheveryhigh/lowalarm. TLAMSBtoTHALSB:TemperatureAlarmRegisters(Address=00hto03h;Page1) ADDRESSON REGISTER PAGE1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TLAMSB TLAHysteresis[3:0] TLA[11:8] TLALSB TLA[7:0] THAMSB THAHysteresis[3:0] THA[11:8] THALSB THA[7:0] THA/LAMSBREGISTER Bits[7:4] THA/LAHysteresis[3:0] Thesebitssetthetemperaturehigh/lowalarmhysteresis. 0000=Nohyeteresis 0001=±1LSBhystetesis 0010to1110=±2LSBto±14LSBhystetesis 1111=±15LSBhystetesis Bits[3:0] THA/LA[11:8] ThesebitssettheMSBnibbleforthe12-bittemperaturehigh/lowalarm. Forexample,thetemperaturehighalarmthresholdisAFFhwhentheTHAMSBregister(address02h,page1) settingisAhandtheTHALSBregister(address03h,page1)registersettingisFFh. 0000=MSBnibbleis0h 0001=MSBnibbleis1h 0010to1110=MSBnibbleis2htoEh 1111=MSBnibbleisFh THA/LALSBREGISTER Bits[7:0] THA/LA[7:0] ThesebitssettheLSBbyteforthe12-bittemperaturehighalarm. Forexample,thetemperaturelowalarmthresholdisF02hwhentheTLALSBregister(address01h)settingis02h andtheTLSMSBregister(address00h,page1)registersettingisFh. 00000000=LSBbyteis0h 00000001=LSBbyteis1h 00000010to11101111=LSBbyteis02htoEFh 11111111=LSBbyteisFFh Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 47 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com Ch0LAMSBtoCh7HALSB:Channels0to7AlarmRegisters(Address=04hto23h;Page1) ADDRESSON REGISTER PAGE1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Ch0LAMSB 04h Ch0-LAHysteresis[3:0] Ch0-LA[11:8] Ch0LALSB 05h Ch0-LA[7:0] Ch0HAMSB 06h Ch0-HAHysteresis[3:0] Ch0-HA[11:8] Ch0HALSB 07h Ch0-HA[7:0] Ch1LAMSB 08h Ch1-LAHysteresis[3:0] Ch1-LA[11:8] Ch1LALSB 09h Ch1-LA[7:0] Ch1HAMSB 0Ah Ch1-HAHysteresis[3:0] Ch1-HA[11:8] Ch1HALSB 0Bh Ch1-HA[7:0] Ch2LAMSB 0Ch Ch2-LAHysteresis[3:0] Ch2-LA[11:8] Ch2LALSB 0Dh Ch2-LA[7:0] Ch2HAMSB 0Eh Ch2-HAHysteresis[3:0] Ch2-HA[11:8] Ch2HALSB 0Fh Ch2-HA[7:0] Ch3LAMSB 10h Ch3-LAHysteresis[3:0] Ch3-LA[11:8] Ch3LALSB 11h Ch3-LA[7:0] Ch3HAMSB 12h Ch3-HAHysteresis[3:0] Ch3-HA[11:8] Ch3HALSB 13h Ch3-HA[7:0] Ch4LAMSB 14h Ch4-LAHysteresis[3:0] Ch4-LA[11:8] Ch4LALSB 15h Ch4-LA[7:0] Ch4HAMSB 16h Ch4-HAHysteresis[3:0] Ch4-HA[11:8] Ch4HALSB 17h Ch4-HA[7:0] Ch5LAMSB 18h Ch5-LAHysteresis[3:0] Ch5-LA[11:8] Ch5LALSB 19h Ch5-LA[7:0] Ch5HAMSB 1Ah Ch5-HAHysteresis[3:0] Ch5-HA[11:8] Ch5HALSB 1Bh Ch5-HA[7:0] Ch6LAMSB 1Ch Ch6-LAHysteresis[3:0] Ch6-LA[11:8] Ch6LALSB 1Dh Ch6-LA[7:0] Ch6HAMSB 1Eh Ch6-HAHysteresis[3:0] Ch6-HA[11:8] Ch6HALSB 1Fh Ch6-HA[7:0] Ch7LAMSB 20h Ch7-LAHysteresis[3:0] Ch7-LA[11:8] Ch7LALSB 21h Ch7-LA[7:0] Ch7HAMSB 22h Ch7-HAHysteresis[3:0] Ch7-HA[11:8] Ch7HALSB 23h Ch7-HA[7:0] 48 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 CHANNELNHA/LAMSBREGISTER Bits[7:4] Chn-HA/LAHysteresis[3:0] Thesebitssetthechannelnhigh/lowalarmhysteresis. Forexample,bits[7:4]ofthechannel6HAMSBregister(address1Eh,page1)setthechannel6highalarm hysteresis. 0000=Nohyeteresis 0001=±1LSBhystetesis 0010to1110=±2LSBto±14LSBhystetesis 1111=±15-LSBhystetesis Bits[3:0] Chn-HA/LA[11:8] ThesebitssettheMSBnibbleforthe12-bitchannelnhigh/lowalarm. Forexample,thechannel7highalarmthresholdisAFFhwhenbits[3:0]ofthechannel7HAMSBregister(address 22h,page1)aresettoAhandthechannel7HALSB(address23h,page1)registersettingisFFh. 0000=MSBnibbleis0h 0001=MSBnibbleis1h 0010to1110=MSBnibbleis2htoEh 1111=MSBnibbleisFh CHANNELNHA/LALSBREGISTER Bits[7:0] ChnHA[7:0] ThesebitssettheLSBbyteforthe12-bitchannelnhigh/lowalarm. Forexample,thechannel2lowalarmthresholdisF01hwhenthechannel2LALSBregister(address0Dh,page1) settingis01handbits[3:0]ofthechannel2LAMSB(address0Ch,page1)aresettoFh. 00000000=LSBbyteis0h 00000001=LSBbyteis1h 00000010to11101111=LSBbyteis02htoEFh 11111111=LSBbyteisFFh Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 49 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com REGISTER MAP: ADS8634 The ADS8634 internal registers are mapped in two pages: page 0 and page 1. Page 0 is selected by default at power-up and after reset. Any register read/write action while on page 0 addresses the page 0 registers. Writing 01htoregisteraddress7Fhselectspage1foranyfurtherregisteroperations. Page 0 registers are used to select the channel sequencing mode, program the configuration registers, and to read the alarm flags. Page 1 resisters are used to program the alarm thresholds for each channel and for the temperaturesensor.Table13detailspage0andTable14detailspage1. Table13.Page0RegisterMapfortheADS8634 REGISTER DEFAULT REGISTER ADDRESS VALUE(1) BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 BITS[15:9] ChannelSequencingControlRegisters Manual 04h 00h 0 ChannelSelect[1:0] X(2) RangeSelect[2:0] SelTemp Sensor SelTemp Auto 05h 00h Reset-Seq 0 0 0 RangeSelect[2:0] Sensor HoldingDINlinecontinuously(equivalenttowritingzerotoallsixteenbits)duringdeviceoperationasperFigure85continuesdeviceoperationinthelastselectedmode(auto/manual) ConfigurationRegisters Reset-Device 01h 00h 0 0 0 0 0 0 0 Reset-Dev Temp Aux-Config 06h 08h 0 0 0 0 AL_PD IntVREF Sensor 0 Control Enable Enable Auto-MdCh-Sel 0Ch 00h SelCh0 X SelCh1 X SelCh2 X SelCh3 X Ch0Range 10h 11h 0 RangeSelectCh0[2:0] 0 X X X Ch1Range 11h 11h 0 RangeSelectCh1[2:0] 0 X X X Ch2Range 12h 11h 0 RangeSelectCh2[2:0] 0 X X X Ch3Range 13h 11h 0 RangeSelectCh3[2:0] 0 X X X AlarmFlags(Read-Only) Tripped Tripped ActiveAlarm ActiveAlarm AlarmFlag AlarmFlag Flag Flag Temp-Flag 20h 00h 0 0 0 0 Temperature Temperature Temperature Temperature Low High Low High Tripped Tripped Tripped Tripped Ch0-1Tripped-Flag 21h 00h AlarmFlag AlarmFlag X X AlarmFlag AlarmFlag X X Ch0Low Ch0High Ch1Low Ch1High ActiveAlarm ActiveAlarm ActiveAlarm ActiveAlarm Ch0-1Active-Flag 22h 00h FlagCh0 FlagCh0 X X FlagCh1 FlagCh1 X X Low High Low High Tripped Tripped Tripped Tripped Ch2-3Tripped-Flag 23h 00h AlarmFlag AlarmFlag X X AlarmFlag AlarmFlag X X Ch2Low Ch2High Ch3Low Ch3High ActiveAlarm ActiveAlarm ActiveAlarm ActiveAlarm Ch2-3Active-Flag 24h 00h FlagCh2 FlagCh2 X X FlagCh3 FlagCh3 X X Low High Low High PageSelectionRegister Page 7Fh 00h 0 0 0 0 0 0 0 PageAddr (1) Allregistersareresettothedefaultvaluesatpower-onoratdeviceresetusingtheregistersettingsmethod. (2) X=don'tcare. 50 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 Table14.Page1RegisterMapfortheADS8634 REGISTER DEFAULT REGISTER ADDRESS VALUE(1) BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 BITS[15:9] AlarmThresholdRegisters TLAMSB 00h 00h TLAHysteresis[3:0] TLA[11:8] TLALSB 01h 00h TLA[7:0] THAMSB 02h 00h THAHysteresis[3:0] THA[11:8] THALSB 03h 00h THA[7:0] Ch0LAMSB 04h 00h Ch0-LAHysteresis[3:0] Ch0-LA[11:8] Ch0LALSB 05h 00h Ch0-LA[7:0] Ch0HAMSB 06h 00h Ch0-HAHysteresis[3:0] Ch0-HA[11:8] Ch0HALSB 07h 00h Ch0-HA[7:0] Nofunction 08hto0Bh 00h X(2) X X X X X X X Ch1LAMSB 0Ch 00h Ch1-LAHysteresis[3:0] Ch1-LA[11:8] Ch1LALSB 0Dh 00h Ch1-LA[7:0] Ch1HAMSB 0Eh 00h Ch1-HAHysteresis[3:0] Ch1-HA[11:8] Ch1HALSB 0Fh 00h Ch1-HA[7:0] Nofunction 10hto13h 00h X X X X X X X X Ch2LAMSB 14h 00h Ch2-LAHysteresis[3:0] Ch2-LA[11:8] Ch2LALSB 15h 00h Ch2-LA[7:0] Ch2HAMSB 16h 00h Ch2-HAHysteresis[3:0] Ch2-HA[11:8] Ch2HALSB 17h 00h Ch2-HA[7:0] Nofunction 18hto1Bh 00h X X X X X X X X Ch3LAMSB 1Ch 00h Ch3-LAHysteresis[3:0] Ch3-LA[11:8] Ch3LALSB 1Dh 00h Ch3-LA[7:0] Ch3HAMSB 1Eh 00h Ch3-HAHysteresis[3:0] Ch3-HA[11:8] Ch3HALSB 1Fh 00h Ch3-HA[7:0] Nofunction 20hto23h 00h X X X X X X X X PageSelectionRegister Page 7Fh 00h 0 0 0 0 0 0 0 PageAddr (1) Allregistersareresettothedefaultvaluesatpower-onoratdeviceresetusingtheregistersettingsmethod. (2) X=don'tcare. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 51 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com PAGE 0 REGISTER DESCRIPTIONS (ADS8634) Thissectionprovidesbit-by-bitdescriptionsofeachpage0register.Asdescribedearlier,thedeviceregistersare mapped to two pages: page 0 and page 1. Page 0 is selected by default at power-up and after reset. Any register read/write action while on page 0 addresses the page 0 registers. Writing 01h to register address 7Fh selectspage1foranyfurtherregisteroperations. ChannelSequencingControlRegistersfortheADS8634 There are two modes for channel sequencing: auto and manual mode. In auto-scan mode, the device automatically scans the preselected channels in chronological order; a new channel is selected for every conversion. In manual mode, the channel is selected for the next conversion. In both modes, the preselected signalrangeisconsideredforeachchannelindependently;however,therangecanbetemporarilyoverriden. Manual:ManulalModeRegister(Address=04h;Page0) 7 6 5 4 3 2 1 0 0 ChannelSelect[1:0] X(1) RangeSelect[2:0] SelTemp Sensor (1) X=don'tcare. This register selects device operation in manual scan mode, selects channel for next conversion, allows the preselected signal range for the next conversion to be temporarialy overridden, and enables the device temperaturetoberead. Bit7 Mustalwaysbesetto'0' Bits[6:5] ChannelSelect[1:0] Thesebitsselectthechannelforacquisitionduringthenextframe. Forexample,ifthisregisteriswritteninframenumbern,thentheaddressedchannelsignalisacquiredinframe numbern+1andtheconversionresultisavailableinframenumbern+2. 00=Channel0 01=Channel1 10=Channel2 11=Channel3 Bit4 Don'tcare(canbe1or0);thisbithasnofunctionassigned Bits[3:1] RangeSelect[2:0] Thesebitsselectthesignalrangeforthechannelacquiredinthenextframe. Forexample,ifthisregisteriswritteninframenumbern,thentheselectedrangeisapplicableforframenumbern +1.Thisisadynamicrangeselectionandoverridesselectionthroughtheconfigurationregisters(addresses10hto 13h,page0)onlyforthenextframe. 000=Rangesasselectedthroughtheconfigurationregisters(address10hto13h,page0) 001=Rangeissetto±10V 010=Rangeissetto±5V 011=Rangeissetto±2.5V 100=Reserved;donotusethissetting 101=Rangeissetto0Vto10V 110=Rangeissetto0Vto5V 111=Powersdownthedeviceimmediatelyafterthe16thSCLKfallingedge Bit0 SelTempSensor Thisbitselectsthetemperaturesensorforacquisitioninthenextframe. Thisselectionoverrideschannelselectionthroughbits[6:4].Rangeselectionisnotapplicableforthetemperature sensor. 0=Nextconversionasperselectionthroughbits[3:1] 1=Deviceselectsthetemperaturesensorforacquisitioninthenextframe 52 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 Auto:Auto-ScanModeRegister(Address=05h;Page0) 7 6 5 4 3 2 1 0 SelTemp Reset-Seq 0 0 0 RangeSelect[2:0] Sensor This register selects device operation in auto-scan mode, allows the preselected signal range for the next conversiontobetemporarilyoverriden,andenablesthedevicetemperaturetoberead. Bit7 Reset-Seq Thisbitresetstheauto-modesequencecounter.Thecounterisresettothelowestchannelnumberintheselected sequence. Forexample,iftheAuto-MdCh-Selregisterisprogrammedto01101100(auto-modesequencechannels2,3,5,6, 2,3,5,6…2,3,5,6)and,iftheautoregisterbit7isprogrammedto'1'inframenwhilechannel3issampled,then theauto-modesequencecounterresetstochannel2inframen+1.Thissettingmeanschannel2issampled insteadofchannel5inframen+1. 0=Noreset(continuesequencefromthepresentchannelnumber) 1=Resetchannelsequncingcounter Bits[6:4] Mustalwaysbesetto'0' Bits[3:1] RangeSelect[2:0] Thesebitsselectthesignalrangeforthechannelacquiredinthenextframe. Forexample,ifthisregisteriswritteninframenumbern,thentheselectedrangeisapplicableforframenumbern +1.Thisisadynamicrangeselectionandoverridesselectionthroughtheconfigurationregisters(address10hto 13h,page0)onlyforthenextframe. 000=Rangesasselectedthroughtheconfigurationregisters(addresses10hto13h) 001=Rangeissetto±10V 010=Rangeissetto±5V 011=Rangeissetto±2.5V 100=Reserved;donotusethissetting 101=Rangeissetto0Vto10V 110=Rangeissetto0Vto5V 111=Powersdownthedeviceimmediatelyafterthe16thSCLKfallingedge Bit0 SelTempSensor Thisbitselectsthetemperaturesensorforacquisitioninthenextframe. Thisselectionoverrideschannelselectionthroughtheautosequenceonlyforthenextframe.Theautosequence continuesfromwhereitwasinterruptedafterthetemperaturesensingframe. Forexample,iftheprogrammedautosequenceischannels0,1,3,0,1,3…0,1,3and,ifthetemperaturesensor isselectedinframenumbernwhilechannel0issampled,thenthetemperaturesensorissampledinframen+1. Theautosequenceresumesfromframen+2samplingchannel1.Rangeselectionisnotapplicableforthe temperaturesensor. 0=Nextconversionasperselectionthroughbits[3:1] 1=Thetemperaturesensorisselectedforacquisitioninthenextframe Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 53 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com ContinuedOperationintheSelectedModefortheADS8634 Holding the DIN line low continuously (equivalent to writing '0' to all 16 bits) during device operation as per Figure 85 continues device operation in the last selected mode (auto or manual). The device follows range selection through the configuration registers (address 10h to 13h). The internal temperature sensor continues to bereadifthetemperaturesensorwasselectedduringthelastauto/manualmodeframe. ConfigurationRegistersfortheADS8634 These registers allow device configuration (such as signal range selection for individual channels, selection of channels for auto sequence, enabling/disabling of internal reference and temperature sensor, and configuration of the AL_PD pin as an alarm output or as a power-down input). All of the registers can be reset to the default valuesusingtheconfigurationregister. Reset-Device:DeviceResetRegister(Address=01h;Page0) 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 Reset-Dev This register resets the device and assigns default values to all internal registers. The reset value for this register is00h;asaresult,thisbitisself-clearing. Bits[7:1] Mustalwaysbesetto'0' Bit0 Reset-Dev Thisbitinitiatesasoftwareresetimmediatelyafterthe16thSCLKfallingedge. AllregistersinthedeviceareassignedtheresetvaluesmentionedinandTable11andTable12. 0=Noreset 1=Resetdevice Aux-Config:DeviceAuxiliaryBlocksEnable/DisableControlRegister(Address=06h;Page0) 7 6 5 4 3 2 1 0 0 0 0 0 AL_PDControl IntV Enable TempSensorEnable 0 REF This register controls functionality of the AL_PD pin and enables/disables blocks such as the internal reference andtheinternaltemperaturesensor. Bits[7:4] Mustalwaysbesetto'0' Bit3 AL_PDControl ThisbitcontrolsthefunctionalityoftheAL_PDpin. 0=TheAL_PDpinfunctionsasanalarmoutputpin 1=TheAL_PDpinfunctionsasapower-downcontrolpin Bit2 IntV Enable REF ThisbitpowersuptheinternalV . REF 0=Internalreferenceblockispowereddownfromthenextframe 1=Internalreferenceblockispoweredupfromthenextframe Bit1 TempSensorEnable Thisbitpowersuptheinternaltemperaturesensor. 0=Internaltemperaturesensorblockispowereddownfromthenextframe 1=Internaltemperaturesensorblockispoweredupfromthenextframe Bit0 Mustalwaysbesetto'0' 54 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 Auto-MdCh-Sel:ChannelSelectionRegistersforAuto-ScanMode(Address=0Ch;Page0) 7 6 5 4 3 2 1 0 SelCh0 X(1) SelCh1 X SelCh2 X SelCh3 X (1) X=don'tcare. This register selects channels for the auto-mode sequence. The device scans only the selected channels in ascending order during auto-scan mode, starting with the lowest channel selected. For example, if the Auto-Md Ch-Sel register is programmed to 01100100, then the auto-mode sequence is channels 2, 5, 6, 2, 5, 6…2, 5, 6, and in this case, the sequence always starts from channel 2. Channel 0 is selected if this register is programmed to00000000. Bit7 SelCh0 Thisbitselectschannel0. 0=Channel0notselected 1=Channel0selected Bit6 Don'tcare(canbe1or0);thisbithasnofunctionassigned Bit5 SelCh1 Thisbitselectschannel1. 0=Channel1notselected 1=Channel1selected Bit4 Don'tcare(canbe1or0);thisbithasnofunctionassigned Bit3 SelCh2 Thisbitselectschannel2. 0=Channel2notselected 1=Channel2selected Bit2 Don'tcare(canbe1or0);thisbithasnofunctionassigned Bit1 SelCh3 Thisbitselectschannel3. 0=Channel3notselected 1=Channel3selected Bit0 Don'tcare(canbe1or0);thisbithasnofunctionassigned Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 55 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com Ch0RangetoCh3Range:RangeSelectionRegistersforChannels0to3(Address=10hto13h;Page0) REGISTER ADDRESSONPAGE0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Ch0Range 10h 0 RangeSelectCh0[2:0] 0 X(1) X X Ch1Range 11h 0 RangeSelectCh1[2:0] 0 X X X Ch2Range 12h 0 RangeSelectCh2[2:0] 0 X X X Ch3Range 13h 0 RangeSelectCh3[2:0] 0 X X X (1) X=don'tcare. A selection of signal ranges are featured for each channel. The selected range is automatically assigned for a channel during conversion, regardless of the channel scan mode (auto or manual). These registers (Ch0 Range toCh3Range)allowforselectionofrangesforallchannels. Bit7 Mustalwaysbesetto'0' Bits[6:4] RangeSelectChn[2:0] Thesebitsselectthesignalrangeforchanneln,wherenis0,1,2,or3,dependingontheregisteraddress. 000=Reserved;donotusethissetting 001=Rangeissetto±10V 010=Rangeissetto±5V 011=Rangeissetto±2.5V 100=Reserved;donotusethissetting 101=Rangeissetto0Vto10V 110=Rangeissetto0Vto5V 111=Reserved;donotusethissetting Bit3 Mustalwaysbesetto'0' Bit2:0 Don'tcare(canbe1or0);thisbithasnofunctionassigned 56 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 AlarmFlagRegistersfortheADS8634(Read-Only) The alarm conditions related to individual channels are stored in these registers. When an alarm interrupt is received,theflagscanbereadontheAL_PDpin.Therearetwotypesofflagforeveryalarm:activeandtripped. An active alarm flag is enabled when an alarm is triggered (when data cross the alarm threshold) and remains enabled as long as the alarm condition persists. A tripped alarm flag is enabled in the same manner as an active alarmflag,butitremainslatcheduntilitisread.Thisfeaturerelievesthedevicefromhavingtotrackalarms. TempFlag:AlarmFlagsRegisterfortheTemperatureSensor(Address=20h;Page0) 7 6 5 4 3 2 1 0 TrippedAlarmFlag TrippedAlarmFlag ActiveAlarmFlag ActiveAlarmFlag 0 0 0 0 TemperatureLow TemperatureHigh TemperatureLow TemperatureHigh The Temp Flag register stores alarm flags for the temperature sensor. There are two alarm thresholds, with two flags for each threshold. An active alarm flag is enabled when an alarm is triggered (when data cross the alarm threshold) and remains enabled as long as the alarm condition persists. A tripped alarm flag is enabled in the samemannerasanactivealarmflag,butitremainslatcheduntilitisread. Bit7 TrippedAlarmFlagTemperatureLow Thisbitindicatesthetrippedlowalarmflagforthetemperaturesensor. 0=Noalarmdetected 1=Alarmdetected Bit6 TrippedAlarmFlagTemperatureHigh Thisbitindicatesthetrippedhighalarmflagforthetemperaturesensor. 0=Noalarmdetected 1=Alarmdetected Bit5 ActiveAlarmFlagTemperatureLow Thisbitindicatestheactivelowalarmflagforthetemperaturesensor. 0=Noalarm 1=Alarmdetected Bit4 ActiveAlarmFlagTemperatureHigh Thisbitindicatestheactive-highalarmflagforthetemperaturesensor. 0=Noalarmdetected 1=Alarmdetected Bits[3:0] Alwaysread'0' Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 57 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com Ch0-1Tripped-FlagtoCh2-3Active-Flag:AlarmFlagsRegisterforChannels0to3 (Address=21hto24h;Page0) ADDRESSON REGISTER PAGE0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Tripped Tripped Tripped Tripped Ch0-1Tripped-Flag 21h Alarm Alarm X(1) X Alarm Alarm X X FlagCh0 FlagCh0 FlagCh1 FlagCh1 Low High Low High Active Active Active Active Alarm Alarm Alarm Alarm Ch0-1Active-Flag 22h X X X X FlagCh0 FlagCh0 FlagCh1 FlagCh1 Low High Low High Tripped Tripped Tripped Tripped Alarm Alarm Alarm Alarm Ch2-3Tripped-Flag 23h X X X X FlagCh2 FlagCh2 FlagCh3 FlagCh3 Low High Low High Active Active Active Active Alarm Alarm Alarm Alarm Ch2-3Active-Flag 24h X X X X FlagCh2 FlagCh2 FlagCh3 FlagCh3 Low High Low High (1) X=don'tcare. Therearetwoalarmthresholds(HighandLow)perchannelandforeachthresholdtherearetwoflags.Anactive alarm flag is enabled when an alarm is triggered (when data cross the alarm threshold) and remains enabled as long as the alarm condition persists. A tripped alarm flag is enabled in the same manner as an active alarm flag, but it remains latched until it is read. Registers addressed 21h to 24h on page 0 store active and tripped alarm flagsforallfourchannels. Bits[7:6] Active/TrippedAlarmFlagChnHigh/Low Eachindividualbitindicatesanactive/tripped,high/lowalarmflagforeachchannel,aspertheCh0-1Tripped-Flag toCh2-3Active-Flagregister. 0=Noalarmdetected 1=Alarmdetected Bits[5:4] Don'tcare(1or0),thesebitsdonothaveanyfunctionassigned Bits[3:2] Active/TrippedAlarmFlagChnHigh/Low Eachindividualbitindicatesanactive/tripped,high/lowalarmflagforeachchannel,aspertheCh0-1Tripped-Flag toCh2-3Active-Flagregister. 0=Noalarmdetected 1=Alarmdetected Bits[1:0] Don'tcare(1or0),thesebitsdonothaveanyfunctionassigned PageSelectionRegisterfortheADS8634 Theregistersarearrangedontwopages:page0andpage1.Thepageregisterselectstheregisterpage. Page:PageSelectionRegister(Address=7Fh;Page0) 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 PageAddr Bits[7:1] Mustalwaysbesetto'0' Bit0 PageAddr Thisbitselectsthepageaddress. 0=Selectspage0forthenextregisterreadorwritecommand;allregisterread/writeoperationsafterthisare performedonthepage0registersuntilpage1isselected 1=Selectspage1forthenextregisterreadorwritecommand;allregisterread/writeoperationsafterthisare performedonthepage1registersuntilpage0isselected 58 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 PAGE 1 REGISTER DESCRIPTIONS (ADS8634) Thissectionprovidesbit-by-bitdescriptionsofeachpage1register.Asdescribedearlier,thedeviceregistersare mappedtotwopages:page0andpage1.Page0 is selected by default at power-up and after reset. Page 1 can be selected by writing 01h to register address 7Fh. After selecting page 1, any register read/write action addresses page 1 registers after a page 1 selection. Writing 00h to register address 7Fh selects page 0 for any furtherregisteroperations. AlarmThresholdSettingRegistersfortheADS8634 The device features high and low alarms individually for the temperature sensor and each of the four channels. Each alarm threshold is 12-bits wide with 4-bit hysteresis. This 16-bit setting is accomplished with two 8-bit registersassociatedwitheveryhigh/lowalarm. TLAMSBtoTHALSB:TemperatureAlarmRegisters(Address=00hto03h;Page1) ADDRESSON REGISTER PAGE1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 TLAMSB TLAHysteresis[3:0] TLA[11:8] TLALSB TLA[7:0] THAMSB THAHysteresis[3:0] THA[11:8] THALSB THA[7:0] THA/LAMSBRegister Bits[7:4] THA/LAHysteresis[3:0] Thesebitssetthetemperaturehigh/lowalarmhysteresis. 0000=Nohyeteresis 0001=±1LSBhystetesis 0010to1110=±2LSBto±14LSBhystetesis 1111=±15LSBhystetesis Bits[3:0] THA/LA[11:8] ThesebitssettheMSBnibbleforthe12-bittemperaturehigh/lowalarm. Forexample,thetemperaturehighalarmthresholdisAFFhwhentheTHAMSBregister(address02h,page1) settingisAhandtheTHALSBregister(address03h,page1)registersettingisFFh. 0000=MSBnibbleis0h 0001=MSBnibbleis1h 0010to1110=MSBnibbleis2htoEh 1111=MSBnibbleisFh THA/LALSBRegister Bits[7:0] THA/LA[7:0] ThesebitssettheLSBbyteforthe12-bittemperaturehighalarm. Forexample,thetemperaturelowalarmthresholdisF02hwhentheTLALSBregister(address01h)settingis02h andtheTLSMSBregister(address00h,page1)registersettingisFh. 00000000=LSBbyteis0h 00000001=LSBbyteis1h 00000010to11101111=LSBbyteis02htoEFh 11111111=LSBbyteisFFh Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 59 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com Ch0LAMSBtoCh3HALSB:Channels0to3AlarmRegisters(Address=04hto23h;Page1) ADDRESSON REGISTER PAGE1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Ch0LAMSB 04h Ch0-LAHysteresis[3:0] Ch0-LA[11:8] Ch0LALSB 05h Ch0-LA[7:0] Ch0HAMSB 06h Ch0-HAHysteresis[3:0] Ch0-HA[11:8] Ch0HALSB 07h Ch0-HA[7:0] Nofunction 08hto0Bh X(1) X X X X X X X Ch1LAMSB 0Ch Ch1-LAHysteresis[3:0] Ch1-LA[11:8] Ch1LALSB 0Dh Ch1-LA[7:0] Ch1HAMSB 0Eh Ch1-HAHysteresis[3:0] Ch1-HA[11:8] Ch1HALSB 0Fh Ch1-HA[7:0] Nofunction 10hto13h X X X X X X X X Ch2LAMSB 14h Ch2-LAHysteresis[3:0] Ch2-LA[11:8] Ch2LALSB 15h Ch2-LA[7:0] Ch2HAMSB 16h Ch2-HAHysteresis[3:0] Ch2-HA[11:8] Ch2HALSB 17h Ch2-HA[7:0] Nofunction 18hto1Bh X X X X X X X X Ch3LAMSB 1Ch Ch3-LAHysteresis[3:0] Ch3-LA[11:8] Ch3LALSB 1Dh Ch3-LA[7:0] Ch3HAMSB 1Eh Ch3-HAHysteresis[3:0] Ch3-HA[11:8] Ch3HALSB 1Fh Ch3-HA[7:0] Nofunction 20hto23h X X X X X X X X (1) X=don'tcare. ChannelNHA/LAMSBRegister Bits[7:4] Chn-HA/LAHysteresis[3:0] Thesebitssetthechannelnhigh/lowalarmhysteresis. Forexample,bits[7:4]ofthechannel2HAMSBregister(address16h,page1)setthechannel2highalarm hysteresis. 0000=Nohyeteresis 0001=±1LSBhystetesis 0010to1110=±2LSBto±14LSBhystetesis 1111=±15LSBhystetesis Bits[3:0] Chn-HA/LA[11:8] ThesebitssettheMSBnibbleforthe12-bitchannelnhigh/lowalarm. Forexample,thechannel3highalarmthresholdisAFFhwhenbits[3:0]ofthechannel3HAMSBregister(address 1Eh,page1)aresettoAhandthechannel3HALSB(address1Fh,page1)registersettingisFFh. 0000=MSBnibbleis0h 0001=MSBnibbleis1h 0010to1110=MSBnibbleis2htoEh 1111=MSBnibbleisFh ChannelNHA/LALSBRegister Bits[7:0] ChnHA[7:0] ThesebitssettheLSBbyteforthe12-bitchannelnhigh/lowalarm. Forexample,thechannel1lowalarmthresholdisF01hwhenthechannel1LALSBregister(address0Dh,page1) settingis01handbits[3:0]ofthechannel1LAMSB(address0Ch,page1)aresettoFh. 00000000=LSBbyteis0h 00000001=LSBbyteis1h 00000010to11101111=LSBbyteis02htoEFh 11111111=LSBbyteisFFh 60 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 APPLICATION INFORMATION DRIVING ANALOG SIGNAL INPUT The ADS8634/8 employ a sample-and-hold stage at the input. An 8pF sampling capacitor is connected during sampling. This configuration results in a glitch at the input terminals of the device at the start of the sample. The external circuit must be designed in such a way that the input can settle to the required accuracy during the chosensamplingtime.Figure91showsareccomendeddrivingcircuitfortheanaloginputs. V OPA+ V OPA+ +VA OPA140 + Analog HVDD AVDD 20Ω Signal AINx V RANGE V OPA 1200pF ADS8634/8 50Ω AINGND HVSS AGND V OPA Figure91. ReccomendedDrivingCircuit The 8pF capacitor across the AINx and AINGND terminals decouples the driving op amp from the sampling glitch. The low-pass filter at the input limits noise bandwidth of the driving op amp. Select the filter bandwidth so that the full-scale step at the input can settle to the required accuracy during the sampling time. Equation 5, Equation6,andEquation7areusefulforfiltercomponentselection. Sampling Time Filter Time Constant (t ) = AU Settling Resolution´ln(2) Where: Settling resolution is the accuracy in LSB to which the input must settle. A typical settling resolution for the12-bitdeviceis13or14. (5) Filter Time Constant (t ) = R´C AU (6) 1 Filter Bandwidth = 2´p´t AU (7) Also, make sure the driving op amp bandwidth does not limit the signal bandwidth to below the filter bandwidth. In many applications, signal bandwidth may be much lower than filter bandwidth. In this case, an additional low-pass filter may be used at the input of the driving op amp. This signal and filter bandwidth can be selected in accordancewiththeinputsignalbandwidth. Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 61 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com POWER MANAGEMENT AT LOWER SPEEDS There are multiple data acquisition applications that require sampling speeds much lower than 1MSPS. The ADS8634/8 offer power saving while running at lower speeds. As shown in Figure 92, the ADS8634/8 consume dynamic power from a CS rising edge until the 16th SCLK falling edge. While using the ADS8634/8 at lower sampling speeds, it is recommended to use SCLK at the maximum specified frequency. This setting allows the maximum static period t at any given sampling speed. The ADS8634/8 consume considerably lower static STATIC current (current during t ) from all three power supplies (AVDD, HVDD, and HVSS). This consumption helps STATIC lower the average currents from each of the supplies, resulting in a lower average power consumption while usingthedeviceatlowersamplingspeeds. t =1/f FRAME SAMPLE (Actual) t t DYNAMIC = STATIC 1/f SAMPLE (Max) CS 16f 16f SCLK I DYNAMIC AVDD, HVDD, ISTATIC HVSS Current Figure92. SupplyCurrentProfileatSpeedsBelow1MSPS Table15showst ,t ,andt ata0.1MSPSsamplingspeed. FRAME DYNAMIC STATIC Table15.TypicalStatic/DynamicTimeDistributionatLowerSpeeds(0.1MSPS) f (MSPS) t (µs) t (µs) t (µs) SAMPLE FRAME DYNAMIC STATIC 0.1 10 1 9 TheaveragedevicepowerconsumptioncanbecalculatedwithEquation8andEquation9: AverageCurrent,I =(I ×t +I ×t )/(t +t ) (8) AVERAGE DYNAMIC DYNAMIC STATIC STATIC DYNAMIC STATIC AveragePower=SupplyVoltage×I (9) AVERAGE Table16showstheaveragepowercalculationsat0.1MSPS. Table16.AveragePowerCalculationsat0.1MSPS PARAMETER AVDD HVDD HVSS Typicalsupplyvoltage(V) 3.3 10 10 I (mA) 2.50 0.27 0.35 DYNAMIC t (µs) 1.0 1.0 1.0 DYNAMIC I (mA) 1.45 0.005 0.005 STATIC t (µs) 9.0 9.0 9.0 STATIC Averagecurrent,I (mA) 1.555 0.032 0.040 AVERAGE Averagepower(mW) 5.132 0.315 0.395 Totalaveragepower(mW)=P +P +P 5.842 AVDD HVDD HVSS 62 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 PROGRAMMING SEQUENCE AtypicalprogrammingsequencefortheADS8634/8isshowninFigure93. Device Powers Up Starts in Manual Mode channel 0, ±10V input range. Are any of these to be enabled? a) AL_PD as Alarm Out b) Power-up INT REFGEN c) Power-up TEMP SENSOR No Yes Program the Internal Control Register (Page 0, Register 06h) Will the device be used in Auto Mode? Will channel selection be enabled? (Default = channel 0 enabled) No Yes Program the Internal Control Register (Page 0, Register 06h) Will any channel input range other than±10V be used? No Yes Program the Range Select Register (Page 0, Registers 10h to 13h) Will the alarm threshold be programmed with or without hysteresis? No Yes Go to Page 1 and Program the Page Select Register (Page 0, Register 7Fh) Write the Alarm Threshold and Hysteresis into the Alarm Register (Page 1, Registers 00h to 23h) Return to Page 0 and Program the Page Select Register (Page 1, Register 7Fh) Start Manual Mode Operation or Auto Mode Operation Manual Mode Auto Mode Manual Mode Operation Auto Mode Operation Change Mode Write to Page 0, Register 04h Write to Page 0, Register 05h Continue Continue Change Configuration Change Configuration Continue Operation in Configured Mode Write to Page 0, Register 00h Continue Figure93. ProgrammingFlowchart Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 63 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com DRIVING ANALOG SIGNAL INPUT WITHOUT AN OPERATIONAL AMPLIFIER Therearesomelowinputsignalbandwidthapplications,suchasgeneral-purposeprogrammablelogiccontrollers (PLCs) I/O, where it is not required to operate an ADC at high sampling rates and it is desirable to avoid using a dedicated driving op amp from a cost perspective. In this case, the ADC input recognizes the impedance of the signal source (such as signal conditioning circuit, PGA, or sensor). This section elaborates on the effects of sourceimpedanceonsamplingfrequency. Equation5canberewrittenasEquation10: SamplingTime=FilterTimeConstant×SettlingResolution×ln(2) (10) As shown in Figure 94, it is recommended to use a bypass capacitor across the positive and negative ADC input terminals. AVDD R R SOURCE 1 + AINx C BYPASS - AINGND Signal Source ADS8634/8 GND GND Figure94. DrivingWithoutanOperationalAmplifier 64 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 The source impedance (R + R ) combined with (C + C ) acts as a low-pass filter with SOURCE 1 BYPASS SAMPLE Equation11: FilterTimeConstant=(R +R )×(C +C ) SOURCE 1 BYPASS SAMPLE Where: C istheinternalsamplingcapacitanceoftheADC(equalto32pF). (11) SAMPLE Table 17 lists the recommended bypass capacitor values and the filter-time constant for different source resistances. It is recommended to use a bypass capacitor with a minimum value of 100pF. Table 17assumes R 1 = 20Ω; however, depending on the application, R can be bypassed (by shorting R ) and the extra 20Ω margin 1 1 canbeusedforsourceresistance. Table17.Filter-TimeConstantversusSourceResistance APPROXIMATEC FILTERTIME BYPASS R (Ω) R +R (pF) C +C (pF) CONSTANT(ns) SOURCE SOURCE 1 BYPASS SAMPLE 0 20 1200 1208 25 32 52 470 478 25 90 110 220 228 25 210 230 100 108 25 500 520 100 108 56 1000 1020 100 108 110 5000 5020 100 108 542 Typically,thesettlingresolutionisselectedas(ADCresolution+2).FortheADS8634/8(12-bit),theidealsettling resolutionis14.UsingEquation6andEquation7,thesamplingtimecanbeeasilydeterminedforagivensource impedance. For source impedances greater than 210Ω, the filter-time constant continues to increase beyond the 25ns required for a 250ns sampling time. This incrementation increases the minimum permissible sampling time for12-bitsettlingandthedevicemustbeoperatedatalowersamplingrate. The device sampling rate can be maximized by using a 20MHz clock for even lower throughputs. Table 18 showstypicalcalculationsfortheADS8634/8(12-bit). Table18.SamplingFrequencyversusSourceImpedancefortheADS8634/8 SAMPLINGTIME, CONVERSIONTIME, CYCLETIME, SAMPLINGRATE R (Ω) C (pF) t (ns) t (ns) t +t (ns) (MSPS) SOURCE BYPASS ACQ CONV ACQ CONV 750 210 100 250 1000 1 (with20MHzclock) 750 500 100 545 1295 0.8 (with20MHzclock) 750 1000 100 1070 1820 0.5 (with20MHzclock) 750 5000 100 5260 6010 0.2 (with20MHzclock) Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 65 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com PCB LAYOUT SCHEMATIC RECCOMENDATIONS ADCs are mixed-signal devices. For maximum performance, proper decoupling, grounding, and proper termination of digital signals is essential. Figure 95 and Figure 96 show the essential components around the ADC. All capacitors shown are ceramic. These decoupling capacitors must be placed close to the respective signalpins. Analog Signal Common R9 20Ω Common Analog/Digital Ground Plane 1200pF C8 C9 C10 R8 20Ω D 0.1 F 1 F Analog 1200pF AIN7 AINGN NC AGND AGND AVDD Supply C7 6 5 4 3 2 1 R7 20Ω AIN6 REF 7 24 Reference C11 1200pF nals C6 AIN5 8 23 REFGND 10 F g Si R6 20Ω ut AIN4 AL_PD Digital np 9 22 To/From og I 12C005pF ADS8638 Host nal AIN3 DVDD Digital A 10 21 R5 20Ω C12 C13 Supply AIN2 0.1 F 1 F 1200pF 11 20 C4 DGND AIN1 DOUT R1 12 19 R4 20Ω 50Ω ost 1200pF 13 14 15 16 17 18 o H R3 20Ω C3 AIN0 HVDD HVSS CS SCLK DIN als From/T n g 1200pF al Si C2 git Di R2 20Ω C15 C14 1200pF 1 F 1 F C1 Bipolar Power Supply Figure95. ReccomendedSchematicfortheADS8638 66 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 www.ti.com SBAS541A–MAY2011–REVISEDAUGUST2011 There is a 50Ω source series termination resistor shown on the DOUT signal. This resistor must be placed as closetoDOUTaspossible.SeriesterminationsforSCLKandCSmustbeplacedclosetothehost. Analog Signal Common Common Analog/Digital Ground Plane C9 C10 D 0.1 F 1 F Analog s NC AINGN NC AGND AGND AVDD Supply al n 6 5 4 3 2 1 g Si R7 20Ω ut NC REF np 7 24 Reference g I C11 o 1200pF nal C6 AIN3 REFGND 10 F A 8 23 R6 20Ω AIN2 AL_PD Digital 9 22 To/From 1200pF ADS8634 Host C5 AIN1 DVDD Digital 10 21 R5 20Ω C12 C13 Supply AIN0 0.1 F 1 F 1200pF 11 20 C4 DGND NC DOUT R1 12 19 R4 20Ω 50Ω ost 1200pF 13 14 15 16 17 18 o H C3 C D S S K N m/T N HVD HVS C SCL DI s Fro al n g Si al git Di C15 C14 1 F 1 F Bipolar Power Supply Figure96. ReccomendedSchematicfortheADS8634 Copyright©2011,TexasInstrumentsIncorporated SubmitDocumentationFeedback 67 ProductFolderLink(s):ADS8634ADS8638

ADS8634 ADS8638 SBAS541A–MAY2011–REVISEDAUGUST2011 www.ti.com Acommongroundplaneforbothanaloganddigitaloftengivesbetterresults.Typically,thesecondprintedcircuit board (PCB) layer is the ground plane. The ADC ground pins are returned to the ground plane through multiple vias(PTH).Itisagoodpracticetoplaceanalogcomponentsononesideanddigitalcomponentsonothersideof the ADC (or ADCs). All signals must be routed, assuming there is a split ground plane for analog and digital. Furthermore, it is better to split the ground initially during layout. Route all analog and digital traces so that the traces see the respective ground all along the second layer. Then, short both grounds to form a common ground plane. Figure 97Figure 98 show the reccomended layout around the ADS8638. The ADS8634 pinout is a subset of the ADS8638 pinout. It is possible to make a common layout for the ADS8634/8 . Or, one can delete the traces and components associated with the additional four channels of the ADS8638 to generate the ADS8634 layout. Figure97.ReccomendedLayoutfortheADS8638 Figure98.ReccomendedLayoutfortheADS8638 (Toplayer) (Bottomlayer) 68 SubmitDocumentationFeedback Copyright©2011,TexasInstrumentsIncorporated ProductFolderLink(s):ADS8634ADS8638

PACKAGE OPTION ADDENDUM www.ti.com 11-Apr-2013 PACKAGING INFORMATION Orderable Device Status Package Type Package Pins Package Eco Plan Lead/Ball Finish MSL Peak Temp Op Temp (°C) Top-Side Markings Samples (1) Drawing Qty (2) (3) (4) ADS8634SRGER ACTIVE VQFN RGE 24 3000 Green (RoHS CU NIPDAU Level-3-260C-168 HR -40 to 125 8634 & no Sb/Br) ADS8634SRGET ACTIVE VQFN RGE 24 250 Green (RoHS CU NIPDAU Level-3-260C-168 HR -40 to 125 8634 & no Sb/Br) ADS8638SRGER ACTIVE VQFN RGE 24 3000 Green (RoHS CU NIPDAU Level-3-260C-168 HR -40 to 125 8638 & no Sb/Br) ADS8638SRGET ACTIVE VQFN RGE 24 250 Green (RoHS CU NIPDAU Level-3-260C-168 HR -40 to 125 8638 & no Sb/Br) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1

PACKAGE OPTION ADDENDUM www.ti.com 11-Apr-2013 Addendum-Page 2

PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 TAPE AND REEL INFORMATION *Alldimensionsarenominal Device Package Package Pins SPQ Reel Reel A0 B0 K0 P1 W Pin1 Type Drawing Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant (mm) W1(mm) ADS8634SRGER VQFN RGE 24 3000 330.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2 ADS8634SRGET VQFN RGE 24 250 180.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2 ADS8638SRGER VQFN RGE 24 3000 330.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2 ADS8638SRGET VQFN RGE 24 250 180.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2 PackMaterials-Page1

PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 *Alldimensionsarenominal Device PackageType PackageDrawing Pins SPQ Length(mm) Width(mm) Height(mm) ADS8634SRGER VQFN RGE 24 3000 367.0 367.0 35.0 ADS8634SRGET VQFN RGE 24 250 210.0 185.0 35.0 ADS8638SRGER VQFN RGE 24 3000 367.0 367.0 35.0 ADS8638SRGET VQFN RGE 24 250 210.0 185.0 35.0 PackMaterials-Page2

GENERIC PACKAGE VIEW RGE 24 VQFN - 1 mm max height PLASTIC QUAD FLATPACK - NO LEAD Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4204104/H

PACKAGEOUTLINE RGE0024H VQFN- 1mmmaxheight PLASTICQUADFLATPACK-NOLEAD A 4.1 B 3.9 4.1 PIN1INDEXAREA 3.9 1MAX C SEATINGPLANE 0.05 0.00 0.08 C (cid:3)(cid:3)(cid:3)(cid:3)(cid:21)(cid:17)(cid:26)(cid:147)(cid:19)(cid:17)(cid:20) 2X2.5 (0.2)TYP 7 12 20X0.5 6 13 2X 25 SYMM 2.5 1 18 0.30 PIN1ID 24X 0.18 (OPTIONAL) 24 19 0.1 C A B SYMM 0.48 0.05 C 24X 0.28 4219016 A 082017 NOTES: 1. Alllineardimensionsareinmillimeters.Anydimensionsinparenthesisareforreferenceonly.Dimensioningandtolerancing perASMEY14.5M. 2. Thisdrawingissubjecttochangewithoutnotice. 3. Thepackagethermalpadmustbesolderedtotheprintedcircuitboardforthermalandmechanicalperformance. www.ti.com

EXAMPLEBOARDLAYOUT RGE0024H VQFN- 1mmmaxheight PLASTICQUADFLATPACK-NOLEAD (3.825) (2.7) 24 19 24X(0.58) 24X(0.24) 1 18 20X(0.5) 25 SYMM (3.825) 2X (cid:11)(cid:145)(cid:19)(cid:17)(cid:21)(cid:12)(cid:3)(cid:57)(cid:44)(cid:36) (1.1) TYP 6 13 (R0.05) 7 12 2X(1.1) SYMM LANDPATTERNEXAMPLE SCALE:20X 0.07MAX 0.07MIN ALLAROUND METAL ALLAROUND SOLDERMASK OPENING SOLDERMASK METALUNDER OPENING SOLDERMASK NONSOLDERMASK DEFINED SOLDERMASK (PREFERRED) DEFINED SOLDERMASKDETAILS 4219016 A 082017 NOTES:(continued) 4. Thispackageisdesignedtobesolderedtoathermalpadontheboard.Formoreinformation,seeTexasInstruments literaturenumber SLUA271(www.ti.comlitslua271) . 5. Soldermasktolerancesbetweenandaroundsignalpadscanvarybasedonboardfabricationsite. www.ti.com

EXAMPLESTENCILDESIGN RGE0024H VQFN- 1mmmaxheight PLASTICQUADFLATPACK-NOLEAD (3.825) 4X(1.188) 24 19 24X(0.58) 24X(0.24) 1 18 20X(0.5) SYMM (3.825) (0.694) TYP 6 13 (R0.05)TYP 25 METAL TYP 7 12 (0.694) TYP SYMM SOLDERPASTEEXAMPLE BASEDON0.125mmTHICKSTENCIL EXPOSEDPAD 78PRINTEDCOVERAGEBYAREA SCALE:20X 4219016 A 082017 NOTES:(continued) 6. Lasercuttingapertureswithtrapezoidalwallsandroundedcornersmayofferbetterpasterelease.IPC-7525mayhavealternate designrecommendations.. www.ti.com

IMPORTANTNOTICE TexasInstrumentsIncorporated(TI)reservestherighttomakecorrections,enhancements,improvementsandotherchangestoits semiconductorproductsandservicesperJESD46,latestissue,andtodiscontinueanyproductorserviceperJESD48,latestissue.Buyers shouldobtainthelatestrelevantinformationbeforeplacingordersandshouldverifythatsuchinformationiscurrentandcomplete. TI’spublishedtermsofsaleforsemiconductorproducts(http://www.ti.com/sc/docs/stdterms.htm)applytothesaleofpackagedintegrated circuitproductsthatTIhasqualifiedandreleasedtomarket.AdditionaltermsmayapplytotheuseorsaleofothertypesofTIproductsand services. ReproductionofsignificantportionsofTIinformationinTIdatasheetsispermissibleonlyifreproductioniswithoutalterationandis accompaniedbyallassociatedwarranties,conditions,limitations,andnotices.TIisnotresponsibleorliableforsuchreproduced documentation.Informationofthirdpartiesmaybesubjecttoadditionalrestrictions.ResaleofTIproductsorserviceswithstatements differentfromorbeyondtheparametersstatedbyTIforthatproductorservicevoidsallexpressandanyimpliedwarrantiesforthe associatedTIproductorserviceandisanunfairanddeceptivebusinesspractice.TIisnotresponsibleorliableforanysuchstatements. BuyersandotherswhoaredevelopingsystemsthatincorporateTIproducts(collectively,“Designers”)understandandagreethatDesigners remainresponsibleforusingtheirindependentanalysis,evaluationandjudgmentindesigningtheirapplicationsandthatDesignershave fullandexclusiveresponsibilitytoassurethesafetyofDesigners'applicationsandcomplianceoftheirapplications(andofallTIproducts usedinorforDesigners’applications)withallapplicableregulations,lawsandotherapplicablerequirements.Designerrepresentsthat,with respecttotheirapplications,Designerhasallthenecessaryexpertisetocreateandimplementsafeguardsthat(1)anticipatedangerous consequencesoffailures,(2)monitorfailuresandtheirconsequences,and(3)lessenthelikelihoodoffailuresthatmightcauseharmand takeappropriateactions.DesigneragreesthatpriortousingordistributinganyapplicationsthatincludeTIproducts,Designerwill thoroughlytestsuchapplicationsandthefunctionalityofsuchTIproductsasusedinsuchapplications. TI’sprovisionoftechnical,applicationorotherdesignadvice,qualitycharacterization,reliabilitydataorotherservicesorinformation, including,butnotlimitedto,referencedesignsandmaterialsrelatingtoevaluationmodules,(collectively,“TIResources”)areintendedto assistdesignerswhoaredevelopingapplicationsthatincorporateTIproducts;bydownloading,accessingorusingTIResourcesinany way,Designer(individuallyor,ifDesignerisactingonbehalfofacompany,Designer’scompany)agreestouseanyparticularTIResource solelyforthispurposeandsubjecttothetermsofthisNotice. TI’sprovisionofTIResourcesdoesnotexpandorotherwisealterTI’sapplicablepublishedwarrantiesorwarrantydisclaimersforTI products,andnoadditionalobligationsorliabilitiesarisefromTIprovidingsuchTIResources.TIreservestherighttomakecorrections, enhancements,improvementsandotherchangestoitsTIResources.TIhasnotconductedanytestingotherthanthatspecifically describedinthepublisheddocumentationforaparticularTIResource. Designerisauthorizedtouse,copyandmodifyanyindividualTIResourceonlyinconnectionwiththedevelopmentofapplicationsthat includetheTIproduct(s)identifiedinsuchTIResource.NOOTHERLICENSE,EXPRESSORIMPLIED,BYESTOPPELOROTHERWISE TOANYOTHERTIINTELLECTUALPROPERTYRIGHT,ANDNOLICENSETOANYTECHNOLOGYORINTELLECTUALPROPERTY RIGHTOFTIORANYTHIRDPARTYISGRANTEDHEREIN,includingbutnotlimitedtoanypatentright,copyright,maskworkright,or otherintellectualpropertyrightrelatingtoanycombination,machine,orprocessinwhichTIproductsorservicesareused.Information regardingorreferencingthird-partyproductsorservicesdoesnotconstitutealicensetousesuchproductsorservices,orawarrantyor endorsementthereof.UseofTIResourcesmayrequirealicensefromathirdpartyunderthepatentsorotherintellectualpropertyofthe thirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI. TIRESOURCESAREPROVIDED“ASIS”ANDWITHALLFAULTS.TIDISCLAIMSALLOTHERWARRANTIESOR REPRESENTATIONS,EXPRESSORIMPLIED,REGARDINGRESOURCESORUSETHEREOF,INCLUDINGBUTNOTLIMITEDTO ACCURACYORCOMPLETENESS,TITLE,ANYEPIDEMICFAILUREWARRANTYANDANYIMPLIEDWARRANTIESOF MERCHANTABILITY,FITNESSFORAPARTICULARPURPOSE,ANDNON-INFRINGEMENTOFANYTHIRDPARTYINTELLECTUAL PROPERTYRIGHTS.TISHALLNOTBELIABLEFORANDSHALLNOTDEFENDORINDEMNIFYDESIGNERAGAINSTANYCLAIM, INCLUDINGBUTNOTLIMITEDTOANYINFRINGEMENTCLAIMTHATRELATESTOORISBASEDONANYCOMBINATIONOF PRODUCTSEVENIFDESCRIBEDINTIRESOURCESOROTHERWISE.INNOEVENTSHALLTIBELIABLEFORANYACTUAL, DIRECT,SPECIAL,COLLATERAL,INDIRECT,PUNITIVE,INCIDENTAL,CONSEQUENTIALOREXEMPLARYDAMAGESIN CONNECTIONWITHORARISINGOUTOFTIRESOURCESORUSETHEREOF,ANDREGARDLESSOFWHETHERTIHASBEEN ADVISEDOFTHEPOSSIBILITYOFSUCHDAMAGES. UnlessTIhasexplicitlydesignatedanindividualproductasmeetingtherequirementsofaparticularindustrystandard(e.g.,ISO/TS16949 andISO26262),TIisnotresponsibleforanyfailuretomeetsuchindustrystandardrequirements. WhereTIspecificallypromotesproductsasfacilitatingfunctionalsafetyorascompliantwithindustryfunctionalsafetystandards,such productsareintendedtohelpenablecustomerstodesignandcreatetheirownapplicationsthatmeetapplicablefunctionalsafetystandards andrequirements.Usingproductsinanapplicationdoesnotbyitselfestablishanysafetyfeaturesintheapplication.Designersmust ensurecompliancewithsafety-relatedrequirementsandstandardsapplicabletotheirapplications.DesignermaynotuseanyTIproductsin life-criticalmedicalequipmentunlessauthorizedofficersofthepartieshaveexecutedaspecialcontractspecificallygoverningsuchuse. Life-criticalmedicalequipmentismedicalequipmentwherefailureofsuchequipmentwouldcauseseriousbodilyinjuryordeath(e.g.,life support,pacemakers,defibrillators,heartpumps,neurostimulators,andimplantables).Suchequipmentincludes,withoutlimitation,all medicaldevicesidentifiedbytheU.S.FoodandDrugAdministrationasClassIIIdevicesandequivalentclassificationsoutsidetheU.S. TImayexpresslydesignatecertainproductsascompletingaparticularqualification(e.g.,Q100,MilitaryGrade,orEnhancedProduct). Designersagreethatithasthenecessaryexpertisetoselecttheproductwiththeappropriatequalificationdesignationfortheirapplications andthatproperproductselectionisatDesigners’ownrisk.Designersaresolelyresponsibleforcompliancewithalllegalandregulatory requirementsinconnectionwithsuchselection. DesignerwillfullyindemnifyTIanditsrepresentativesagainstanydamages,costs,losses,and/orliabilitiesarisingoutofDesigner’snon- compliancewiththetermsandprovisionsofthisNotice. MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2018,TexasInstrumentsIncorporated