图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: ADR525ARTZ-R2
  • 制造商: Analog
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

ADR525ARTZ-R2产品简介:

ICGOO电子元器件商城为您提供ADR525ARTZ-R2由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 ADR525ARTZ-R2价格参考。AnalogADR525ARTZ-R2封装/规格:PMIC - 电压基准, 分流器 电压基准 IC ±0.4% 15mA SOT-23-3。您可以下载ADR525ARTZ-R2参考资料、Datasheet数据手册功能说明书,资料中有ADR525ARTZ-R2 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC VREF SHUNT PREC 2.5V SOT-23-3参考电压 Shunt Mode 2.5V High Prec

产品分类

PMIC - 电压基准

品牌

Analog Devices

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,参考电压,Analog Devices ADR525ARTZ-R2-

数据手册

点击此处下载产品Datasheet

产品型号

ADR525ARTZ-R2

产品种类

参考电压

供应商器件封装

SOT-23-3

其它名称

ADR525ARTZ-R2-ND
ADR525ARTZ-R2TR
ADR525ARTZR2

分流电流—最大值

10 mA

分流电流—最小值

60 uA

初始准确度

+/- 5 mV

包装

剪切带 (CT)

参考类型

Shunt Precision References

商标

Analog Devices

安装类型

表面贴装

安装风格

SMD/SMT

容差

±0.4%

封装

Reel

封装/外壳

TO-236-3,SC-59,SOT-23-3

封装/箱体

SOT-23-3

工作温度

-40°C ~ 85°C

工厂包装数量

250

平均温度系数—典型值

40 PPM / C

最大工作温度

+ 125 C

最小工作温度

- 40 C

标准包装

250

温度系数

70ppm/°C

电压-输入

-

电压-输出

2.5V

电流-输出

15mA

电流-阴极

50µA

电流-静态

-

电源电流

50 uA

系列

ADR525

输出电压

2.5 V

通道数

1

推荐商品

型号:MAX6041BEUR+T

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:ISL21007CFB830Z

品牌:Renesas Electronics America Inc.

产品名称:集成电路(IC)

获取报价

型号:NJM2373AU-TE1#

品牌:NJR Corporation/NJRC

产品名称:集成电路(IC)

获取报价

型号:REF3320AIDBZR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LM4128DMF-3.3/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT6656AIS6-5#TRMPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LM3411M5X-5.0/NOPB

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TL431IDG4

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
ADR525ARTZ-R2 相关产品

LM4041D12IDBZRG4

品牌:Texas Instruments

价格:

MAX6043CAUT33#TG16

品牌:Maxim Integrated

价格:

LM4040CIM3X-4.1

品牌:Texas Instruments

价格:

LM431SACM3X

品牌:ON Semiconductor

价格:

LM4132BMF-3.3/NOPB

品牌:Texas Instruments

价格:¥9.24-¥18.94

LT1460HCS3-2.5#TRMPBF

品牌:Linear Technology/Analog Devices

价格:

REF3330AIDCKR

品牌:Texas Instruments

价格:

LM4132EMFX-2.5

品牌:Texas Instruments

价格:

PDF Datasheet 数据手册内容提取

High Precision Shunt Mode Voltage References ADR520/ADR525/ADR530/ADR540/ADR550 FEATURES PIN CONFIGURATION Ultracompact SC70 and SOT-23-3 packages V+ 1 ADR520/ Temperature coefficient: 40 ppm/°C (maximum) ADR525/ ADR530/ 2× the temperature coefficient improvement over the 3 TRIM PinL Mco4m04p0a tible with the LM4040/LM4050 V– 2 AADDRR554500/ 04501-001 Initial accuracy: ±0.2% Figure 1. 3-Lead SC70 (KS) and 3-Lead SOT-23-3 (RT) Low output voltage noise: 14 μV p-p @ 2.5 V output GENERAL DESCRIPTION No external capacitor required Designed for space-critical applications, the ADR520/ADR525/ Operating current range: 50 μA to 15 mA Industrial temperature range: −40°C to +85°C ADR530/ADR540/ADR550 are high precision shunt voltage references, housed in ultrasmall SC70 and SOT-23-3 packages. APPLICATIONS These references feature low temperature drift of 40 ppm/°C, Portable, battery-powered equipment an initial accuracy of better than ±0.2%, and ultralow output Automotive noise of 14 μV p-p. Power supplies Available in output voltages of 2.048 V, 2.5 V, 3.0 V, 4.096 V, Data acquisition systems and 5.0 V, the advanced design of the ADR520/ADR525/ Instrumentation and process control ADR530/ADR540/ADR550 eliminates the need for compensa- Energy measurement tion by an external capacitor, yet the references are stable with any capacitive load. The minimum operating current increases Table 1. Selection Guide from a mere 50 μA to a maximum of 15 mA. This low operating Temperature current and ease of use make these references ideally suited for Initial Coefficient Part Voltage (V) Accuracy (%) (ppm/°C) handheld, battery-powered applications. ADR520A 2.048 ±0.4 70 A trim terminal is available on the ADR520/ADR525/ADR530/ ADR520B 2.048 ±0.2 40 ADR540/ADR550 to allow adjustment of the output voltage ADR525A 2.5 ±0.4 70 over a ±0.5% range, without affecting the temperature coefficient ADR525B 2.5 ±0.2 40 of the device. This feature provides users with the flexibility to ADR530A 3.0 ±0.4 70 trim out any system errors. ADR530B 3.0 ±0.2 40 ADR540A 4.096 ±0.4 70 ADR540B 4.096 ±0.2 40 ADR550A 5.0 ±0.4 70 ADR550B 5.0 ±0.2 40 Rev. E Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 www.analog.com Trademarks and registered trademarks are the property of their respective owners. Fax: 781.461.3113 ©2003–2008 Analog Devices, Inc. All rights reserved.

ADR520/ADR525/ADR530/ADR540/ADR550 TABLE OF CONTENTS Features .............................................................................................. 1 Absolute Maximum Ratings ............................................................6 Applications ....................................................................................... 1 Thermal Resistance .......................................................................6 Pin Configuration ............................................................................. 1 ESD Caution...................................................................................6 General Description ......................................................................... 1 Parameter Definitions .......................................................................7 Revision History ............................................................................... 2 Temperature Coefficient...............................................................7 Specifications ..................................................................................... 3 Thermal Hysteresis .......................................................................7 ADR520 Electrical Characteristics ............................................. 3 Typical Performance Characteristics ..............................................8 ADR525 Electrical Characteristics ............................................. 3 Theory of Operation ...................................................................... 11 ADR530 Electrical Characteristics ............................................. 4 Applications ................................................................................ 11 ADR540 Electrical Characteristics ............................................. 4 Outline Dimensions ....................................................................... 13 ADR550 Electrical Characteristics ............................................. 5 Ordering Guide .......................................................................... 14 REVISION HISTORY 6/08—Rev. D to Rev. E 1/06—Rev. A to Rev. B Changes to Table 3 ............................................................................ 3 Updated Formatting ........................................................... Universal Changes to Table 4 and Table 5 ....................................................... 4 Changes to Features Section ............................................................ 1 Changes to Table 6 ............................................................................ 5 Changes to General Description Section ....................................... 1 Changes to Figure 4 .......................................................................... 8 Updated Outline Dimensions ....................................................... 13 Changes to Applications Section .................................................. 11 Changes to Ordering Guide .......................................................... 14 12/07—Rev. C to Rev. D 12/03—Data Sheet Changed from Rev. 0 to Rev. A Changes to Figure 3 and Figure 5 ................................................... 8 Updated Outline Dimensions ....................................................... 13 Changes to Figure 15, Figure 16, and Figure 17 Captions ........ 10 Change to Ordering Guide ............................................................ 14 Changes to Figure 23 ...................................................................... 12 11/03—Revision 0: Initial Version Updated Outline Dimensions ....................................................... 13 8/07—Rev. B to Rev. C Changes to Figure 21 ...................................................................... 11 Updated Outline Dimensions ....................................................... 13 Changes to Ordering Guide .......................................................... 14 Rev. E | Page 2 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 SPECIFICATIONS ADR520 ELECTRICAL CHARACTERISTICS I = 50 μA to 15 mA, T = 25°C, unless otherwise noted. IN A Table 2. Parameter Symbol Conditions Min Typ Max Unit Output Voltage V OUT Grade A 2.040 2.048 2.056 V Grade B 2.044 2.048 2.052 V Initial Accuracy V OERR Grade A ±0.4% −8 +8 mV Grade B ±0.2% −4 +4 mV Temperature Coefficient1 TCV −40°C < T < +85°C O A Grade A 25 70 ppm/°C Grade B 15 40 ppm/°C Output Voltage Change vs. I ∆V I = 0.1 mA to 15 mA 1 mV IN R IN −40°C < T < +85°C 4 mV A I = 1 mA to 15 mA IN −40°C < T < +85°C 2 mV A Dynamic Output Impedance (∆V/∆I) I = 0.1 mA to 15 mA 0.27 Ω R R IN Minimum Operating Current I −40°C < T < +85°C 50 μA IN A Voltage Noise e 0.1 Hz to 10 Hz 14 μV p-p N p-p Turn-On Settling Time t 2 μs R Output Voltage Hysteresis ∆V I = 1 mA 40 ppm OUT_HYS IN 1 Guaranteed by design; not production tested. ADR525 ELECTRICAL CHARACTERISTICS I = 50 μA to 15 mA, T = 25°C, unless otherwise noted. IN A Table 3. Parameter Symbol Conditions Min Typ Max Unit Output Voltage V OUT Grade A 2.490 2.500 2.510 V Grade B 2.495 2.500 2.505 V Initial Accuracy V OERR Grade A ±0.4% −10 +10 mV Grade B ±0.2% −5 +5 mV Temperature Coefficient1 TCV −40°C < T < +85°C O A Grade A 25 70 ppm/°C Grade B 15 40 ppm/°C Output Voltage Change vs. I ∆V I = 0.1 mA to 15 mA 1 mV IN R IN −40°C < T < +85°C 4 mV A I = 1 mA to 15 mA IN −40°C < T < +85°C 2 mV A Dynamic Output Impedance (∆V/∆I) I = 0.1 mA to 15 mA 0.2 Ω R R IN Minimum Operating Current I −40°C < T < +85°C 50 μA IN A Voltage Noise e 0.1 Hz to 10 Hz 18 μV p-p N p-p Turn-On Settling Time t 2 μs R Output Voltage Hysteresis ∆V I = 1 mA 40 ppm OUT_HYS IN 1 Guaranteed by design; not production tested. Rev. E | Page 3 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 ADR530 ELECTRICAL CHARACTERISTICS I = 50 μA to 15 mA, T = 25°C, unless otherwise noted. IN A Table 4. Parameter Symbol Conditions Min Typ Max Unit Output Voltage V OUT Grade A 2.988 3.000 3.012 V Grade B 2.994 3.000 3.006 V Initial Accuracy V OERR Grade A ±0.4% −12 +12 mV Grade B ±0.2% −6 +6 mV Temperature Coefficient1 TCV −40°C < T < +85°C O A Grade A 25 70 ppm/°C Grade B 15 40 ppm/°C Output Voltage Change vs. I ∆V I = 0.1 mA to 15 mA 1 mV IN R IN −40°C < T < +85°C 4 mV A I = 1 mA to 15 mA IN −40°C < T < +85°C 2 mV A Dynamic Output Impedance (∆V/∆I) I = 0.1 mA to 15 mA 0.2 Ω R R IN Minimum Operating Current I −40°C < T < +85°C 50 μA IN A Voltage Noise e 0.1 Hz to 10 Hz 22 μV p-p N p-p Turn-On Settling Time t 2 μs R Output Voltage Hysteresis ∆V I = 1 mA 40 ppm OUT_HYS IN 1 Guaranteed by design; not production tested. ADR540 ELECTRICAL CHARACTERISTICS I = 50 μA to 15 mA, T = 25°C, unless otherwise noted. IN A Table 5. Parameter Symbol Conditions Min Typ Max Unit Output Voltage V OUT Grade A 4.080 4.096 4.112 V Grade B 4.088 4.096 4.104 V Initial Accuracy V OERR Grade A ±0.4% −16 +16 mV Grade B ±0.2% −8 +8 mV Temperature Coefficient1 TCV −40°C < T < +85°C O A Grade A 25 70 ppm/°C Grade B 15 40 ppm/°C Output Voltage Change vs. I ∆V I = 0.1 mA to 15 mA 1 mV IN R IN −40°C < T < +85°C 5 mV A I = 1 mA to 15 mA IN −40°C < T < +85°C 2 mV A Dynamic Output Impedance (∆V/∆I) I = 0.1 mA to 15 mA 0.2 Ω R R IN Minimum Operating Current I −40°C < T < +85°C 50 μA IN A Voltage Noise e 0.1 Hz to 10 Hz 30 μV p-p N p-p Turn-On Settling Time t 2 μs R Output Voltage Hysteresis ∆V I = 1 mA 40 ppm OUT_HYS IN 1 Guaranteed by design; not production tested. Rev. E | Page 4 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 ADR550 ELECTRICAL CHARACTERISTICS I = 50 μA to 15 mA, T = 25°C, unless otherwise noted. IN A Table 6. Parameter Symbol Conditions Min Typ Max Unit Output Voltage V OUT Grade A 4.980 5.000 5.020 V Grade B 4.990 5.000 5.010 V Initial Accuracy V OERR Grade A ±0.4% −20 +20 mV Grade B ±0.2% −10 +10 mV Temperature Coefficient1 TCV −40°C < T < +85°C O A Grade A 25 70 ppm/°C Grade B 15 40 ppm/°C Output Voltage Change vs. I ∆V I = 0.1 mA to 15 mA 1 mV IN R IN −40°C < T < +85°C 5 mV A I = 1 mA to 15 mA IN −40°C < T < +85°C 2 mV A Dynamic Output Impedance (∆V/∆I) I = 0.1 mA to 15 mA 0.2 Ω R R IN Minimum Operating Current I −40°C < T < +85°C 50 μA IN A Voltage Noise e 0.1 Hz to 10 Hz 38 μV p-p N p-p Turn-On Settling Time t 2 μs R Output Voltage Hysteresis ∆V I = 1 mA 40 ppm OUT_HYS IN 1 Guaranteed by design; not production tested. Rev. E | Page 5 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 ABSOLUTE MAXIMUM RATINGS Ratings apply at 25°C, unless otherwise noted. THERMAL RESISTANCE Table 7. Table 8. Parameter Rating Package Type θ 1 θ Unit JA JC Reverse Current 25 mA 3-Lead SC70 (KS) 580.5 177.4 °C/W Forward Current 20 mA 3-Lead SOT-23-3 (RT) 270 102 °C/W Storage Temperature Range −65°C to +150°C 1 θJA is specified for worst-case conditions, such as for devices soldered on Industrial Temperature Range −40°C to +85°C circuit boards for surface-mount packages. Junction Temperature Range −65°C to +150°C Lead Temperature (Soldering, 60 sec) 300°C ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. E | Page 6 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 PARAMETER DEFINITIONS TEMPERATURE COEFFICIENT THERMAL HYSTERESIS Temperature coefficient is defined as the change in output Thermal hysteresis is defined as the change in output voltage voltage with respect to operating temperature changes and is after the device is cycled through temperatures ranging from normalized by the output voltage at 25°C. This parameter is +25°C to −40°C, then to +85°C, and back to +25°C. The expressed in ppm/°C and is determined by the following following equation expresses a typical value from a sample of equation: parts put through such a cycle: TCV ⎡ppm⎤= VOUT(T2)−VOUT(T1) ×106 (1) VOUT_HYS =VOUT(25°C)−VOUT_END O⎢⎣ °C ⎥⎦ V (25°C)×(T −T ) V (25°C)−V (2) OUT 2 1 V [ppm]= OUT OUT_END ×106 OUT_HYS V (25°C) where: OUT VOUT(T2) = VOUT at Temperature 2. V (T) = V at Temperature 1. OUT 1 OUT where: V (25°C) = V at 25°C. OUT OUT V (25°C) = V at 25°C. OUT OUT V = V at 25°C after a temperature cycle from +25°C to OUT_END OUT −40°C, then to +85°C, and back to +25°C. Rev. E | Page 7 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 TYPICAL PERFORMANCE CHARACTERISTICS 5.5 8 ADR550 5.0 7 4.5 V) V)4.0 ADR540 GE (m 6 LTAGE (33..50 ADR530 E CHAN 5 VO ADR525 AG 4 REVERSE 221...505 ADR520 RSE VOLT 3 TA = +25°C TA = +85°C E 2 1.0 TA = 25°C REV TA = –40°C 1 0.5 0 0 0 MI2N5IMUM OPERAT5I0NG CURRENT 7(µ5A) 100 04501-006 0 3 6 IIN (mA) 9 12 15 04501-009 Figure 2. Reverse Characteristics and Minimum Operating Current Figure 5. ADR550 Reverse Voltage vs. Operating Current 8 7 mV) TA = +25°C VIN = 2V/DIV E ( 6 G N HA 5 E C TA = +85°C G 4 A OLT TA = –40°C VOUT = 1V/DIV V 3 E S R E 2 V E R 1 IIN = 10mA 4µs/DIV 00 3 6 IIN (mA) 9 12 15 04501-007 TIME (µs) 04501-010 Figure 3. ADR520 Reverse Voltage vs. Operating Current Figure 6. ADR525 Turn-On Response 8 mV) 6 VIN = 2V/DIV E ( G N A CH 4 E G LTA TA = –40°C VOUT = 1V/DIV O 2 V E S ER TA = +25°C EV 0 R IIN = 100µA 4µs/DIV TA = +85°C –20 3 6 IIN (mA) 9 12 15 04501-008 TIME (µs) 04501-011 Figure 4. ADR525 Reverse Voltage vs. Operating Current Figure 7. ADR525 Turn-On Response Rev. E | Page 8 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 VIN = 2V/DIV VIN = 2V/DIV VOUT = 1V/DIV VOUT = 2V/DIV IIN = 10mA 4µs/DIV 20µs/DIV TIME (µs) 04501-012 IIN = 100µA TIME (µs) 04501-015 Figure 8. ADR520 Turn-On Response Figure 11. ADR550 Turn-On Response PEAK-TO-PEAK 13.5µV VIN = 2V/DIV RMS 2.14µV VOUT = 1V/DIV 10µs/DIV IIN = 100µA TIME (µs) 04501-013 5µs/DIV TIME (µs) 04501-021 Figure 9. ADR520 Turn-On Response Figure 12. ADR520 Voltage Noise 0.1 Hz to 10 Hz VIN = 2V/DIV VIIN G =E 1Nm =A 2V/DIV VOUT = 2V/DIV VOUT = 50mV/DIV 4µs/DIV 10µs/DIV IIN = 10mA TIME (µs) 04501-014 TIME (µs) 04501-016 Figure 10. ADR550 Turn-On Response Figure 13. ADR525 Load Transient Response Rev. E | Page 9 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 3.0055 3.0050 V GEN = 2V/DIV 3.0045 IIN = 10mA 3.0040 3.0035 (V)UT3.0030 VOUT = 50mV/DIV VO3.0025 3.0020 3.0015 3.0010 10µs/DIV 3.0005 TIME (µs) 04501-017 3.0000–40 –15 TEM10PERATURE3 (5°C) 60 85 04501-019 Figure 14. ADR550 Load Transient Response Figure 16. Data for Five Parts of ADR530 VOUT over Temperature 2.5030 5.008 2.5025 5.006 2.5020 5.004 2.5015 5.002 2.5010 5.000 V) V) (UT2.5005 (UT4.998 O O V V 2.5000 4.996 2.4995 4.994 2.4990 4.992 2.4985 4.990 2.4980 4.988 –40 –15 TEM10PERATURE3 (5°C) 60 85 04501-018 –40 –15 TEM10PERATURE3 (5°C) 60 85 04501-020 Figure 15. Data for Five Parts of ADR525 VOUT over Temperature Figure 17. Data for Five Parts of ADR550 VOUT over Temperature Rev. E | Page 10 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 THEORY OF OPERATION The ADR520/ADR525/ADR530/ADR540/ADR550 use the VS band gap concept to produce a stable, low temperature coefficient voltage reference suitable for high accuracy data acquisition R IIN + IL components and systems. The devices use the physical nature of a VOUT o−sip2lie cmroanVt it/nr°gaCn r tseeigsmtiooprne b.r aAatsulelr- seeum ccohitet tfefrria cvnioesnlitstat go(Ter sC( Vh),aB Emv)e ai nakp itnphgreo tfxhoiremwmaa turednl-ysb uaiia tsaebdle IIN ADILR550 04501-003 Figure 19. Shunt Reference for direct use as low temperature coefficient references. Extra- Given these conditions, R is determined by the supply polation of the temperature characteristics of any one of these BIAS voltage (V), the load and operating currents (I and I ) of devices to absolute zero (with the collector current proportional S L IN the ADR520/ADR525/ADR530/ADR540/ADR550, and the to the absolute temperature), however, reveals that its V BE output voltage (V ) of the ADR520/ADR525/ADR530/ approaches approximately the silicon band gap voltage. Thus, OUT ADR540/ADR550. if a voltage develops with an opposing temperature coefficient to sum the V , a zero temperature coefficient reference results. V −V BE R = S OUT (3) The ADR520/ADR525/ADR530/ADR540/ADR550 circuit BIAS I +I L IN shown in Figure 18 provides such a compensating voltage (V1) Precision Negative Voltage Reference by driving two transistors at different current densities and amplifying the resultant V difference (ΔV , which has a The ADR520/ADR525/ADR530/ADR540/ADR550 are suit- BE BE positive temperature coefficient). The sum of V and V1 able for applications where a precise negative voltage is desired. BE provides a stable voltage reference over temperature. Figure 20 shows the ADR525 configured to provide a negative output. + V+ V1 ADR525 –2.5V R ΔVB–E+ VS 04501-004 – Figure 20. Negative Precision Reference Configuration + VBE– V– 04501-002 OThuet ptruimt V toerlmtaigneal T orfi mthe ADR520/ADR525/ADR530/ADR540/ Figure 18. Circuit Schematic ADR550 can be used to adjust the output voltage over a range APPLICATIONS of ±0.5%. This allows systems designers to trim system errors The ADR520/ADR525/ADR530/ADR540/ADR550 are a by setting the reference to a voltage other than the preset output series of precision shunt voltage references. They are designed voltage. An external mechanical or electrical potentiometer can to operate without an external capacitor between the positive be used for this adjustment. Figure 21 illustrates how the output and negative terminals. If a bypass capacitor is used to filter the voltage can be trimmed using the AD5273, an Analog Devices, supply, the references remain stable. Inc., 10 kΩ potentiometer. All shunt voltage references require an external bias resistor (R ) VS BIAS between the supply voltage and the reference (see Figure 19). R R sets the current that flows through the load (I) and the BIAS L reference (I ). Because the load and the supply voltage can vary, VOUT IN RBIAS needs to be chosen based on the following considerations: 47R01kΩ AD5273 ADR530 POTENTIOMETER • RBIAS must be small enough to supply the minimum IIN 10kΩ cAuDrrRe5n5t 0t,o e tvheen A wDhRen5 2t0h/eA sDupRp5l2y5 v/oAltDagRe5 i3s0 a/tA iDtsR m5i4n0i/m um 04501-005 Figure 21. Output Voltage Trim value and the load current is at its maximum value. • R must be large enough so that I does not exceed BIAS IN 15 mA when the supply voltage is at its maximum value and the load current is at its minimum value. Rev. E | Page 11 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 Stacking the ADR520/ADR525/ADR530/ADR540/ADR550 Adjustable Precision Voltage Source for User-Definable Outputs The ADR520/ADR525/ADR530/ADR540/ADR550, combined Multiple ADR520/ADR525/ADR530/ADR540/ADR550 parts with a precision low input bias op amp, such as the AD8610, can be stacked to allow the user to obtain a desired higher voltage. can be used to output a precise adjustable voltage. Figure 24 Figure 22 shows three ADR550s configured to give 15 V. The bias illustrates the implementation of this application using the resistor, RBIAS, is chosen using Equation 3; note that the same ADR520/ADR525/ADR530/ADR540/ADR550. The output bias current flows through all the shunt references in series. of the op amp, V , is determined by the gain of the circuit, OUT Figure 23 shows three ADR550s stacked to give −15 V. RBIAS which is completely dependent on the resistors, R1 and R2. is calculated in the same manner as before. Parts of different V = V (1 + R2/R1) OUT REF voltages can also be added together. For example, an ADR525 An additional capacitor, C1, in parallel with R2, can be added to and an ADR550 can be added together to give an output of filter out high frequency noise. The value of C1 is dependent on +7.5 V or −7.5 V, as desired. Note, however, that the initial the value of R2. accuracy error is now the sum of the errors of all the stacked parts, as are the temperature coefficients and output voltage VS change vs. input current. R +VDD VREF R +15V AD8610 VOUT = VREF (1+R2/R1) ADR550 ADR5xx R2 ADR550 ADR550 R1 Figure 22. +15 VG ONuDtput with S04501-022t acked ADR550s GND (OPTCIO1NAL) 04501-023 Figure 24. Adjustable Voltage Source ADR550 GND ADR550 ADR550 –15V R –VDD 04501-024 Figure 23. −15 V Output with Stacked ADR550s Rev. E | Page 12 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 OUTLINE DIMENSIONS 2.20 2.00 1.80 1.35 1.25 1.15 3 2.40 2.10 1 2 1.80 PIN 1 0.65 BSC 0.40 1.00 1.10 0.10 0.80 0.80 0.30 0.10 MAX 0.40 0.26 0.20 0.25 SEATING 0.10 0.10 PLANE 0.10 COPLANARITY ALL DIMENSIONS COMPLIANT WITH EIAJ SC70 111505-0 Figure 25. 3-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-3) Dimensions shown in millimeters 3.04 2.80 1.40 1.20 3 2.64 2.10 1 2 0.60 1.03 0.45 0.89 2.05 1.78 1.12 0.89 0.100 0.180 0.013 0.085 0.51 SEATING 0.55 PLANE 0.37 REF COMPLIANTTO JEDEC STANDARDSTO-236-AB 092707-A Figure 26. 3-Lead Small Outline Transistor Package [SOT-23-3] (RT-3) Dimensions shown in millimeters Rev. E | Page 13 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 ORDERING GUIDE Initial Tempco Number Output Accuracy Industrial Package Package of Parts Temperature Model Voltage (V) (mV) (ppm/°C) Description Option Branding per Reel Range ADR520ART-R2 2.048 8 70 3-Lead SOT-23-3 RT-3 RQA 250 −40°C to +85°C ADR520ART-REEL7 2.048 8 70 3-Lead SOT-23-3 RT-3 RQA 3,000 −40°C to +85°C ADR520ARTZ-REEL71 2.048 8 70 3-Lead SOT-23-3 RT-3 R1S 3,000 −40°C to +85°C ADR520BKS-R2 2.048 4 40 3-Lead SC70 KS-3 RQB 250 −40°C to +85°C ADR520BKS-REEL7 2.048 4 40 3-Lead SC70 KS-3 RQB 3,000 −40°C to +85°C ADR520BKSZ-REEL71 2.048 4 40 3-Lead SC70 KS-3 R1T 3,000 −40°C to +85°C ADR520BRT-R2 2.048 4 40 3-Lead SOT-23-3 RT-3 RQB 250 −40°C to +85°C ADR520BRT-REEL7 2.048 4 40 3-Lead SOT-23-3 RT-3 RQB 3,000 −40°C to +85°C ADR520BRTZ-REEL71 2.048 4 40 3-Lead SOT-23-3 RT-3 R1T 3,000 −40°C to +85°C ADR525ART-R2 2.5 10 70 3-Lead SOT-23-3 RT-3 RRA 250 −40°C to +85°C ADR525ART-REEL7 2.5 10 70 3-Lead SOT-23-3 RT-3 RRA 3,000 −40°C to +85°C ADR525ARTZ-R21 2.5 10 70 3-Lead SOT-23-3 RT-3 R1W 250 −40°C to +85°C ADR525ARTZ-REEL71 2.5 10 70 3-Lead SOT-23-3 RT-3 R1W 3,000 −40°C to +85°C ADR525BKS-R2 2.5 5 40 3-Lead SC70 KS-3 RRB 250 −40°C to +85°C ADR525BKS-REEL7 2.5 5 40 3-Lead SC70 KS-3 RRB 3,000 −40°C to +85°C ADR525BKSZ-REEL71 2.5 5 40 3-Lead SC70 KS-3 R1N 3,000 −40°C to +85°C ADR525BRT-R2 2.5 5 40 3-Lead SOT-23-3 RT-3 RRB 250 −40°C to +85°C ADR525BRT-REEL7 2.5 5 40 3-Lead SOT-23-3 RT-3 RRB 3,000 −40°C to +85°C ADR525BRTZ-REEL71 2.5 5 40 3-Lead SOT-23-3 RT-3 R1N 3,000 −40°C to +85°C ADR530ART-R2 3.0 12 70 3-Lead SOT-23-3 RT-3 RSA 250 −40°C to +85°C ADR530ART-REEL7 3.0 12 70 3-Lead SOT-23-3 RT-3 RSA 3,000 −40°C to +85°C ADR530ARTZ-REEL71 3.0 12 70 3-Lead SOT-23-3 RT-3 R1X 3,000 −40°C to +85°C ADR530BKS-R2 3.0 6 40 3-Lead SC70 KS-3 RSB 250 −40°C to +85°C ADR530BKS-REEL7 3.0 6 40 3-Lead SC70 KS-3 RSB 3,000 −40°C to +85°C ADR530BKSZ-REEL71 3.0 6 40 3-Lead SC70 KS-3 R1Y 3,000 −40°C to +85°C ADR530BRT-R2 3.0 6 40 3-Lead SOT-23-3 RT-3 RSB 250 −40°C to +85°C ADR530BRT-REEL7 3.0 6 40 3-Lead SOT-23-3 RT-3 RSB 3,000 −40°C to +85°C ADR530BRTZ-REEL71 3.0 6 40 3-Lead SOT-23-3 RT-3 R1Y 3,000 −40°C to +85°C ADR540ART-R2 4.096 16 70 3-Lead SOT-23-3 RT-3 RTA 250 −40°C to +85°C ADR540ART-REEL7 4.096 16 70 3-Lead SOT-23-3 RT-3 RTA 3,000 −40°C to +85°C ADR540ARTZ-REEL71 4.096 16 70 3-Lead SOT-23-3 RT-3 R1U 3,000 −40°C to +85°C ADR540BKS-R2 4.096 8 40 3-Lead SC70 KS-3 RTB 250 −40°C to +85°C ADR540BKS-REEL7 4.096 8 40 3-Lead SC70 KS-3 RTB 3,000 −40°C to +85°C ADR540BKSZ-REEL71 4.096 8 40 3-Lead SC70 KS-3 R1V 3,000 −40°C to +85°C ADR540BRT-R2 4.096 8 40 3-Lead SOT-23-3 RT-3 RTB 250 −40°C to +85°C ADR540BRT-REEL7 4.096 8 40 3-Lead SOT-23-3 RT-3 RTB 3,000 −40°C to +85°C ADR540BRTZ-REEL71 4.096 8 40 3 Lead SOT-23-3 RT-3 R1V 3,000 −40°C to +85°C ADR550ART-R2 5.0 20 70 3-Lead SOT-23-3 RT-3 RVA 250 −40°C to +85°C ADR550ART-REEL7 5.0 20 70 3-Lead SOT-23-3 RT-3 RVA 3,000 −40°C to +85°C ADR550ARTZ-REEL71 5.0 20 70 3-Lead SOT-23-3 RT-3 R1Q 3,000 −40°C to +85°C ADR550BKS-R2 5.0 10 40 3-Lead SC70 KS-3 RVB 250 −40°C to +85°C ADR550BKS-REEL7 5.0 10 40 3-Lead SC70 KS-3 RVB 3,000 −40°C to +85°C ADR550BKSZ-REEL71 5.0 10 40 3-Lead SC70 KS-3 R1P 3,000 −40°C to +85°C ADR550BRT-R2 5.0 10 40 3-Lead SOT-23-3 RT-3 RVB 250 −40°C to +85°C ADR550BRT-REEL7 5.0 10 40 3-Lead SOT-23-3 RT-3 RVB 3,000 −40°C to +85°C ADR550BRTZ-REEL71 5.0 10 40 3-Lead SOT-23-3 RT-3 R1P 3,000 −40°C to +85°C 1 Z = RoHS Compliant Part. Rev. E | Page 14 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 NOTES Rev. E | Page 15 of 16

ADR520/ADR525/ADR530/ADR540/ADR550 NOTES ©2003–2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04501-0-6/08(E) Rev. E | Page 16 of 16