图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: ADIS16480AMLZ
  • 制造商: Analog
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

ADIS16480AMLZ产品简介:

ICGOO电子元器件商城为您提供ADIS16480AMLZ由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 ADIS16480AMLZ价格参考。AnalogADIS16480AMLZ封装/规格:运动传感器 - IMU(惯性测量装置), Accelerometer, Gyroscope, Magnetometer, 3 Axis Sensor SPI Output。您可以下载ADIS16480AMLZ参考资料、Datasheet数据手册功能说明书,资料中有ADIS16480AMLZ 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

传感器,变送器

描述

MODULE GYRO/ACCELEROMETER 24LEADIMU-惯性测量单元 10 Deg of Freedom MEMS Inertial Sensor

产品分类

多功能

品牌

Analog Devices Inc

产品手册

点击此处下载产品Datasheet

产品图片

rohs

RoHS 合规性豁免无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

IMU-惯性测量单元,Analog Devices ADIS16480AMLZ-

数据手册

点击此处下载产品Datasheet

产品型号

ADIS16480AMLZ

产品种类

IMU-惯性测量单元

传感器类型

加速计, 陀螺仪, 磁力计

商标

Analog Devices

封装

Bulk

工厂包装数量

1

带宽

330 Hz

数字输出-总线接口

SPI

最大工作温度

+ 85 C

最小工作温度

- 40 C

标准包装

1

电源电压-最大

3.6 V

电源电压-最小

3 V

电源电流

254 mA

系列

ADIS16480

输出类型

数字 - SPI

推荐商品

型号:BMI055

品牌:Bosch Sensortec

产品名称:传感器,变送器

获取报价

型号:LSM330DLTR

品牌:STMicroelectronics

产品名称:传感器,变送器

获取报价

型号:LSM9DS0TR

品牌:STMicroelectronics

产品名称:传感器,变送器

获取报价

型号:ADIS16407BMLZ

品牌:Analog Devices Inc.

产品名称:传感器,变送器

获取报价

型号:BMC050

品牌:Bosch Sensortec

产品名称:传感器,变送器

获取报价

型号:ADIS16488BMLZ

品牌:Analog Devices Inc.

产品名称:传感器,变送器

获取报价

型号:ADIS16362BMLZ

品牌:Analog Devices Inc.

产品名称:传感器,变送器

获取报价

型号:BMX055

品牌:Bosch Sensortec

产品名称:传感器,变送器

获取报价

样品试用

万种样品免费试用

去申请
ADIS16480AMLZ 相关产品

MPU-6050

品牌:TDK InvenSense

价格:

LSM9DS1TR

品牌:STMicroelectronics

价格:

BMX055

品牌:Bosch Sensortec

价格:

LSM303DLMTR

品牌:STMicroelectronics

价格:

MPU-9250

品牌:TDK InvenSense

价格:¥询价-¥询价

LSM330DLTR

品牌:STMicroelectronics

价格:

MAX21100+

品牌:Maxim Integrated

价格:

BMI055

品牌:Bosch Sensortec

价格:

PDF Datasheet 数据手册内容提取

Ten Degrees of Freedom Inertial Sensor with Dynamic Orientation Outputs Data Sheet ADIS16480 FEATURES GENERAL DESCRIPTION Dynamic angle outputs The ADIS16480 iSensor® device is a complete inertial system Quaternion, Euler, rotation matrix that includes a triaxial gyroscope, a triaxial accelerometer, triaxial 0.1° (pitch, roll) and 0.3° (yaw) static accuracy magnetometer, pressure sensor, and an extended Kalman filter Triaxial, digital gyroscope, ±450°/sec dynamic range (EKF) for dynamic orientation sensing. Each inertial sensor in ±0.05° orthogonal alignment error the ADIS16480 combines industry-leading iMEMS® technology 6°/hr in-run bias stability with signal conditioning that optimizes dynamic performance. 0.3°/√hr angular random walk The factory calibration characterizes each sensor for sensitivity, 0.01% nonlinearity bias, alignment, and linear acceleration (gyroscope bias). As a Triaxial, digital accelerometer, ±10 g result, each sensor has its own dynamic compensation formulas Triaxial, delta angle and delta velocity outputs that provide accurate sensor measurements. The sensors are Triaxial, digital magnetometer, ±2.5 gauss further correlated and processed in the extended Kalman filter, Digital pressure sensor, 300 mbar to 1100 mbar which provides both automatic adaptive filtering, as well as Adaptive extended Kalman filter user-programmable tuning. Thus, in addition to the IMU Automatic covariance computation outputs, the device provides stable quaternion, Euler, and Programmable reference reorientation rotation matrix outputs in the local navigation frame. Programmable sensor disturbance levels Configurable event-driven controls The ADIS16480 provides a simple, cost-effective method for Factory-calibrated sensitivity, bias, and axial alignment integrating accurate, multiaxis inertial sensing into industrial Calibration temperature range: −40°C to +85°C systems, especially when compared with the complexity and SPI-compatible serial interface investment associated with discrete designs. All necessary motion Programmable operation and control testing and calibration are part of the production process at 4 FIR filter banks, 120 configurable taps the factory, greatly reducing system integration time. Tight Digital I/O: data-ready alarm indicator, external clock orthogonal alignment simplifies inertial frame alignment in naviga- Optional external sample clock input: up to 2.4 kHz tion systems. The SPI and register structure provide a simple Single-command self-test interface for data collection and configuration control. Single-supply operation: 3.0 V to 3.6 V The ADIS16480 uses the same footprint and connector system 2000 g shock survivability as the ADIS16488A, which greatly simplifies the upgrade process. APPLICATIONS It comes in a module that is approximately 47 mm × 44 mm × 14 mm and has a standard connector interface. The ADIS16480 Platform stabilization, control, and pointing Navigation provides an operating temperature range of −40°C to +105°C. Instrumentation Robotics FUNCTIONAL BLOCK DIAGRAM DIO1DIO2DIO3DIO4 RST VDD SELF-TEST I/O ALARMS MANPAOGWEEMRENT GND TRIAXIAL GYRO OUTPUT CS TRIAXIAL DATA ACCEL REGISTERS TRMIAAGXINAL CONTROLLER CALIBRATION EKXFATILELTMNEDAREND FIDLITGEITRAINLG SPI SDCINLK USER PRESSURE CONTROL REGISTERS DOUT TEMP CLOCK VDD VDDRTC ADIS16480 10278-001 Figure 1. Rev. H Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 ©2012–2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. Technical Support www.analog.com

ADIS16480 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Averaging/Decimation Filter .................................................... 26 Applications ....................................................................................... 1 Magnetometer/Barometer ......................................................... 26 General Description ......................................................................... 1 FIR Filter Banks .......................................................................... 27 Functional Block Diagram .............................................................. 1 Extended Kalman Filter ................................................................. 29 Revision History ............................................................................... 3 Algorithm .................................................................................... 29 Specifications ..................................................................................... 4 Covariance Terms ....................................................................... 29 Timing Specifications .................................................................. 7 Reference Frame ......................................................................... 30 Absolute Maximum Ratings ............................................................ 9 Reference Transformation Matrix ............................................ 30 ESD Caution .................................................................................. 9 Declination .................................................................................. 31 Pin Configuration and Function Descriptions ........................... 10 Adaptive Operation .................................................................... 31 Typical Performance Characteristics ........................................... 11 Calibration ....................................................................................... 33 Basic Operation ............................................................................... 12 Gyroscopes .................................................................................. 33 Register Structure ....................................................................... 12 Accelerometers ........................................................................... 34 SPI Communication ................................................................... 13 Magnetometers ........................................................................... 34 Device Configuration ................................................................ 13 Barometers .................................................................................. 36 Reading Sensor Data .................................................................. 13 Restoring Factory Calibration .................................................. 36 User Registers .................................................................................. 14 Point of Percussion Alignment ................................................. 36 Output Data Registers .................................................................... 18 Alarms .............................................................................................. 37 Inertial Sensor Data Format ...................................................... 18 Static Alarm Use ......................................................................... 37 Rotation Rate (Gyroscope) ........................................................ 18 Dynamic Alarm Use .................................................................. 37 Acceleration ................................................................................. 19 System Controls .............................................................................. 39 Delta Angles ................................................................................ 19 Global Commands ..................................................................... 39 Delta Velocity .............................................................................. 20 Memory Management ............................................................... 39 Magnetometers ........................................................................... 21 General-Purpose I/O ................................................................. 40 Roll, Pitch, Yaw Angles .............................................................. 21 Power Management ................................................................... 40 Initial Conditions ....................................................................... 21 Applications Information .............................................................. 42 Rotation Matrix Data ................................................................. 22 Mounting Tips ............................................................................ 42 Barometer .................................................................................... 23 Evaluation Tools ......................................................................... 43 Internal Temperature ................................................................. 23 Power Supply Considerations ................................................... 43 Status/Alarm Indicators ............................................................. 24 X-Ray Sensitivity ........................................................................ 43 Firmware Revision ..................................................................... 25 Outline Dimensions ....................................................................... 44 Product Identification ................................................................ 25 Ordering Guide .......................................................................... 44 Digital Signal Processing ............................................................... 26 Gyroscopes/Accelerometers ...................................................... 26 Rev. H | Page 2 of 44

Data Sheet ADIS16480 REVISION HISTORY 1/2019—Rev. G to Rev. H 1/2014—Rev. A to Rev. B Added Endnote 4, Table 1; Renumbered Sequentially ................. 6 Moved Revision History ................................................................... 3 Added X-Ray Sensitivity Section .................................................. 43 Change to t Parameter, Table 2....................................................... 7 2 Changes to Figure 6 .......................................................................... 9 10/2017—Rev. F to Rev. G Changes to Delta Angles Section .................................................. 18 Changes to General Description Section ....................................... 1 Changes to Delta Velocity Section and Table 34 ......................... 19 Changes to Logic 0 Input Current, I Parameter, Table 1 ........... 5 Changes to Initial Conditions Section ......................................... 20 IL Added Note 7, Table 1; Renumbered Sequentially ....................... 6 Changes to Table 42 ........................................................................ 21 Changed PC-Based Evaluation, EVAL-ADIS Section to PC-Based Changes to Status/Alarm Indicators Section ............................... 23 Evaluation, EVAL-ADIS2 Section ................................................. 43 Changes to Table 94, Automatic EKF Divergence Reset Control Changes to PC-Based Evaluation, EVAL-ADIS2 Section .......... 43 Bit Section, and Body Frame/Local Navigation Frame Bit Section .............................................................................................. 30 10/2016—Rev. E to Rev. F Change to Magnetometers Section ............................................... 33 Changes to Figure 19 ...................................................................... 18 Changes to Table 146 ...................................................................... 38 Changes to Figure 30 and Figure 31 ............................................. 43 Deleted Prototype Interface Board Section and Mechanical Design Tips Section ........................................................................ 39 6/2015—Rev. D to Rev. E Added Mounting Tips Section ...................................................... 41 Changes to Figure 28 ...................................................................... 42 Added Evaluation Tools Section and Power Supply Changes to Ordering Guide ........................................................... 44 Considerations Section ................................................................... 42 Updated Outline Dimensions ........................................................ 43 2/2015—Rev. C to Rev. D Changes to Ordering Guide ........................................................... 43 Changes to Features Section and General Description Section ....... 1 Changes to Table 1 ............................................................................ 4 2/2013—Rev. 0 to Rev. A Changes to t Parameter, Table 2, and Figure 2 ............................. 7 Changes to Table 1 ............................................................................ 3 2 Added Table 3; Renumbered Sequentially ..................................... 7 Changes to Table 2 and Figure 2 ..................................................... 6 Changes to Figure 4 ........................................................................... 8 Changes to Table 9 .......................................................................... 12 Change to Operating Temperature Range, Table 4 ....................... 9 Changes to Table 94, Bit 3 and Body Frame/Local Navigation Change to Dual Memory Structure Section ................................ 13 Frame Bit Section ............................................................................ 29 Change to Linear Acceleration on Effect on Gyroscope Bias Deleted Installation Tips Section; Added Mechanical Design Section .............................................................................................. 33 Tips Section; Changes to Prototype Interface Board Section, Changes to Input Sync/Clock Control Section, Table 151, and Figure 29, and Figure 30 ................................................................. 39 Power Management Section .......................................................... 40 Added Connector-Up Design Tips Section Figure 31, and Changes to Ordering Guide ........................................................... 44 Figure 32, Renumbered Sequentially ............................................ 40 4/2014—Rev. B to Rev. C 5/2012—Revision 0: Initial Version Changes to Features Section ............................................................ 1 Change to Nonlinearity, Barometer Parameter, Endnote 5, and Endnote 12, Table 2 ........................................................................... 5 Changes to Table 9 .......................................................................... 16 Changes to Delta Angles Section .................................................. 19 Changes to Magnetometer/Barometer Section ........................... 25 Changes to Linear Acceleration on Effect on Gyroscope Bias Section .............................................................................................. 32 Change to Manual Bias Correction Section ................................ 33 Change to Static Alarm Use Section ............................................. 36 Change to Software Reset Section ................................................. 38 Changes to General Purpose I/O Section .................................... 39 Changes to Mounting Tips Section ............................................... 41 Rev. H | Page 3 of 44

ADIS16480 Data Sheet SPECIFICATIONS T = 25°C, VDD = 3.3 V, angular rate = 0°/sec, dynamic range = ±450°/sec ± 1 g, 300 mbar to 1100 mbar, unless otherwise noted. A Table 1. Parameter Test Conditions/Comments Min Typ Max Unit ANGLE OUTPUTS Euler Dynamic Range Yaw and roll (Euler) ±180 Degrees Pitch (Euler) ±90 Degrees Rotation matrix, quaternion ±180 Degree Sensitivity 0.0055 Degrees/LSB Static Accuracy1 Pitch and roll 0.1 Degrees Yaw 0.3 Degrees Dynamic Accuracy1 Pitch and roll 0.3 Degrees Yaw 0.5 Degrees GYROSCOPES Dynamic Range ±450 ±480 °/sec Sensitivity x_GYRO_OUT and x_GYRO_LOW (32-bit) 3.052 × 10−7 °/sec/LSB Repeatability2 −40°C ≤ T ≤ +85°C ±1 % A Sensitivity Temperature Coefficient −40°C ≤ T ≤ +85°C, 1 σ ±35 ppm/°C A Misalignment Axis to axis ±0.05 Degrees Axis to frame (package) ±1.0 Degrees Nonlinearity Best-fit straight line, FS = 450°/sec 0.01 % of FS Initial Bias Error ±0.2 °/sec In-Run Bias Stability 1 σ 6.25 °/hr Angular Random Walk 1 σ 0.3 °/√hr Bias Temperature Coefficient −40°C ≤ T ≤ +85°C, 1 σ ±0.0025 °/sec/°C A Linear Acceleration Effect on Bias Any axis, 1 σ (CONFIG[7] = 1) 0.009 °/sec/g Output Noise No filtering 0.16 °/sec rms Rate Noise Density f = 25 Hz, no filtering 0.0066 °/sec/√Hz rms 3 dB Bandwidth 330 Hz Sensor Resonant Frequency 18 kHz ACCELEROMETERS Each axis Dynamic Range ±10 g Sensitivity x_ACCL_OUT and x_ACCL_LOW (32-bit) 1.221 × 10−8 g/LSB Repeatability −40°C ≤ T ≤ +85°C ±0.5 % A Sensitivity Temperature Coefficient −40°C ≤ T ≤ +85°C, 1 σ ±25 ppm/°C A Misalignment Axis to axis ±0.035 Degrees Axis to frame (package) ±1.0 Degrees Nonlinearity Best-fit straight line, ±10 g 0.1 % of FS Bias Repeatability3, 4 −40°C ≤ T ≤ +85°C, 1 σ ±16 mg A In-Run Bias Stability 1 σ 0.1 mg Velocity Random Walk 1 σ 0.029 m/sec/√hr Bias Temperature Coefficient −40°C ≤ T ≤ +85°C ±0.1 mg/°C A Output Noise No filtering 1.5 mg rms Noise Density f = 25 Hz, no filtering 0.067 mg/√Hz rms 3 dB Bandwidth 330 Hz Sensor Resonant Frequency 5.5 kHz Rev. H | Page 4 of 44

Data Sheet ADIS16480 Parameter Test Conditions/Comments Min Typ Max Unit MAGNETOMETER Dynamic Range ±2.5 gauss Sensitivity 0.1 mgauss/LSB Initial Sensitivity Tolerance ±2 % Sensitivity Temperature Coefficient 1 σ 275 ppm/°C Misalignment Axis to axis 0.25 Degrees Axis to frame (package) 0.5 Degrees Nonlinearity Best fit straight line 0.5 % of FS Initial Bias Error 0 gauss stimulus ±15 mgauss Bias Temperature Coefficient −40°C ≤ T ≤ +85°C, 1 σ 0.3 mgauss/°C A Output Noise No filtering 0.45 mgauss Noise Density f = 25 Hz, no filtering 0.054 mgauss/√Hz 3 dB Bandwidth 330 Hz BAROMETER Pressure Range 300 1100 mbar Extended 10 1200 mbar Sensitivity BAROM_OUT and BAROM_LOW (32-bit) 6.1 × 10−7 mbar/LSB Error with Supply 0.04 %/V Total Error 4.5 mbar Relative Error5 −40°C to +85°C 2.5 mbar Nonlinearity6 Best fit straight line, FS = 1100 mbar 0.1 % of FS −40°C to +85°C 0.2 % of FS Linear-g Sensitivity ±1 g, 1 σ 0.005 mbar/g Noise 0.025 mbar rms TEMPERATURE SENSOR Scale Factor Output = 0x0000 at 25°C (±5°C) 0.00565 °C/LSB LOGIC INPUTS7 Input High Voltage, V 2.0 V IH Input Low Voltage, V 0.8 V IL CS Wake-Up Pulse Width 20 µs Logic 1 Input Current, I V = 3.3 V 10 µA IH IH Logic 0 Input Current, I V = 0 V IL IL All Pins Except RST, CS 10 µA RST, CS Pins8 0.33 mA Input Capacitance, C 10 pF IN DIGITAL OUTPUTS Output High Voltage, V I = 0.5 mA 2.4 V OH SOURCE Output Low Voltage, V I = 2.0 mA 0.4 V OL SINK FLASH MEMORY Endurance9 100,000 Cycles Data Retention10 T = 85°C 20 Years J FUNCTIONAL TIMES11 Time until inertial sensor data is available Power-On Start-Up Time 400 ± 160 ms Reset Recovery Time12 Initiated by RST or GLOB_CMD[7] = 1 400 ± 160 ms Sleep Mode Recovery Time 700 µs Flash Memory Update Time 1.1 6.8 sec Flash Memory Test Time 53 ms Automatic Self-Test Time Using internal clock, 100 SPS 12 ms CONVERSION RATE 2.46 kSPS Initial Clock Accuracy 0.02 % Temperature Coefficient 40 ppm/°C Sync Input Clock13 0.7 2.4 kHz Rev. H | Page 5 of 44

ADIS16480 Data Sheet Parameter Test Conditions/Comments Min Typ Max Unit POWER SUPPLY, VDD Operating voltage range 3.0 3.6 V Power Supply Current14 Normal mode, VDD = 3.3 V, µ ± σ 254 mA Sleep mode, VDD = 3.3 V 12.2 mA Power-down mode, VDD = 3.3 V 45 µA POWER SUPPLY, VDDRTC Operating voltage range 3.0 3.6 V Real-Time Clock Supply Current Normal mode, VDDRTC = 3.3 V 13 µA 1 Accuracy specifications assume calibration of accelerometers and magnetometers to address sensor drift and local influences on magnetic fields. 2 The repeatability specifications represent analytical projections that are based off of the following drift contributions and conditions: temperature hysteresis (−40°C to +85°C), electronics drift (High-Temperature Operating Life test: +110°C, 500 hours), drift from temperature cycling (JESD22, Method A104-C, Method N, 500 cycles, −40°C to +85°C), rate random walk (10 year projection), and broadband noise. 3 Bias repeatability describes a long-term behavior, over a variety of conditions. Short-term repeatability is related to the in-run bias stability and noise density specifications. 4 X-ray exposure may degrade this performance metric. 5 The relative error assumes that the initial error, at 25°C, is corrected in the end application. 6 Specification assumes a full scale (FS) of 1000 mbar. 7 The digital I/O signals use a 3.3 V system. 8 RST and CS pins are connected to the VDD pin through 10 kΩ pull-up resistors. 9 Endurance is qualified as per JEDEC Standard 22, Method A117, and measured at −40°C, +25°C, +85°C, and +125°C. 10 The data retention specification assumes a junction temperature (TJ) of 85°C as per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ. 11 These times do not include thermal settling, internal filter response times, or EKF start-up times (~825 ms), which may affect overall accuracy, with respect to time. 12 The RST line must be in a low state for at least 10 μs to assure a proper reset initiation and recovery. 13 The device functions at clock rates below 0.7 kHz, but at reduced performance levels. 14 Supply current transients can reach 600 mA during start-up and reset recovery. Rev. H | Page 6 of 44

Data Sheet ADIS16480 TIMING SPECIFICATIONS T = 25°C, VDD = 3.3 V, unless otherwise noted. A Table 2. Normal Mode Parameter Description Min1 Typ Max1 Unit f Serial clock 0.01 15 MHz SCLK t 2 Stall period between data 2 μs STALL t Serial clock low period 31 ns CLS t Serial clock high period 31 ns CHS t Chip select to clock edge 32 ns CSE t DOUT valid after SCLK edge 10 ns DAV t DIN setup time before SCLK rising edge 2 ns DSU t DIN hold time after SCLK rising edge 2 ns DHD t , t DOUT rise/fall times, ≤100 pF loading 3 8 ns DR DF tDSOE CSE assertion to data out active 0 11 ns t SCLK edge to data out invalid 0 ns HD tSFS Last SCLK edge to CSE deassertion 32 ns tDSHI CSE deassertion to data out high impedance 0 9 ns t Input sync pulse width 5 μs 1 t Input sync to data invalid 635 μs 2 t Input sync period 417 μs 3 1 Guaranteed by design and characterization, but not tested in production. 2 See Table 3 for exceptions to the stall time rating. Table 3. Register Specific Stall Times Register Function Minimum Stall Time (μs) FNCTIO_CTRL Configure DIOx functions 60 FLTR_BNK0 Enable/select FIR filter banks 320 FLTR_BNK1 Enable/select FIR filter banks 320 NULL_CFG Configure autonull bias function 10 GLOB_CMD[1] Self-test 12,000 GLOB_CMD[2] Memory test 50,000 GLOB_CMD[3] Flash memory update 375,000 GLOB_CMD[6] Flash memory test 75,000 GLOB_CMD[7] Software reset 12,000 Timing Diagrams CS tCS tCHS tCLS tSFS 1 2 3 4 5 6 15 16 SCLK tDSOE tDAV tHD tDR tDSHI DOUT MSB DB14 DB13 DB12 DB11 DB10 DB2 DB1 LSB tDSU tDHD tDF DIN R/W A6 A5 A4 A3 A2 D2 D1 LSB 10278-002 Figure 2. SPI Timing and Sequence Rev. H | Page 7 of 44

ADIS16480 Data Sheet tSTALL CS SCLK 10278-003 Figure 3. Stall Time and Data Rate t2 t3 t1 SYNC CLOCK (CLKIN) DATA READY REGOISUTTEPRUST DATA VALID DATA VALID 10278-004 Figure 4. Input Clock Timing Diagram Rev. H | Page 8 of 44

Data Sheet ADIS16480 ABSOLUTE MAXIMUM RATINGS Table 4. Stresses at or above those listed under Absolute Maximum Parameter Rating Ratings may cause permanent damage to the product. This is a Acceleration stress rating only; functional operation of the product at these Any Axis, Unpowered 2000 g or any other conditions above those indicated in the operational Any Axis, Powered 2000 g section of this specification is not implied. Operation beyond VDD to GND −0.3 V to +3.6 V the maximum operating conditions for extended periods may Digital Input Voltage to GND −0.3 V to VDD + 0.2 V affect product reliability. Digital Output Voltage to GND −0.3 V to VDD + 0.2 V Table 5. Package Characteristics Operating Temperature Range −40°C to +105°C Device Storage Temperature Range −65°C to +150°C1 Package Type θ θ Weight JA JC Barometric Pressure 2 bar 24-Lead Module (ML-24-6) 22.8°C/W 10.1°C/W 48 g 1 Extended exposure to temperatures that are lower than −40°C or higher than +105°C can adversely affect the accuracy of the factory calibration. ESD CAUTION Rev. H | Page 9 of 44

ADIS16480 Data Sheet PIN CONFIGURATION AND FUNCTION DESCRIPTIONS ADIS16480 TOP VIEW (Not to Scale) DNC DNC DNC DNC DNC GND VDD VDD RST CS DOUT DIO4 24 22 20 18 16 14 12 10 8 6 4 2 23 21 19 17 15 13 11 9 7 5 3 1 C C C C D D D 2 1 N K 3 DRT DN DN DN GN GN VD DIO DIO DI SCL DIO D V NOTES 1.THIS REPRESENTATION DISPLAYS THE TOP VIEW PINOUT FOR THE MATING SOCKET CONNECTOR. 2.THE ACTUAL CONNECTOR PINS ARE NOT VISIBLE FROM THE 34..TMDONACPT IV=N IGDE OWC O.NNONTE CCOTNONRE: CSTA MTOTE TCH ECSLEM -P1I1N2S-0.2 OR EQUIVALENT. 10278-005 Figure 5. Mating Connector Pin Assignments PIN 23 PIN 1 PIN 1 PIN 2 10278-206 Figure 6. Axial Orientation (Top Side Facing Up) Table 6. Pin Function Descriptions Pin No. Mnemonic Type Description 1 DIO3 Input/output Configurable Digital Input/Output. 2 DIO4 Input/output Configurable Digital Input/Output. 3 SCLK Input SPI Serial Clock. 4 DOUT Output SPI Data Output. Clocks output on SCLK falling edge. 5 DIN Input SPI Data Input. Clocks input on SCLK rising edge. 6 CS Input SPI Chip Select. 7 DIO1 Input/output Configurable Digital Input/Output. 8 RST Input Reset. 9 DIO2 Input/output Configurable Digital Input/Output. 10, 11, 12 VDD Supply Power Supply. 13, 14, 15 GND Supply Power Ground. 16 to 22, 24 DNC Not applicable Do Not Connect. Do not connect to these pins. 23 VDDRTC Supply Real-Time Clock Power Supply. Rev. H | Page 10 of 44

Data Sheet ADIS16480 TYPICAL PERFORMANCE CHARACTERISTICS 1000 0.8 AVERAGE 0.6 NCE (°/Hour) 100 OR (% FS) 00..24 ITNEITMIPACLO E R= R3O5pRp =m ±/°0C.5% A R VARI E ER 0 ALLAN 10 +1σ O SCAL –0.2 T R O Y –0.4 O G R –1σ –0.6 10.01 0.1 INTEG1RATION P1E0RIOD (S1e0c0onds) 1000 10000 10278-007 –0.8–40 –30 –20 –10 0TEM10PER2A0TUR3E0 (°C4)0 50 60 70 80 10278-009 Figure 7. Gyroscope Allan Variance, 25°C Figure 9. Gyroscope Scale (Sensitivity) Error and Hysteresis vs. Temperature 0.001 0.6 AVERAGE INITIAL ERROR = ±0.2°/sec 0.5 TEMPCO = 0.0025°/sec/°C 0.4 ANCE (g) +1σ R (°/sec) 00..23 RI O 0.1 A R AN V0.0001 S ER 0 L A –0.1 ROOT AL –1σ GYRO BI ––00..32 –0.4 –0.5 0.000010.01 0.1 INTEG1RATION P1E0RIOD (S1e0c0onds) 1000 10000 10278-008 –0.6–40 –30 –20 –10 0TEM10PER2A0TUR3E0 (°C4)0 50 60 70 80 10278-010 Figure 8. Accelerometer Allan Variance, 25°C Figure 10. Gyroscope Bias Error and Hysteresis vs. Temperature Rev. H | Page 11 of 44

ADIS16480 Data Sheet BASIC OPERATION The ADIS16480 is an autonomous sensor system that starts up REGISTER STRUCTURE on its own when it has a valid power supply. After running through The register structure and SPI port provide a bridge between its initialization process, it begins sampling, processing, and the sensor processing system and an external, master processor. loading calibrated sensor data into the output registers, which It contains both output data and control registers. The output are accessible using the SPI port. The SPI port typically connects to data registers include the latest sensor data, a real-time clock, error a compatible port on an embedded processor, using the connection flags, alarm flags, and identification data. The control registers diagram in Figure 11. The four SPI signals facilitate synchronous, include sample rate, filtering, input/output, alarms, calibration, serial data communication. Connect RST (see Table 6) to VDD EKF tuning, and diagnostic configuration options. All commu- or leave it open for normal operation. The factory default nication between the ADIS16480 and an external processor configuration provides users with a data-ready signal on the involves either reading or writing to one of the user registers. DIO2 pin, which pulses high when new data is available in the output data registers. TRIAXIS GYRO I/O LINE3S.3 VA RLEO GCOICM LPEAVTEIBLSLE WITH +3.3V TARCIACXEILS DSP REOGUITSPTUETRS VDD TRIAXIS PI MAGN S 10 11 12 23 CONTROL SYSTEM BARO CONTROLLER REGISTERS PSRPIO MCAESSTSEORR SCSLSK 63 SCCSLK ADIS16480 SETNEMSOPR 10278-012 MOSI 5 DIN Figure 12. Basic Operation MISO 4 DOUT The register structure uses a paged addressing scheme that is IRQ 9 DIO2 composed of 13 pages, with each one containing 64 register 13 14 15 locations. Each register is 16 bits wide, with each byte having 10278-011 iStPs Io pwonr tu hnaiqs uaec caedsds rteos os nwei tphainge t hate a m tiemmeo, ruys imnga pth oef bthita ste pqaugeen. cTeh ien Figure 11. Electrical Connection Diagram Figure 17. Select the page to activate for SPI access by writing its code to the PAGE_ID register. Read the PAGE_ID register Table 7. Generic Master Processor Pin Names and Functions to determine which page is currently active. Table 9 displays the Mnemonic Function PAGE_ID contents for each page, along with their basic functions. SS Slave select The PAGE_ID register is located at Address 0x00 on every page. IRQ Interrupt request MOSI Master output, slave input Table 9. User Register Page Assignments MISO Master input, slave output Page PAGE_ID Function SCLK Serial clock 0 0x00 Output data, clock, identification 1 0x01 Reserved Embedded processors typically use control registers to configure 2 0x02 Calibration their serial ports for communicating with SPI slave devices such 3 0x03 Control: sample rate, filtering, I/O, alarms as the ADIS16480. Table 8 provides a list of settings, which 4 0x04 Serial number describe the SPI protocol of the ADIS16480. The initialization 5 0x05 FIR Filter Bank A Coefficient 0 to Coefficient 59 routine of the master processor typically establishes these settings 6 0x06 FIR Filter Bank A, Coefficient 60 to Coefficient 119 using firmware commands to write them into its serial control 7 0x07 FIR Filter Bank B, Coefficient 0 to Coefficient 59 registers. 8 0x08 FIR Filter Bank B, Coefficient 60 to Coefficient 119 9 0x09 FIR Filter Bank C, Coefficient 0 to Coefficient 59 Table 8. Generic Master Processor SPI Settings 10 0x0A FIR Filter Bank C, Coefficient 60 to Coefficient 119 Processor Setting Description 11 0x0B FIR Filter Bank D, Coefficient 0 to Coefficient 59 Master The ADIS16480 operates as a slave 12 0x0C FIR Filter Bank D, Coefficient 60 to Coefficient 119 SCLK ≤ 15 MHz Maximum serial clock rate SPI Mode 3 CPOL = 1 (polarity), and CPHA = 1 (phase) MSB-First Mode Bit sequence 16-Bit Mode Shift register/data length Rev. H | Page 12 of 44

Data Sheet ADIS16480 SPI COMMUNICATION MANUAL The SPI port supports full duplex communication, as shown in FLASH BACKUP Figure 17, which enables external processors to write to DIN NONVOLATILE VOLATILE while reading DOUT, if the previous command was a read FLASH MEMORY SRAM request. Figure 17 provides a guideline for the bit coding on (NO SPI ACCESS) SPI ACCESS both DIN and DOUT. START-UP DEVICE CONFIGURATION RESET 10278-014 The SPI provides write access to the control registers, one byte at Figure 14. SRAM and Flash Memory Diagram a time, using the bit assignments shown in Figure 17. Each register READING SENSOR DATA has 16 bits, where Bits[7:0] represent the lower address (listed in Table 10) and Bits[15:8] represent the upper address. Write to The ADIS16480 automatically starts up and activates Page 0 for the lower byte of a register first, followed by a write to its upper data register access. Write 0x00 to the PAGE_ID register (DIN = byte. The only register that changes with a single write to its 0x8000) to activate Page 0 for data access after accessing any other lower byte is the PAGE_ID register. For a write command, the page. A single register read requires two 16-bit SPI cycles. The first bit in the DIN sequence is set to 1. Address Bits[A6:A0] first cycle requests the contents of a register using the bit assignments represent the target address, and Data Command Bits[DC7:DC0] in Figure 17, and then the register contents follow DOUT during represent the data being written to the location. Figure 13 the second sequence. The first bit in a DIN command is zero, provides an example of writing 0x03 to Address 0x00 (PAGE_ID followed by either the upper or lower address for the register. [7:0]), using DIN = 0x8003. This write command activates the The last eight bits are don’t care, but the SPI requires the full set control page for SPI access. of 16 SCLKs to receive the request. Figure 15 includes two register reads in succession, which starts with DIN = 0x1A00 to request CS the contents of the Z_GYRO_OUT register and follows with SCLK 0x1800 to request the contents of the Z_GYRO_LOW register. DFDIiNgIN u=r e10 1030. 0S0P0I0 S 0e0q0u0 e0n0c11e =fo 0rx A80c0ti3v,a WtiRnIgT EthSe 0 xC0o3n TtOro Al PDaDgReE S(DSI N0x =00 0x800310278-013) DODUINT 0x1A00 Z_G0YxR1O80_0OUT Z_AGDYNDREROXE_TSLSOW 10278-015 Dual Memory Structure Figure 15. SPI Read Example Writing configuration data to a control register updates its SRAM Figure 16 provides an example of the four SPI signals when reading contents, which are volatile. After optimizing each relevant control PROD_ID in a repeating pattern. This is a good pattern to use register setting in a system, use the manual flash update command, for troubleshooting the SPI interface setup and communications which is located in GLOB_CMD[3] on Page 3 of the register map. because the contents of PROD_ID are predefined and stable. Activate the manual flash update command by turning to Page 3 (DIN = 0x8003) and setting GLOB_CMD[3] = 1 (DIN = 0x8208, CS then DIN = 0x8300). For a flash memory update, make sure that SCLK the power supply is within specification for the entire processing time (see Table 1). Table 10 provides a memory map for all of DIN DIN = 0111 1110 0000 0000 = 0x7E00 the user registers, which includes a column of flash backup ihnafso arm maitriroonr. lAoc yaetiso inn itnh ifsl acsohl uamndn, iwnhdeicna bteasc tkheadt ua pr epgriostpeerr ly, DOUT DOUT = 0100 0000 0110 0000 = 0x4060 = 16,480 (PROD_ID) 10278-016 Figure 16. SPI Read Example, Second 16-Bit Sequence automatically restores itself during startup or after a reset. Figure 14 provides a diagram of the dual memory structure used to manage operation and store critical user settings. CS SCLK DIN R/W A6 A5 A4 A3 A2 A1 A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0 R/W A6 A5 DOUT D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13 NOTES 12..DWFOOHRUE TNO BTCIHSTE SIRS A DHREIEGV HPICR, EDOSOD.UUTC EISD I NO NAL TYH WREHEE-NS TTAHTEE P, RHEIGVHIO IUMSP E16D-ABNITC DEI NM OSEDQE,U WENHCICEH S ATLALROTWS SW MITUHL RT/IWFU =N C0.TIONAL USE OF THE LINE 10278-017 Figure 17. SPI Communication Bit Sequence Rev. H | Page 13 of 44

ADIS16480 Data Sheet USER REGISTERS Table 10. User Register Memory Map (N/A = Not Applicable) Name R/W Flash PAGE_ID Address Default Register Description Format PAGE_ID R/W No 0x00 0x00 0x00 Page identifier N/A Reserved N/A N/A 0x00 0x02 to 0x04 N/A Reserved N/A SEQ_CNT R No 0x00 0x06 N/A Sequence counter Table 69 SYS_E_FLAG R No 0x00 0x08 0x0000 Output, system error flags Table 60 DIAG_STS R No 0x00 0x0A 0x0000 Output, self-test error flags Table 61 ALM_STS R No 0x00 0x0C 0x0000 Output, alarm error flags Table 62 TEMP_OUT R No 0x00 0x0E N/A Output, temperature Table 58 X_GYRO_LOW R No 0x00 0x10 N/A Output, x-axis gyroscope, low word Table 15 X_GYRO_OUT R No 0x00 0x12 N/A Output, x-axis gyroscope, high word Table 11 Y_GYRO_LOW R No 0x00 0x14 N/A Output, y-axis gyroscope, low word Table 16 Y_GYRO_OUT R No 0x00 0x16 N/A Output, y-axis gyroscope, high word Table 12 Z_GYRO_LOW R No 0x00 0x18 N/A Output, z-axis gyroscope, low word Table 17 Z_GYRO_OUT R No 0x00 0x1A N/A Output, z-axis gyroscope, high word Table 13 X_ACCL_LOW R No 0x00 0x1C N/A Output, x-axis accelerometer, low word Table 22 X_ACCL_OUT R No 0x00 0x1E N/A Output, x-axis accelerometer, high word Table 18 Y_ACCL_LOW R No 0x00 0x20 N/A Output, y-axis accelerometer, low word Table 23 Y_ACCL_OUT R No 0x00 0x22 N/A Output, y-axis accelerometer, high word Table 19 Z_ACCL_LOW R No 0x00 0x24 N/A Output, z-axis accelerometer, low word Table 24 Z_ACCL_OUT R No 0x00 0x26 N/A Output, z-axis accelerometer, high word Table 20 X_MAGN_OUT R No 0x00 0x28 N/A Output, x-axis magnetometer, high word Table 39 Y_MAGN_OUT R No 0x00 0x2A N/A Output, y-axis magnetometer, high word Table 40 Z_MAGN_OUT R No 0x00 0x2C N/A Output, z-axis magnetometer, high word Table 41 BAROM_LOW R No 0x00 0x2E N/A Output, barometer, low word Table 57 BAROM_OUT R No 0x00 0x30 N/A Output, barometer, high word Table 55 Reserved N/A N/A 0x00 0x32 to 0x3E N/A Reserved N/A X_DELTANG_LOW R No 0x00 0x40 N/A Output, x-axis delta angle, low word Table 29 X_DELTANG_OUT R No 0x00 0x42 N/A Output, x-axis delta angle, high word Table 25 Y_DELTANG_LOW R No 0x00 0x44 N/A Output, y-axis delta angle, low word Table 30 Y_DELTANG_OUT R No 0x00 0x46 N/A Output, y-axis delta angle, high word Table 26 Z_DELTANG_LOW R No 0x00 0x48 N/A Output, z-axis delta angle, low word Table 31 Z_DELTANG_OUT R No 0x00 0x4A N/A Output, z-axis delta angle, high word Table 27 X_DELTVEL_LOW R No 0x00 0x4C N/A Output, x-axis delta velocity, low word Table 36 X_DELTVEL_OUT R No 0x00 0x4E N/A Output, x-axis delta velocity, high word Table 32 Y_DELTVEL_LOW R No 0x00 0x50 N/A Output, y-axis delta velocity, low word Table 37 Y_DELTVEL_OUT R No 0x00 0x52 N/A Output, y-axis delta velocity, high word Table 33 Z_DELTVEL_LOW R No 0x00 0x54 N/A Output, z-axis delta velocity, low word Table 38 Z_DELTVEL_OUT R No 0x00 0x56 N/A Output, z-axis delta velocity, high word Table 34 Reserved N/A N/A 0x00 0x58 N/A Reserved N/A Q0_C11_OUT R/W Yes 0x00 0x60 N/A Quaternion, q0 or rotation matrix, C11 Table 43 Q1_C12_OUT R/W Yes 0x00 0x62 N/A Quaternion, q1 or rotation matrix, C12 Table 44 Q2_C13_OUT R/W Yes 0x00 0x64 N/A Quaternion, q2 or rotation matrix, C13 Table 45 Q3_C21_OUT R/W Yes 0x00 0x66 N/A Quaternion, q3 or rotation matrix, C21 Table 46 C22_OUT R/W Yes 0x00 0x68 N/A Rotation matrix, C22 Table 47 ROLL_C23_OUT R/W Yes 0x00 0x6A N/A Euler angle, roll axis, or rotation matrix, C23 Table 48 PITCH_C31_OUT R/W Yes 0x00 0x6C N/A Euler angle, pitch axis, or rotation matrix, C31 Table 49 YAW_C32_OUT R/W Yes 0x00 0x6E N/A Euler angle, yaw axis, or rotation matrix, C32 Table 50 C33_OUT R/W Yes 0x00 0x70 N/A Rotation matrix, C33 Table 51 Reserved N/A N/A 0x00 0x72 to 0x76 N/A Reserved N/A Rev. H | Page 14 of 44

Data Sheet ADIS16480 Name R/W Flash PAGE_ID Address Default Register Description Format TIME_MS_OUT R Yes 0x00 0x78 N/A Factory configuration time: minutes/seconds Table 157 TIME_DH_OUT R Yes 0x00 0x7A N/A Factory configuration date/time: day/hour Table 158 TIME_YM_OUT R Yes 0x00 0x7C N/A Factory configuration date: year/month Table 159 PROD_ID R Yes 0x00 0x7E 0x4060 Output, product identification (16,480) Table 66 Reserved N/A N/A 0x01 0x00 to 0x7E N/A Reserved N/A PAGE_ID R/W No 0x02 0x00 0x00 Page identifier N/A Reserved N/A N/A 0x02 0x02 N/A Reserved N/A X_GYRO_SCALE R/W Yes 0x02 0x04 0x0000 Calibration, scale, x-axis gyroscope Table 104 Y_GYRO_SCALE R/W Yes 0x02 0x06 0x0000 Calibration, scale, y-axis gyroscope Table 105 Z_GYRO_SCALE R/W Yes 0x02 0x08 0x0000 Calibration, scale, z-axis gyroscope Table 106 X_ACCL_SCALE R/W Yes 0x02 0x0A 0x0000 Calibration, scale, x-axis accelerometer Table 114 Y_ACCL_SCALE R/W Yes 0x02 0x0C 0x0000 Calibration, scale, y-axis accelerometer Table 115 Z_ACCL_SCALE R/W Yes 0x02 0x0E 0x0000 Calibration, scale, z-axis accelerometer Table 116 XG_BIAS_LOW R/W Yes 0x02 0x10 0x0000 Calibration, offset, gyroscope, x-axis, low word Table 101 XG_BIAS_HIGH R/W Yes 0x02 0x12 0x0000 Calibration, offset, gyroscope, x-axis, high word Table 98 YG_BIAS_LOW R/W Yes 0x02 0x14 0x0000 Calibration, offset, gyroscope, y-axis, low word Table 102 YG_BIAS_HIGH R/W Yes 0x02 0x16 0x0000 Calibration, offset, gyroscope, y-axis, high word Table 99 ZG_BIAS_LOW R/W Yes 0x02 0x18 0x0000 Calibration, offset, gyroscope, z-axis, low word Table 103 ZG_BIAS_HIGH R/W Yes 0x02 0x1A 0x0000 Calibration, offset, gyroscope, z-axis, high word Table 100 XA_BIAS_LOW R/W Yes 0x02 0x1C 0x0000 Calibration, offset, accelerometer, x-axis, low word Table 111 XA_BIAS_HIGH R/W Yes 0x02 0x1E 0x0000 Calibration, offset, accelerometer, x-axis, high word Table 108 YA_BIAS_LOW R/W Yes 0x02 0x20 0x0000 Calibration, offset, accelerometer, y-axis, low word Table 112 YA_BIAS_HIGH R/W Yes 0x02 0x22 0x0000 Calibration, offset, accelerometer, y-axis, high word Table 109 ZA_BIAS_LOW R/W Yes 0x02 0x24 0x0000 Calibration, offset, accelerometer, z-axis, low word Table 113 ZA_BIAS_HIGH R/W Yes 0x02 0x26 0x0000 Calibration, offset, accelerometer, z-axis, high word Table 110 HARD_IRON_X R/W Yes 0x02 0x28 0x0000 Calibration, hard iron, magnetometer, x-axis Table 117 HARD_IRON_Y R/W Yes 0x02 0x2A 0x0000 Calibration, hard iron, magnetometer, y-axis Table 118 HARD_IRON_Z R/W Yes 0x02 0x2C 0x0000 Calibration, hard iron, magnetometer, z-axis Table 119 SOFT_IRON_S11 R/W Yes 0x02 0x2E 0x0000 Calibration, soft iron, magnetometer, S11 Table 121 SOFT_IRON_S12 R/W Yes 0x02 0x30 0x0000 Calibration, soft iron, magnetometer, S12 Table 122 SOFT_IRON_S13 R/W Yes 0x02 0x32 0x0000 Calibration, soft iron, magnetometer, S13 Table 123 SOFT_IRON_S21 R/W Yes 0x02 0x34 0x0000 Calibration, soft iron, magnetometer, S21 Table 124 SOFT_IRON_S22 R/W Yes 0x02 0x36 0x0000 Calibration, soft iron, magnetometer, S22 Table 125 SOFT_IRON_S23 R/W Yes 0x02 0x38 0x0000 Calibration, soft iron, magnetometer, S23 Table 126 SOFT_IRON_S31 R/W Yes 0x02 0x3A 0x0000 Calibration, soft iron, magnetometer, S31 Table 127 SOFT_IRON_S32 R/W Yes 0x02 0x3C 0x0000 Calibration, soft iron, magnetometer, S32 Table 128 SOFT_IRON_S33 R/W Yes 0x02 0x3E 0x0000 Calibration, soft iron, magnetometer, S33 Table 129 BR_BIAS_LOW R/W Yes 0x02 0x40 0x0000 Calibration, offset, barometer, low word Table 132 BR_BIAS_HIGH R/W Yes 0x02 0x42 0x0000 Calibration, offset, barometer, high word Table 131 Reserved N/A N/A 0x02 0x44 to 0x60 N/A Reserved N/A REFMTX_R11 R/W Yes 0x02 0x62 0x7FFF Reference transformation matrix, R11 Table 85 REFMTX_R12 R/W Yes 0x02 0x64 0x0000 Reference transformation matrix, R12 Table 86 REFMTX_R13 R/W Yes 0x02 0x66 0x0000 Reference transformation matrix, R13 Table 87 REFMTX_R21 R/W Yes 0x02 0x68 0x0000 Reference transformation matrix, R21 Table 88 REFMTX_R22 R/W Yes 0x02 0x6A 0x7FFF Reference transformation matrix, R22 Table 89 REFMTX_R23 R/W Yes 0x02 0x6C 0x0000 Reference transformation matrix, R23 Table 90 REFMTX_R31 R/W Yes 0x02 0x6E 0x0000 Reference transformation matrix, R31 Table 91 REFMTX_R32 R/W Yes 0x02 0x70 0x0000 Reference transformation matrix, R32 Table 92 REFMTX_R33 R/W Yes 0x02 0x72 0x7FFF Reference transformation matrix, R33 Table 93 USER_SCR_1 R/W Yes 0x02 0x74 0x0000 User Scratch Register 1 Table 153 USER_SCR_2 R/W Yes 0x02 0x76 0x0000 User Scratch Register 2 Table 154 USER_SCR_3 R/W Yes 0x02 0x78 0x0000 User Scratch Register 3 Table 155 USER_SCR_4 R/W Yes 0x02 0x7A 0x0000 User Scratch Register 4 Table 156 Rev. H | Page 15 of 44

ADIS16480 Data Sheet Name R/W Flash PAGE_ID Address Default Register Description Format FLSHCNT_LOW R Yes 0x02 0x7C N/A Diagnostic, flash memory count, low word Table 148 FLSHCNT_HIGH R Yes 0x02 0x7E N/A Diagnostic, flash memory count, high word Table 149 PAGE_ID R/W No 0x03 0x00 0x0000 Page identifier N/A GLOB_CMD W No 0x03 0x02 N/A Control, global commands Table 147 Reserved N/A N/A 0x03 0x04 N/A Reserved N/A FNCTIO_CTRL R/W Yes 0x03 0x06 0x000D Control, I/O pins, functional definitions Table 150 GPIO_CTRL R/W Yes 0x03 0x08 0x00X01 Control, I/O pins, general purpose Table 151 CONFIG R/W Yes 0x03 0x0A 0x00C0 Control, clock, and miscellaneous correction Table 107 DEC_RATE R/W Yes 0x03 0x0C 0x0000 Control, output sample rate decimation Table 68 Reserved N/A N/A 0x03 0x0E N/A Reserved N/A SLP_CNT R/W No 0x03 0x10 N/A Control, power-down/sleep mode Table 152 Reserved N/A N/A 0x03 0x12 to 0x14 N/A Reserved N/A FILTR_BNK_0 R/W Yes 0x03 0x16 0x0000 Filter selection Table 70 FILTR_BNK_1 R/W Yes 0x03 0x18 0x0000 Filter selection Table 71 Reserved N/A N/A 0x03 0x1A to 0x1E N/A Reserved N/A ALM_CNFG_0 R/W Yes 0x03 0x20 0x0000 Alarm configuration Table 143 ALM_CNFG_1 R/W Yes 0x03 0x22 0x0000 Alarm configuration Table 144 ALM_CNFG_2 R/W Yes 0x03 0x24 0x0000 Alarm configuration Table 145 Reserved N/A N/A 0x03 0x26 N/A Reserved N/A XG_ALM_MAGN R/W Yes 0x03 0x28 0x0000 Alarm, x-axis gyroscope threshold setting Table 133 YG_ALM_MAGN R/W Yes 0x03 0x2A 0x0000 Alarm, y-axis gyroscope threshold setting Table 134 ZG_ALM_MAGN R/W Yes 0x03 0x2C 0x0000 Alarm, z-axis gyroscope threshold setting Table 135 XA_ALM_MAGN R/W Yes 0x03 0x2E 0x0000 Alarm, x-axis accelerometer threshold Table 136 YA_ALM_MAGN R/W Yes 0x03 0x30 0x0000 Alarm, y-axis accelerometer threshold Table 137 ZA_ALM_MAGN R/W Yes 0x03 0x32 0x0000 Alarm, z-axis accelerometer threshold Table 138 XM_ALM_MAGN R/W Yes 0x03 0x34 0x0000 Alarm, x-axis magnetometer threshold Table 139 YM_ALM_MAGN R/W Yes 0x03 0x36 0x0000 Alarm, y-axis magnetometer threshold Table 140 ZM_ALM_MAGN R/W Yes 0x03 0x38 0x0000 Alarm, z-axis magnetometer threshold Table 141 BR_ALM_MAGN R/W Yes 0x03 0x3A 0x0000 Alarm, barometer threshold setting Table 142 Reserved N/A N/A 0x03 0x3C to 0x4E N/A Reserved N/A EKF_CNFG R/W Yes 0x03 0x50 0x0200 Extended Kalman filter configuration Table 95 Reserved N/A N/A 0x03 0x52 N/A Reserved N/A DECLN_ANGL R/W Yes 0x03 0x54 0x0000 Declination angle Table 94 ACC_DISTB_THR R/W Yes 0x03 0x56 0x0020 Accelerometer disturbance threshold Table 96 MAG_DISTB_THR R/W Yes 0x03 0x58 0x0030 Magnetometer disturbance threshold Table 97 Reserved N/A N/A 0x03 0x5A to 0x5E N/A Reserved N/A QCVR_NOIS_LWR R/W Yes 0x03 0x60 0xC5AC Process covariance, gyroscope noise, lower word Table 78 QCVR_NOIS_UPR R/W Yes 0x03 0x62 0x3727 Process covariance, gyroscope noise, upper word Table 77 QCVR_RRW_LWR R/W Yes 0x03 0x64 0xE6FF Process covariance, gyroscope RRW, lower word Table 80 QCVR_RRW_UPR R/W Yes 0x03 0x66 0x2E5B Process covariance, gyroscope RRW, upper word Table 79 Reserved N/A N/A 0x03 0x68 to 0x6A N/A Reserved N/A RCVR_ACC_LWR R/W Yes 0x03 0x6C 0x705F Measurement covariance, accelerometer, upper Table 82 RCVR_ACC_UPR R/W Yes 0x03 0x6E 0x3189 Measurement covariance, accelerometer, lower Table 81 RCVR_MAG_LWR R/W Yes 0x03 0x70 0xCC77 Measurement covariance, magnetometer, upper Table 84 RCVR_MAG_UPR R/W Yes 0x03 0x72 0x32AB Measurement covariance, magnetometer, lower Table 83 Reserved N/A N/A 0x03 0x74 to 0x76 N/A Reserved N/A FIRM_REV R Yes 0x03 0x78 N/A Firmware revision Table 63 FIRM_DM R Yes 0x03 0x7A N/A Firmware programming date: day/month Table 64 FIRM_Y R Yes 0x03 0x7C N/A Firmware programming date: year Table 65 Reserved N/A N/A 0x03 0x7E N/A Reserved N/A Reserved N/A N/A 0x04 0x00 to 0x18 N/A Reserved N/A SERIAL_NUM R Yes 0x04 0x20 N/A Serial number Table 67 Reserved N/A N/A 0x04 0x22 to 0x7F N/A Reserved N/A Rev. H | Page 16 of 44

Data Sheet ADIS16480 Name R/W Flash PAGE_ID Address Default Register Description Format PAGE_ID R/W No 0x05 0x00 0x0000 Page identifier N/A FIR_COEF_Axxx R/W Yes 0x05 0x02 to 0x7E N/A FIR Filter Bank A, Coefficients 0 through 59 Table 72 PAGE_ID R/W No 0x06 0x00 0x0000 Page identifier N/A FIR_COEF_Axxx R/W Yes 0x06 0x02 to 0x7E N/A FIR Filter Bank A, Coefficients 60 through 119 Table 72 PAGE_ID R/W No 0x07 0x00 0x0000 Page identifier N/A FIR_COEF_Bxxx R/W Yes 0x07 0x02 to 0x7E N/A FIR Filter Bank B, Coefficients 0 through 59 Table 73 PAGE_ID R/W No 0x08 0x00 0x0000 Page identifier N/A FIR_COEF_Bxxx R/W Yes 0x08 0x02 to 0x7E N/A FIR Filter Bank B, Coefficients 60 through 119 Table 73 PAGE_ID R/W No 0x09 0x00 0x0000 Page identifier N/A FIR_COEF_Cxxx R/W Yes 0x09 0x02 to 0x7E N/A FIR Filter Bank C, Coefficients 0 through 59 Table 74 PAGE_ID R/W No 0x0A 0x00 0x0000 Page identifier N/A FIR_COEF_Cxxx R/W Yes 0x0A 0x02 to 0x7E N/A FIR Filter Bank C, Coefficients 60 through 119 Table 74 PAGE_ID R/W No 0x0B 0x00 0x0000 Page identifier N/A FIR_COEF_Dxxx R/W Yes 0x0B 0x02 to 0x7E N/A FIR Filter Bank D, Coefficients 0 through 59 Table 75 PAGE_ID R/W No 0x0C 0x00 0x0000 Page identifier N/A FIR_COEF_Dxxx R/W Yes 0x0C 0x02 to 0x7E N/A FIR Filter Bank D, Coefficients 60 through 119 Table 75 1 The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not have a default setting. Rev. H | Page 17 of 44

ADIS16480 Data Sheet OUTPUT DATA REGISTERS After the ADIS16480 completes its start-up process, the PAGE_ID Table 11. X_GYRO_OUT (Page 0, Base Address = 0x12) register contains 0x0000, which sets Page 0 as the active page Bits Description for SPI access. Page 0 contains the output data, real-time clock, [15:0] X-axis gyroscope data; twos complement, status, and product identification registers. ±450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec INERTIAL SENSOR DATA FORMAT Table 12. Y_GYRO_OUT (Page 0, Base Address = 0x16) The gyroscope, accelerometer, delta angle, delta velocity, and Bits Description barometer output data registers use a 32-bit, twos complement [15:0] Y-axis gyroscope data; twos complement, format. Each output uses two registers to support this resolution. ±450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec Figure 18 provides an example of how each register contributes to each inertial measurement. In this case, X_GYRO_OUT is Table 13. Z_GYRO_OUT (Page 0, Base Address = 0x1A) the most significant word (upper 16 bits), and X_GYRO_LOW Bits Description is the least significant word (lower 16 bits), which captures the [15:0] Z-axis gyroscope data; twos complement, bit growth associated with the final averaging/decimation ±450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec register. When using the maximum sample rate (DEC_RATE = Table 14. X_GYRO_OUT Data Format Examples 0x0000, the x_xxxx_LOW registers are not active. Rotation Rate Decimal Hex Binary +450°/sec +22,500 0x57E4 0101 0111 1110 0100 X_GYRO_OUT X_GYRO_LOW +0.04/sec +2 0x0002 0000 0000 0000 0010 15 X-AXIS GY0RO15SCOPE DATA 0 10278-018 +0°0/.s0e2c° /sec 0+ 1 00xx00000001 00000000 00000000 00000000 00000010 Figure 18. Gyroscope Output Format Example, DEC_RATE > 0 −0.02°/sec −1 0xFFFF 1111 1111 1111 1111 The arrows in Figure 19 describe the direction of the motion, −0.04°/sec −2 0xFFFE 1111 1111 1111 1110 which produces a positive output response in each sensor −450°/sec −22,500 0xA81C 1010 1000 0001 1100 output register. The accelerometers respond to both dynamic and static forces associated with acceleration, including gravity. The MSB in x_GYRO_LOW has a weight of 0.01°/sec, and each When lying perfectly flat, as shown in Figure 19, the z-axis subsequent bit has ½ the weight of the previous one. accelerometer output is 1 g, and the x and y accelerometers are Table 15. X_GYRO_LOW (Page 0, Base Address = 0x10) 0 g. EKF_CNFG[3] (see Table 95) provides a selection for gyroscope, accelerometer, and magnetometer data orientation, Bits Description between the body frame and the local navigation frame. [15:0] X-axis gyroscope data; additional resolution bits When EKF_CNFG[3] = 0 (default), the accelerometer and Table 16. Y_GYRO_LOW (Page 0, Base Address = 0x14) magnetometer data displays in the local navigation frame. Bits Description ROTATION RATE (GYROSCOPE) [15:0] Y-axis gyroscope data; additional resolution bits The registers that use the x_GYRO_OUT format are the primary Table 17. Z_GYRO_LOW (Page 0, Base Address = 0x18) registers for the gyroscope measurements (see Table 11, Table 12, Bits Description and Table 13). When processing data from these registers, use a 16-bit, twos complement data format. Table 14 provides [15:0] Z-axis gyroscope data; additional resolution bits x_GYRO_OUT digital coding examples. Z-AXIS θ a m Z Z g Z m φ X m ψ X-AXIS Y Y-AXIS a X g a X Y gY PIN 23PIN 1 10278-019 Figure 19. Inertial Sensor Direction Reference Diagram Rev. H | Page 18 of 44

Data Sheet ADIS16480 ACCELERATION DELTA ANGLES The registers that use the x_ACCL_OUT format are the primary The x_DELTANG_OUT registers are the primary output registers registers for the accelerometer measurements (see Table 18, for the delta angle calculations. When processing data from these Table 19, and Table 20). When processing data from these registers, use a 16-bit, twos complement data format (see Table 25, registers, use a 16-bit, twos complement data format. Table 21 Table 26, and Table 27). Table 28 provides x_DELTANG_OUT provides x_ACCL_OUT digital coding examples. digital coding examples. The delta angle outputs represent an integration of the gyro- Table 18. X_ACCL_OUT (Page 0, Base Address = 0x1E) scope measurements and use the following formula for all Bits Description three axes (x-axis displayed): [15:0] X-axis accelerometer data; twos complement, ±10 g range, 0 g = 0x0000, 1 LSB = 0.8 mg 1 D−1 ( ) ∆θ = ×∑ ω +ω Table 19. Y_ACCL_OUT (Page 0, Base Address = 0x22) x,nD 2fS d=0 x,nD+d x,nD+d−1 Bits Description where: [15:0] Y-axis accelerometer data; twos complement, ω is the x-axis rate of rotation (gyroscope). x ±10 g range, 0 g = 0x0000, 1 LSB = 0.8 mg f is the sample rate. S n is the sample time prior to the decimation filter. Table 20. Z_ACCL_OUT (Page 0, Base Address = 0x26) D is the decimation rate (DEC_RATE + 1). Bits Description [15:0] Z-axis accelerometer data; twos complement, When using the internal sample clock, fS is equal to 2,460 SPS. ±10 g range, 0 g = 0x0000, 1 LSB = 0.8 mg When using the external clock option, fS is equal to the frequency of the external clock, which is limited to a minimum of 2 kHz, Table 21. x_ACCL_OUT Data Format Examples in order to prevent overflow in the x_DELTANG_xxx registers Acceleration Decimal Hex Binary at high rotation rates. See Table 68 and Figure 20 for more +10 g +12,500 0x30D4 0011 0000 1101 0100 information on the DEC_RATE register (decimation filter). +1.6 mg +2 0x0002 0000 0000 0000 0010 +0.8 mg +1 0x0001 0000 0000 0000 0001 Table 25. X_DELTANG_OUT (Page 0, Base Address = 0x42) 0 mg 0 0x0000 0000 0000 0000 0000 Bits Description −0.8 mg −1 0xFFFF 1111 1111 1111 1111 [15:0] X-axis delta angle data; twos complement, ±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022° −1.6 mg −2 0xFFFE 1111 1111 1111 1110 −10 g −12,500 0xCF2C 1100 1111 0010 1100 Table 26. Y_DELTANG_OUT (Page 0, Base Address = 0x46) Bits Description The MSB in x_ACCL_LOW has a weight of 0.4 mg, and each [15:0] Y-axis delta angle data; twos complement, subsequent bit has ½ the weight of the previous one. ±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022° Table 22. X_ACCL_LOW (Page 0, Base Address = 0x1C) Table 27. Z_DELTANG_OUT (Page 0, Base Address = 0x4A) Bits Description Bits Description [15:0] X-axis accelerometer data; additional resolution bits [15:0] Z-axis delta angle data; twos complement, ±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022° Table 23. Y_ACCL_LOW (Page 0, Base Address = 0x20) Bits Description Table 28. x_DELTANG_OUT Data Format Examples [15:0] Y-axis accelerometer data; additional resolution bits Angle (°) Decimal Hex Binary +720 × (215 − 1)/215 +32,767 0x7FFF 0111 1111 1111 1111 Table 24. Z_ACCL_LOW (Page 0, Base Address = 0x24) +1440/215 +2 0x0002 0000 0000 0000 0010 Bits Description +720/215 +1 0x0001 0000 0000 0000 0001 [15:0] Z-axis accelerometer data; additional resolution bits 0 0 0x0000 0000 0000 0000 0000 −720/215 −1 0xFFFF 1111 1111 1111 1111 −1440/215 −2 0xFFFE 1111 1111 1111 1110 −720 −32,768 0x8000 1000 0000 0000 0000 Rev. H | Page 19 of 44

ADIS16480 Data Sheet Table 32. X_DELTVEL_OUT (Page 0, Base Address = 0x4E) The x_DELTANG_LOW registers (see Table 29, Table 30, and Bits Description Table 31) provide additional resolution bits for the delta angle and [15:0] X-axis delta velocity data; twos complement, combine with the x_DELTANG_OUT registers to provide a ±200 m/sec range, 0 m/sec = 0x0000 32-bit, twos complement number. The MSBs in the 1 LSB = 200 m/sec ÷ (215 – 1) = ~6.104 mm/sec x_DELTANG_LOW registers have a weight of ~0.011° (720°/216), and each subsequent bit carries a weight of ½ of the Table 33. Y_DELTVEL_OUT (Page 0, Base Address = 0x52) previous one. Bits Description [15:0] Y-axis delta velocity data; twos complement, Table 29. X_DELTANG_LOW (Page 0, Base Address = 0x40) ±200 m/sec range, 0 m/sec = 0x0000 Bits Description 1 LSB = 200 m/sec ÷ (215 − 1) = ~6.104 mm/sec [15:0] X-axis delta angle data; additional resolution bits Table 34. Z_DELTVEL_OUT (Page 0, Base Address = 0x56) Table 30. Y_DELTANG_LOW (Page 0, Base Address = 0x44) Bits Description Bits Description [15:0] Z-axis delta velocity data; twos complement, [15:0] Y-axis delta angle data; additional resolution bits ±200 m/sec range, 0 m/sec = 0x0000 1 LSB = 200 m/sec ÷ (215 − 1) = ~6.104 mm/sec Table 31. Z_DELTANG_LOW (Page 0, Base Address = 0x48) Bits Description Table 35. x_DELTVEL_OUT, Data Format Examples [15:0] Z-axis delta angle data; additional resolution bits Velocity (m/sec) Decimal Hex Binary +200 × (215 − 1)/215 +32,767 0x7FFF 0111 1111 1111 1111 DELTA VELOCITY +400/215 +2 0x0002 0000 0000 0000 0010 +200/215 +1 0x0001 0000 0000 0000 0001 The registers that use the x_DELTVEL_OUT format are the 0 0 0x0000 0000 0000 0000 0000 primary registers for the delta velocity calculations. When −200/215 −1 0xFFFF 1111 1111 1111 1111 processing data from these registers, use a 16-bit, twos −400/215 −2 0xFFFE 1111 1111 1111 1110 complement data format (see Table 32, Table 33, and Table 34). −200 −32,768 0x8000 1000 0000 0000 0000 Table 35 provides x_DELTVEL_OUT digital coding examples. The delta velocity outputs represent an integration of the The x_DELTVEL_LOW registers (see Table 36, Table 37, and accelerometer measurements and use the following formula Table 38) provide additional resolution bits for the delta velocity for all three axes (x-axis displayed): and combine with the x_DELTVEL_OUT registers to provide a ∆V = 1 ×D∑−1 (a +a ) 32-bit, twos complement number. The MSBs in the x,nD 2fS d=0 x,nD+d x,nD+d−1 x_DELTVEL_LOW registers have a weight of ~3.052 mm/sec (200 m/sec ÷ 216), and each subsequent bit carries a weight of ½ where: of the previous one. a is the x-axis linear acceleration. x fS is the sample rate. Table 36. X_DELTVEL_LOW (Page 0, Base Address = 0x4C) n is the sample time prior to the decimation filter. Bits Description D is the decimation rate (DEC_RATE + 1). [15:0] X-axis delta velocity data; additional resolution bits When using the internal sample clock, f is equal to 2,460 SPS. S Table 37. Y_DELTVEL_LOW (Page 0, Base Address = 0x50) When using the external clock option, f is equal to the frequency S Bits Description of the external clock, which is limited to a minimum of 2 kHz, [15:0] Y-axis delta velocity data; additional resolution bits in order to prevent overflow in the x_DELTVEL_xxx registers at high rotation rates. See Table 68 and Figure 20 for more Table 38. Z_DELTVEL_LOW (Page 0, Base Address = 0x54) information on the DEC_RATE register (decimation filter). Bits Description [15:0] Z-axis delta velocity data; additional resolution bits Rev. H | Page 20 of 44

Data Sheet ADIS16480 MAGNETOMETERS INITIAL CONDITIONS The registers that use the x_MAGN_OUT format are the primary During start-up, reset recovery, sleep mode recovery, and registers for the magnetometer measurements. When processing power-down recovery, the ADIS16480 uses the inertial sensor data from these registers, use a 16-bit, twos complement data outputs to estimate bias and a number of critical initial states format. Table 39, Table 40, and Table 41 provide each register that are critical for stable operation and accurate angle estimates. numerical format, and Table 42 provides x_MAGN_OUT digital To assure convergence and accuracy, only initiate start-up or coding examples. reset commands when the platform of the ADIS16480 is not in motion and the magnetic environment is free of interference. Table 39. X_MAGN_OUT (Page 0, Base Address = 0x28) Quaternion Bits Description This four-element hypercomplex number defines the attitude of [15:0] X-axis magnetometer data; twos complement, ±3.2767 gauss range, 0 gauss = 0x0000, the body frame, relative to that of the navigation frame. The 1 LSB = 0.1 mgauss Qx_Cxx_OUT registers (See Table 43 through Table 46) contain the value for each element (q0, q1, q2, q4). The element, q0, is Table 40. Y_MAGN_OUT (Page 0, Base Address = 0x2A) the scalar part of the quaternion and represents the magnitude Bits Description of the rotation. The vector portion of the quaternion is defined [15:0] Y-axis magnetometer data; twos complement, by (q1, q2, q3)T, which identifies the axis about which the ±3.2767 gauss range, 0 gauss = 0x0000, rotation takes place, in adjusting the body frame to that of the 1 LSB = 0.1 mgauss navigation frame. When the orientation is in its reference position, q0 is equal to one and q1, q2, and q3 are equal to zero. Table 41. Z_MAGN_OUT (Page 0, Base Address = 0x2C) These registers update at the same data rate as the gyroscopes Bits Description and accelerometers. [15:0] Z-axis magnetometer data; twos complement, ±3.2767 gauss range, 0 gauss = 0x0000, Euler Angles 1 LSB = 0.1 mgauss The Euler angle names are yaw (ψ), pitch (θ), and roll (φ). Table 42. x_MAGN_OUT Data Format Examples See Figure 19 for the axial association of these angles. These Magnetic Field Decimal Hex Binary three elements represent the most intuitive way of describing +3.2767 gauss +32,767 0x7FFF 0111 1111 1111 1111 orientation angles. The process of translating body frame +0.2 mgauss +2 0x0002 0000 0000 0000 0010 data to the navigation frame can be broken down into three +0.1 mgauss +1 0x0001 0000 0000 0000 0001 successive translations. These translations follow as the yaw 0 gauss 0 0x0000 0000 0000 0000 0000 rotation about the z-axis, followed by the pitch rotation about −0.1 mgauss −1 0xFFFF 1111 1111 1111 1111 the y-axis, and finally the roll rotation about the x-axis. Reverse −0.2 mgauss −2 0xFFFE 1111 1111 1111 1110 this sequence to resolve a reverse rotation. Difficulties in this −3.2768 gauss −32,768 0x8000 1000 0000 0000 0000 process arise due to the singularities that occur whenever the pitch approaches ±90° thus making the roll indistinguishable ROLL, PITCH, YAW ANGLES from the yaw. For applications that may approach these limits, the quaternion or rotation matrix output may be more appro- The EKF_CNFG (Table 95) register contains two bits, which priate. When the ADIS16480 is in its reference position, all define the output format of the angle estimates. The first one three Euler angles are equal to zero. The update rate for these is EKF_CNFG[4], which selects the output format. When EKF_ variables is the same as the gyroscopes and accelerometers. CNFG[4] = 0; the output data is in the format of a quaternion vector (see Table 43 through Table 46) and Euler angles (see Table 48 through Table 50). When EKF_CNFG[4] = 1, the output data is in the form of a rotation matrix (see Table 43 through Table 51). Rev. H | Page 21 of 44

ADIS16480 Data Sheet ROTATION MATRIX DATA Table 49. PITCH_C31_OUT (Page 0, Base Address = 0x6C) Bits Description The rotation matrix defines the attitude of the body frame [15:0] Euler angle, θ, pitch or rotation matrix, C31 relative to that of the navigation frame. The Cxx_OUT registers Twos complement, range: ±90° (±π/2 radians) (see Table 43 through Table 51) define each element in this 3 × Pitch angle scale factor = (180/215)°/LSB 3 matrix. Each element is the product of the unit vectors that Rotation matrix variable, C31 describe the axes of the two frames, which in turn, are equal Twos complement, 0.000030518/LSB (1/215) to the cosines of the angles between the axes. When the ADIS16480 is in its reference position, the rotation matrix Table 50. YAW_C32_OUT (Page 0, Base Address = 0x6E) are equal to a 3 × 3 identify matrix. Bits Description Table 43. Q0_C11_OUT (Page 0, Base Address = 0x60) [15:0] Euler angle, Ψ, yaw or rotation matrix, C32 Bits Description Twos complement, range: ±180° (±π radians) [15:0] Quarterion scalar, q0 or rotation matrix, C11 Yaw angle scale factor = (180/215)°/LSB Twos complement Rotation matrix variable, C32 q0 scale factor = 0.000030518/LSB (1/215) Twos complement, 0.000030518/LSB (1/215) C11 scale factor = 0.000030518/LSB (1/215) Table 51. C33_OUT (Page 0, Base Address = 0x70) Table 44. Q1_C12_OUT (Page 0, Base Address = 0x62) Bits Description Bits Description [15:0] Rotation matrix, C33, twos complement [15:0] Quarterion vector, q1; or rotation matrix, C12 C22 scale factor = 0.000030518/LSB (1/215) Twos complement Table 52. Rotation Matrix/q1/q2/q3 Data Format Examples q1 scale factor = 0.000030518/LSB (1/215) Angle (°) Decimal Hex Binary C12 scale factor = 0.000030518/LSB (1/215) (215 − 1)/215 +32,767 0x7FFF 0111 1111 1111 1111 Table 45. Q2_C13_OUT (Page 0, Base Address = 0x64) 2/215 +2 0x0002 0000 0000 0000 0010 Bits Description 1/215 +1 0x0001 0000 0000 0000 0001 [15:0] Quarterion vector, q2; or rotation matrix, C13 0 0 0x0000 0000 0000 0000 0000 Twos complement −1/215 −1 0xFFFF 1111 1111 1111 1111 q2 scale factor = 0.000030518/LSB (1/215) −2/215 −2 0xFFFE 1111 1111 1111 1110 C13 scale factor = 0.000030518/LSB (1/215) −1 −32,768 0x8000 1000 0000 0000 0000 Table 46. Q3_C21_OUT (Page 0, Base Address = 0x66) Table 53. Yaw, Roll, q0 Angle Data Format Examples Bits Description Angle (°) Decimal Hex Binary [15:0] Quarterion vector, q3; or rotation matrix, C21 +180 × (215 − 1)/215 +32,767 0x7FFF 0111 1111 1111 1111 Twos complement +360/215 +2 0x0002 0000 0000 0000 0010 q3 scale factor = 0.000030518/LSB (1/215) +180/215 +1 0x0001 0000 0000 0000 0001 C21 scale factor = 0.000030518/LSB (1/215) 0 0 0x0000 0000 0000 0000 0000 −180/215 −1 0xFFFF 1111 1111 1111 1111 Table 47. C22_OUT (Page 0, Base Address = 0x68) −360/215 −2 0xFFFE 1111 1111 1111 1110 Bits Description −180 −32,768 0x8000 1000 0000 0000 0000 [15:0] Rotation matrix, C22, twos complement C22 scale factor = 0.000030518/LSB (1/215) Table 54. Pitch Angle Data Format Examples Angle (°) Decimal Hex Binary Table 48. ROLL_C23_OUT (Page 0, Base Address = 0x6A) +90 × (215−1)/215 +16,383 0x3FFF 0011 1111 1110 1111 Bits Description +360/215 +2 0x0002 0000 0000 0000 0010 [15:0] Euler angle, φ, roll or rotation matrix, C23 +180/215 +1 0x0001 0000 0000 0000 0001 Twos complement, range: ±180° (±π radians) 0 0 0x0000 0000 0000 0000 0000 Roll angle scale factor = (180/215)°/LSB −180/215 −1 0xFFFF 1111 1111 1111 1111 Rotation matrix variable, C23 −360/215 −2 0xFFFE 1111 1111 1111 1110 Twos complement −90 −16,384 0xC000 1100 0000 0000 0000 C23 scale factor = 0.000030518/LSB (1/215) Rev. H | Page 22 of 44

Data Sheet ADIS16480 BAROMETER The BAROM_LOW register provides additional resolution for The BAROM_OUT register (see Table 55) and BAROM_LOW the barometric pressure measurement. The MSB has a weight register (see Table 57) provide access to the barometric pressure of 20 µbar, and each subsequent bit carries a weight of ½ of data. These two registers combine to provide a 32-bit, twos the previous one. complement format. Some applications are able to use Table 57. BAROM_LOW (Page 0, Base Address = 0x2E) BAROM_OUT by itself. For cases where the finer resolution Bits Description available from BAROM_LOW is valuable, combine them in [15:0] Barometric pressure; additional resolution bits the same manner as the gyroscopes (see Figure 18). When processing data from the BAROM_OUT register alone, use a INTERNAL TEMPERATURE 16-bit, twos complement data format. Table 55 provides the numerical format in BAROM_OUT, and Table 56 provides The TEMP_OUT register provides an internal temperature digital coding examples. measurement that can be useful for observing relative temperature changes inside of the ADIS16480 (see Table 58). Table 59 Table 55. BAROM_OUT (Page 0, Base Address = 0x30) provides TEMP_OUT digital coding examples. Note that this Bits Description temperature reflects a higher temperature than ambient, due [15:0] Barometric pressure; twos complement, to self heating. ±1.31 bar range, 0 bar = 0x0000, 40 µbar/LSB Table 58. TEMP_OUT (Page 0, Base Address = 0x0E) Table 56. BAROM_OUT Data Format Examples Bits Description Pressure (bar) Decimal Hex Binary [15:0] Temperature data; twos complement, +0.00004 × (215 − 1) +32,767 0x7FFF 0111 1111 1111 1111 0.00565°C per LSB, 25°C = 0x0000 +0.00008 +2 0x0002 0000 0000 0000 0010 +0.00004 +1 0x0001 0000 0000 0000 0001 Table 59. TEMP_OUT Data Format Examples 0 0 0x0000 0000 0000 0000 0000 Temperature (°C) Decimal Hex Binary −0.00004 −1 0xFFFF 1111 1111 1111 1111 +85 +10,619 0x297B 0010 1001 0111 1011 −0.00008 −2 0xFFFE 1111 1111 1111 1110 +25 + 0.0113 +2 0x0002 0000 0000 0000 0010 −0.00004 × 215 −32,768 0x8000 1000 0000 0000 0000 +25 + 0.00565 +1 0x0001 0000 0000 0000 0001 +25 0 0x0000 0000 0000 0000 0000 +25 − 0.00565 −1 0xFFFF 1111 1111 1111 1111 +25 − 0.0113 −2 0xFFFE 1111 1111 1111 1110 −40 −11,504 0xD310 1101 0011 0001 0000 Rev. H | Page 23 of 44

ADIS16480 Data Sheet STATUS/ALARM INDICATORS The DIAG_STS register in Table 61 provides the flags for the internal self-test function, which is from GLOB_CMD[1] (see The SYS_E_FLAG register in Table 60 provides the system error Table 147). Note that the barometer flag, DIAG_STS[11], only flags and new data bits for the magnetometer and barometer updates after start-up and reset operations and that reading outputs. The new data flags are useful for triggering data collec- DIAG_STS also resets it to 0x0000. tion of the magnetometer and barometer (x_MAGN_OUT and BAROM_xxx registers) because they update at a fixed rate that Table 61. DIAG_STS (Page 0, Base Address = 0x0A) is not dependent on the DEC_RATE setting. Reading the SYS_ Bits Description (Default = 0x0000) E_FLAG register clears all of its error flags and returns each bit [15:12] Not used to a zero value, with the exception of Bit[7]. If SYS_E_FLAG[7] 11 Self-test failure, barometer (1 = failed at startup) is high, use the software reset (GLOB_CMD[7], see Table 147) 10 Self-test failure, z-axis magnetometer (1 = failure) to clear this condition and restore normal operation. If any bit 9 Self-test failure, y-axis magnetometer (1 = failure) in the SYS_E_FLAG register is associated an error condition 8 Self-test failure, x-axis magnetometer (1 = failure) that remains after reading this register, this bit automatically [7:6] Not used returns to an alarm value of 1. 5 Self-test failure, z-axis accelerometer (1 = failure) Table 60. SYS_E_FLAG (Page 0, Base Address = 0x08) 4 Self-test failure, y-axis accelerometer (1 = failure) Bits Description (Default = 0x0000) 3 Self-test failure, x-axis accelerometer (1 = failure) 2 Self-test failure, z-axis gyroscope (1 = failure) 15 Watch dog timer flag (1 = timed out) 1 Self-test failure, y-axis gyroscope (1 = failure) 14 Not used 0 Self-test failure, x-axis gyroscope (1 = failure) 13 EKF divergence (1 = divergence has occurred) 12 Gyroscope saturation 1 = saturation conditions exists and the gyroscope The ALM_STS register in Table 62 provides the alarm bits weighting factors in the EKF have been automatically for the programmable alarm levels of each sensor. Note that reduced reading ALM_STS also resets it to 0x0000. 0 = gyroscope measurements within range Table 62. ALM_STS (Page 0, Base Address = 0x0C) 11 Magnetometer disturbance Bits Description (Default = 0x0000) 1 = magnetometer measurements exceed MAG_DISTB_THR levels (see Table 97) and the [15:12] Not used magnetometer influence in the EKF has been 11 Barometer alarm flag (1 = alarm is active) automatically eliminated 10 Z-axis magnetometer alarm flag (1 = alarm is active) 0 = magnetometer measurements are within the 9 Y-axis magnetometer alarm flag (1 = alarm is active) specified normal range 8 X-axis magnetometer alarm flag (1 = alarm is active) 10 Linear acceleration [7:6] Not used 1 = accelerometer measurements exceed 5 Z-axis accelerometer alarm flag (1 = alarm is active) ACC_DISTR_THR levels (see Table 96) and the 4 Y-axis accelerometer alarm flag (1 = alarm is active) accelerometer weighting factors in the EKF have been automatically reduced 3 X-axis accelerometer alarm flag (1 = alarm is active) 0 = accelerometer measurements are within the 2 Z-axis gyroscope alarm flag (1 = alarm is active) specified normal range 1 Y-axis gyroscope alarm flag (1 = alarm is active) 9 New data flag, barometer (1 = new, unread data)1 0 X-axis gyroscope alarm flag (1 = alarm is active) 8 New data flag, magnetometer (1 = new, unread data)2 7 Processing overrun (1 = error) 6 Flash memory update, result of GLOB_CMD[3] = 1 (1 = failed update, 0 = update successful) 5 Inertial self-test failure (1 = DIAG_STS ≠ 0x0000) 4 Sensor overrange (1 = at least one sensor overranged) 3 SPI communication error (1 = error condition, when the number of SCLK pulses is not equal to a multiple of 16) [2:1] Not used 0 Alarm status flag (1 = ALM_STS ≠ 0x0000) 1 This flag restores to zero after reading the contents on BAROM_OUT. 2 This flag restores to zero after reading one x_MAGN_OUT register. Rev. H | Page 24 of 44

Data Sheet ADIS16480 FIRMWARE REVISION The FIRM_Y register (see Table 65) contains the year of the The FIRM_REV register (see Table 63) provides the firmware factory configuration date. For example, the year of 2013 is revision for the internal processor. Each nibble represents a represented by FIRM_Y = 0x2013. digit in this revision code. For example, if FIRM_REV = Table 65. FIRM_Y (Page 3, Base Address = 0x7C) 0x0102, the firmware revision is 1.02. Bits Description Table 63. FIRM_REV (Page 3, Base Address = 0x78) [15:12] Binary, year 1000’s digit, range: 0 to 9 Bits Description [11:8] Binary, year 100’s digit, range: 0 to 9 [15:12] Binary, revision, 10’s digit [7:4] Binary, year 10’s digit, range: 0 to 9 [11:8] Binary, revision, 1’s digit [3:0] Binary, year 1’s digit, range: 0 to 9 [7:4] Binary, revision, tenths digit [3:0] Binary, revision, hundredths digit PRODUCT IDENTIFICATION The PROD_ID register (see Table 66) contains the binary The FIRM_DM register (see Table 64) contains the month and equivalent of the part number (16,480 = 0x4060), and the day of the factory configuration date. FIRM_DM[15:12] and SERIAL_NUM register (see Table 67) contains a lot specific FIRM_DM[11:8] contain digits that represent the month serial number. of factory configuration. For example, November is the 11th month in a year and represented by FIRM_DM[15:8] = 0x11. Table 66. PROD_ID (Page 0, Base Address = 0x7E) FIRM_DM[7:4] and FIRM_DM[3:0] contain digits that represent Bits Description (Default = 0x4060) the day of factory configuration. For example, the 27th day of [15:0] Product identification = 0x4060 the month is represented by FIRM_DM[7:0] = 0x27. Table 67. SERIAL_NUM (Page 4, Base Address = 0x20) Table 64. FIRM_DM (Page 3, Base Address = 0x7A) Bits Description Bits Description [15:0] Lot specific serial number [15:12] Binary, month 10’s digit, range: 0 to 1 [11:8] Binary, month 1’s digit, range: 0 to 9 [7:4] Binary, day 10’s digit, range: 0 to 3 [3:0] Binary, day 1’s digit, range: 0 to 9 Rev. H | Page 25 of 44

ADIS16480 Data Sheet DIGITAL SIGNAL PROCESSING GYROSCOPES/ACCELEROMETERS MAGNETOMETER/BAROMETER Figure 20 provides a block diagram for all of the components When using the internal sampling clock, the magnetometer and settings that influence the frequency response for the output registers (x_MAGN_OUT) update at a rate of 102.5 SPS accelerometers and gyroscopes. The sample rate for each and the barometer output registers (BAROM_xxx) update at a accelerometer and gyroscope is 9.84 kHz. Each sensor has rate of 51.25 SPS. When using the external clock, the magne- its own averaging/decimation filter stage, which reduces the tometers update at a rate of 1/24th of the input clock frequency update rate to 2.46 kSPS. When using the external clock option and the barometers update at a rate that is 1/48th of the input (FNCTIO_CTRL[7:4], see Table 150), the input clock drives a clock frequency. 4-sample burst at a sample rate of 9.84 kSPS, which feeds into The update rates for the magnetometer and barometers do not the 4× averaging/decimation filter. This results in a data rate change with the DEC_RATE register settings. SYS_E_FLAG[9:8] that is equal to the input clock frequency. Note that the (see Table 60) offer new data indicator bits that indicate fresh, sensitivity to coning and sculling depends on the sample unread data is in the x_MAGN_OUT and the BAROM_xxx rate. At 2.46 kHz, the sensitivity is very low, but can become registers. The SEQ_CNT register provides a counter function to influential at lower sample rates. For best performance when help determine when there is new data in the magnetometer using an external clock, use the maximum input frequency and barometer registers. of 2.4 kHz. When SEQ_CNT = 0x0001, there is new data in the AVERAGING/DECIMATION FILTER magnetometer and barometer output registers. The SEQ_CNT The DEC_RATE register (see Table 68) provides user control register can be useful during initialization to help synchronize for the final filter stage (see Figure 20), which averages and read loops for new data in both magnetometer and barometer decimates the accelerometers, gyroscopes, delta angle, and delta outputs. When beginning a continuous read loop, read SEQ_CNT, velocity data. Note that the orientation outputs do not go through then subtract this value from the maximum value shown (range) an averaging stage, prior to decimation. The output sample rate is in Table 69 to calculate the number of internal sample cycles equal to 2460/(DEC_RATE + 1). When using the external clock until both magnetometer and barometer data is new. option (FNCTIO_CTRL[7:4], see Table 150), replace the 2460 number in this relationship, with the input clock frequency. For Table 69. SEQ_CNT (Page 0, Base Address = 0x06) example, turn to Page 3 (DIN = 0x8003), and set DEC_RATE = Bits Description 0x18 (DIN = 0x8C18, then DIN = 0x8D00) to reduce the output [15:11] Don’t care sample rate to 98.4 SPS (2460 ÷ 25). [6:0] Binary counter: range = 1 to 48/(DEC_RATE + 1) Table 68. DEC_RATE (Page 3, Base Address = 0x0C) Bits Description (Default = 0x0000) [15:11] Don’t care [10:0] Decimation rate, binary format, maximum = 2047 See Figure 20 for impact on sample rate ORIENTATION ÷D EKF 2.46kHz, fs 4 D MEMS 1 FILFTIRER 1 ÷D SENSOR 330Hz 4 ÷4 BANK D GYROSCOPE INTERNAL 2-POLE: 404Hz, 757Hz CLOCK 4× SELECTABLE AVERAGE/DECIMATION ACCELEROMETER 9.84kHz AVERAGE FIR FILTER BANK FILTER 1-POLE: 330Hz fs DECFIILMTAETRION FFIILLTTRR__BBNNKK__01 D = DEC_RATE[10:0] + 1 DIOx OPTIONAL INPUT CLOCK FNCTIO_CTRL[7] = 1 fs < 2400Hz NOTES 1 . WADTAH TEAAN S RFAANMTCPETL ITEOH _RACATTT RIESL O[E7FQ] U=9 .A18L,4 k ETHAOzC .T HTH HCEEL ISONECP KFUO TP UUCRLL SOSECA KMO PNFLR TEEHSQE FU DEEEENSDCI GYIN.NTAOT ETDH ED 4IOx xA LVIENREA (GFNEC/DTEIOC_IMCATRTILO[5N: 4F]I)L STTEARR, TWSH AIC 4H-S PARMOPDLUEC BEUSR AST, 10278-020 Figure 20. Sampling and Frequency Response Signal Flow Rev. H | Page 26 of 44

Data Sheet ADIS16480 FIR FILTER BANKS Filter Memory Organization The ADIS16480 provides four configurable, 120-tap FIR filter Each filter bank uses two pages of the user register structure. banks. Each coefficient is 16 bits wide and occupies its own See Table 72, Table 73, Table 74, and Table 75 for the register register location with each page. When designing a FIR filter for addresses in each filter bank. these banks, use a sample rate of 2.46 kHz and scale the coefficients Table 72. Filter Bank A Memory Map, FIR_COEF_Axxx so that their sum equals 32,768. For filter designs that have less Page PAGE_ID Address Register than 120 taps, load the coefficients into the lower portion of the 5 0x05 0x00 PAGE_ID filter and start with Coefficient 1. Make sure that all unused 5 0x05 0x02 to 0x07 Not used taps are equal to zero, so that they do not add phase delay to the 5 0x05 0x08 FIR_COEF_A000 response. The FILTR_BNK_x registers provide three bits per 5 0x05 0x0A FIR_COEF_A001 sensor, which configure the filter bank (A, B, C, D) and turn 5 0x05 0x0C to 0x7C FIR_COEF_A002 to filtering on and off. For example, turn to Page 3 (DIN = FIR_COEF_A058 0x8003), then write 0x002F to FILTR_BNK_0 (DIN = 0x962F, 5 0x05 0x7E FIR_COEF_A059 DIN = 0x9700) to set the x-axis gyroscope to use the FIR filter 6 0x06 0x00 PAGE_ID in Bank D, to set the y-axis gyroscope to use the FIR filter in 6 0x06 0x02 to 0x07 Not used Bank B, and to enable these FIR filters in both x- and y-axis 6 0x06 0x08 FIR_COEF_A060 gyroscopes. Note that the filter settings update after writing to 6 0x06 0x0A FIR_COEF_A061 the upper byte; therefore, always configure the lower byte first. 6 0x06 0x0C to 0x7C FIR_COEF_A062 to In cases that require configuration to only the lower byte of FIR_COEF_A118 either FILTR_BNK_0 or FILTR_BNK_1, complete the process 6 0x06 0x7E FIR_COEF_D119 by writing 0x00 to the upper byte. Table 73. Filter Bank B Memory Map, FIR_COEF_Bxxx Table 70. FILTR_BNK_0 (Page 3, Base Address = 0x16) Page PAGE_ID Address Register Bits Description (Default = 0x0000) 7 0x07 0x00 PAGE_ID 15 Don’t care 7 0x07 0x02 to 0x07 Not used 14 Y-axis accelerometer filter enable (1 = enabled) 7 0x07 0x08 FIR_COEF_B000 [13:12] Y-axis accelerometer filter bank selection: 7 0x07 0x0A FIR_COEF_B001 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D 7 0x07 0x0C to 0x7C FIR_COEF_B002 to 11 X-axis accelerometer filter enable (1 = enabled) FIR_COEF_B058 [10:9] X-axis accelerometer filter bank selection: 7 0x07 0x7E FIR_COEF_B059 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D 8 0x08 0x00 PAGE_ID 8 Z-axis gyroscope filter enable (1 = enabled) 8 0x08 0x02 to 0x07 Not used [7:6] Z-axis gyroscope filter bank selection: 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D 8 0x08 0x08 FIR_COEF_B060 5 Y-axis gyroscope filter enable (1 = enabled) 8 0x08 0x0A FIR_COEF_B061 [4:3] Y-axis gyroscope filter bank selection: 8 0x08 0x0C to 0x7C FIR_COEF_B062 to 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D FIR_COEF_B118 2 X-axis gyroscope filter enable (1 = enabled) 8 0x08 0x7E FIR_COEF_B119 [1:0] X-axis gyroscope filter bank selection: Table 74. Filter Bank C Memory Map, FIR_COEF_Cxxx 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D Page PAGE_ID Address Register Table 71. FILTR_BNK_1 (Page 3, Base Address = 0x18) 9 0x09 0x00 PAGE_ID Bits Description (Default = 0x0000) 9 0x09 0x02 to 0x07 Not used [15:12] Don’t care 9 0x09 0x08 FIR_COEF_C000 11 Z-axis magnetometer filter enable (1 = enabled) 9 0x09 0x0A FIR_COEF_C001 [10:9] Z-axis magnetometer filter bank selection: 9 0x09 0x0C to 0x7C FIR_COEF_C002 to 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D FIR_COEF_C058 8 Y-axis magnetometer filter enable (1 = enabled) 9 0x09 0x7E FIR_COEF_C059 [7:6] Y-axis magnetometer filter bank selection: 10 0x0A 0x00 PAGE_ID 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D 10 0x0A 0x02 to 0x07 Not used 5 X-axis magnetometer filter enable (1 = enabled) 10 0x0A 0x08 FIR_COEF_C060 [4:3] X-axis magnetometer filter bank selection: 10 0x0A 0x0A FIR_COEF_C061 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D 10 0x0A 0x0C to 0x7C FIR_COEF_C062 to 2 Z-axis accelerometer filter enable (1 = enabled) FIR_COEF_C118 [1:0] Z-axis accelerometer filter bank selection: 10 0x0A 0x7E FIR_COEF_C119 00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D Rev. H | Page 27 of 44

ADIS16480 Data Sheet Table 75. Filter Bank D Memory Map, FIR_COEF_Dxxx Table 76. FIR Filter Descriptions, Default Configuration Page PAGE_ID Address Register FIR Filter Bank Taps −3 dB Frequency (Hz) 11 0x0B 0x00 PAGE_ID A 120 310 11 0x0B 0x02 to 0x07 Not used B 120 55 11 0x0B 0x08 FIR_COEF_D000 C 32 275 11 0x0B 0x0A FIR_COEF_D001 D 32 63 11 0x0B 0x0C to 0x7C FIR_COEF_D002 to FIR_COEF_D058 0 11 0x0B 0x7E FIR_COEF_D059 –10 12 0x0C 0x00 PAGE_ID NO FIR –20 FILTERING 12 0x0C 0x02 to 0x07 Not used B D A C 12 0x0C 0x08 FIR_COEF_D060 B) –30 d 12 0x0C 0x0A FIR_COEF_D061 E ( –40 D U 12 0x0C 0x0C to 0x7C FIR_COEF_D062 to T –50 NI FIR_COEF_D118 G A –60 M 12 0x0C 0x7E FIR_COEF_D119 –70 –80 Default Filter Performance –90 The FIR filter banks have factory programmed filter designs. They –100 aa rseu amllm loawry- poaf sesa cfihlt feirltse trh daets higanv,e a undn iFtyig ducr eg 2a1in s.h Toawbsl et h7e6 f prerqouveidnecsy 0 200 400FREQU6E00NCY (Hz8)00 1000 1200 10278-021 response characteristics. The phase delay is equal to ½ of the total Figure 21. FIR Filter Frequency Response Curves number of taps. Rev. H | Page 28 of 44

Data Sheet ADIS16480 EXTENDED KALMAN FILTER ALGORITHM Table 78. QCVR_NOIS_LWR (Page 3, Base Address = 0x60) The extended Kalman filter (EKF) continuously estimates the Bits Description (Default = 0xC5AC) state vector, which includes the four elements in a quaternion [15:0] Gyroscope noise covariance term, lower word orientation array and the bias levels for all three gyroscopes. Figure 22 illustrates the iterative process used in the EKF, which Table 79. QCVR_RRW_UPR (Page 3, Base Address = 0x66) uses angular rate measurements (gyroscopes) to predict Bits Description (Default = 0x2E5B) orientation updates and then makes corrections using accel- [15:0] Gyroscope rate random walk (RRW) covariance term, erometer and magnetometer measurements. In addition to upper word continuous state estimation, the EKF also estimates the error Table 80. QCVR_RRW_LWR (Page 3, Base Address = 0x64) covariance terms. Using the covariance terms, current orientation, and gyroscope sensor measurements, the algorithm Bits Description (Default = 0xE6FF) computes a Kalman gain that provides a weighting value for [15:0] Gyroscope rate random walk (RRW) covariance term, lower word each sensor contribution to the state vector. The ADIS16480 has factory settings for the covariance terms but provides access to Table 81. RCVR_ACC_UPR (Page 3, Base Address = 0x6E) them in the form of user-configuration registers, for fine Bits Description (Default = 0x3189) tuning, based on application-specific conditions/requirements. [15:0] Accelerometer measurement variance term, upper word COVARIANCE TERMS Table 82. RCVR_ACC_LWR (Page 3, Base Address = 0x6C) Table 77 through Table 80 provides register information for the Bits Description (Default = 0x705F) gyroscope noise/RRW process covariance (Q) terms. Table 81 [15:0] Accelerometer measurement variance term, lower word through Table 84 provides register information for the accelerometer/magnetometer measurement covariance (R) Table 83. RCVR_MAG_UPR (Page 3, Base Address = 0x72) terms. These covariance terms use the IEEE 32-bit floating- Bits Description (Default = 0x32AB) point format. Each term has two registers, one for the upper [15:0] Magnetometer measurement variance term, upper word word and one for the lower word. Table 84. RCVR_MAG_LWR (Page 3, Base Address = 0x70) Table 77. QCVR_NOIS_UPR (Page 3, Base Address = 0x62) Bits Description (Default = 0xCC77) Bits Description (Default = 0x3727) [15:0] Magnetometer measurement variance term, lower word [15:0] Gyroscope noise covariance term, upper word EKF PROCESS QUATERNION, BIAS ERROR COVARIANCE GYROSCOPE ACCELEROMETERS PREDICT CORRECT MAGNETOMETERS Q COVARIANCE R COVARIANCE QUATERNION, BIAS ERROR COVARIANCE QUATERNION 10278-022 Figure 22. EKF Process Rev. H | Page 29 of 44

ADIS16480 Data Sheet REFERENCE FRAME Table 85. REFMTX_R11 (Page 2, Base Address = 0x62) During the power-on initialization and reset recovery opera- Bits Description (Default = 0x7FFF) tions, the ADIS16480 sets the accelerometer and magnetometer 15 Sign bit references for use in the orientation computation. During this [14:0] Magnitude, binary, 1 LSB = 1/215 process, the gravity vector becomes the accelerometer reference and the magnetometer reference computation includes the Table 86. REFMTX_R12 (Page 2, Base Address = 0x64) following steps: measure horizontal and vertical components Bits Description (Default = 0x0000) of the magnetic field and align the horizontal component to 15 Sign bit magnetic north. This also measures the inclination, which [14:0] Magnitude, binary, 1 LSB = 1/215 removes this requirement from an external system. The resulting Table 87. REFMTX_R13 (Page 2, Base Address = 0x66) reference frame is a local ENU inertial frame formed by the Bits Description (Default = 0x0000) y-axis pointing at magnetic north, the z-axis pointing up, and 15 Sign bit the x-axis completing the right-hand frame by pointing east. [14:0] Magnitude, binary, 1 LSB = 1/215 REFERENCE TRANSFORMATION MATRIX Table 88. REFMTX_R21 (Page 2, Base Address = 0x68) The reference transformation matrix, R , provides a user- IJ Bits Description (Default = 0x0000) programmable alignment function for orientation alignment 15 Sign bit to a local navigation frame. Another common name for this [14:0] Magnitude, binary, 1 LSB = 1/215 function in navigation system literature is the coordinate transformation matrix. Table 89. REFMTX_R22 (Page 2, Base Address = 0x6A) R R R  Bits Description (Default = 0x7FFF) RIJ =R1211 R1222 R1233 15 Sign bit R31 R32 R33 [14:0] Magnitude, binary, 1 LSB = 1/215 When this matrix is equal to an identify matrix (factory Table 90. REFMTX_R23 (Page 2, Base Address = 0x6C) default), the local navigation frame matches true level, with Bits Description (Default = 0x0000) respect to gravity, and magnetic north. The tare command 15 Sign bit automatically calculates and loads the matrix values that [14:0] Magnitude, binary, 1 LSB = 1/215 establish the current ADIS16480 orientation as the reference orientation. When the ADIS16480 is in the desired reference Table 91. REFMTX_R31 (Page 2, Base Address = 0x6E) orientation, initiate the tare command by setting GLOB_CMD[8] Bits Description (Default = 0x0000) = 1 (DIN = 0x8003, then DIN = 0x8301, see Table 147). 15 Sign bit Each element in this matrix is associated with a register that [14:0] Magnitude, binary, 1 LSB = 1/215 provides read and write access. See Table 85 through Table 93, Table 92. REFMTX_R32 (Page 2, Base Address = 0x70) for these registers. Use these registers to define the local Bits Description (Default = 0x0000) navigation frame, based on system generated requirements. 15 Sign bit Each element is the cross product of the unit vectors that [14:0] Magnitude, binary, 1 LSB = 1/215 describe the axes of the two frames, which are equal to the cosines of the angles between the axes. Units of rotation vary Table 93. REFMTX_R33 (Page 2, Base Address = 0x72) by ±1. When writing to these registers, write to R33 last because Bits Description (Default = 0x7FFF) a write to the upper byte of this register causes all nine registers 15 Sign bit to update inside of the ADIS16480. [14:0] Magnitude, binary, 1 LSB = 1/215 Rev. H | Page 30 of 44

Data Sheet ADIS16480 DECLINATION Automatic EKF Divergence Reset Control Bit The DECLN_ANGL register provides a user-programmable The EKF algorithm monitors the normalized innovation squared input that can shift the reference frame from magnetic north parameter to detect divergence. The normalized innovation is to geodetic north (or any arbitrary azimuth heading). the innovation (predicted measurements minus actual measure- ments) divided by the statistically computed expected error, Table 94. DECLN_ANGL (Page 3, Base Address = 0x54) which is based on the error covariance and the measurement Bits Description (Default = 0x0000) covariance. The normalized innovation is used to detect EKF [15:0] Declination angle, twos complement divergence and report it in the SYS_E_FLAG[13] bit (see Table 60), Scale factor = π/215 radians/LSB and to trigger an automatic EKF reset when EKF_CFG[12] = 1. The automatic reset process works best when the divergence ADAPTIVE OPERATION comes from short-term, transient inertial conditions. Use this The EKF_CNFG register, in Table 95, offers a number of control function only when predeployment validation testing can confirm bits for customizing EKF operation. that it performs well through all application conditions. If there is any sign of instability, keep this function off (EKF_CFG[12] = 0), Table 95. EKF_CNFG (Page 3, Base Address = 0x50) monitor SYS_E_FLAG[13] to test for divergence in the EKF, Bits Description (Default = 0x0200) and, after detecting divergence, use the manual EKF reset function [15:13] Not used in GLOB_CMD[15] (see Table 147) or the full software reset in 12 Automatic reset recovery from divergence GLB_CMD[7] to initiate a reset in the EKF. Note that this recovery 1 = enable, 0 = disable process requires zero inertial motion and a magnetic environment [11:10] Not used free of interference to optimize postrecovery accuracy. 9 Fade enable Gyroscope Fade Control Bit 1 = enable, 0 = disable EKF_CNFG[9] (see Table 95) provides an on/off control bit for 8 Adaptive EKF enable the gyroscope fade function, which is an internal adjustment 1 = enable, 0 = disable of the gyroscope process covariance terms. This reduces the [7:5] Not used impact of gyroscope scale errors during transient events, where 4 Orientation format control the gyroscope rates are quickly changing. The fade function 1 = rotation matrix, 0 = quaternion and Euler effectively reduces the weighting of the gyroscope measure- 3 Body frame/local navigation frame selection ments, with respect to the accelerometers and magnetometers, 1 = body frame, 0 = local navigation frame during these transient events. The adjustment terminates when 2 Not for external use, always set to 0 the rates return to zero. 1 Magnetometer disable 1 = enable, 0 = disable Body Frame/Local Navigation Frame Bit 0 Gravity removal (from accelerometers) EKF_CNFG[3] (see Table 95) provides a bit for selecting between 1 = enable, 0 = disable the body frame and local navigation frame. When using the local navigation frame, the body sensor measurements are Adaptive EKF Enable Bit translated into the local navigation frame before being loaded EKF_CNFG[8] (see Table 95) provides an on/off control bit into the output registers. Absent any external acceleration, the for the adaptive part of the EKF function. The adaptive part accelerometer outputs remain unchanged as the ADIS16480 is of the EKF computes the measurement covariance terms (R), rotated when in this mode. Set EKF_CNFG[3] = 1 (DIN = 0x8003, which enables real-time adjustments for vibration and magnetic DIN = 0xD008, DIN = 0xD102) to establish the body frame as field disturbances. See Table 81 through Table 84 for read access the reference frame and to preserve the fade enable setting. to the measurement covariance terms. Rev. H | Page 31 of 44

ADIS16480 Data Sheet Orientation Format Control Bit Linear Acceleration/Magnetic Disturbance Detection EKF_CNFG[4] (see Table 95) provides a selection bit for angle The ADIS16480 checks the magnitudes of the accelerometers data format. Set EKF_CNFG[4] = 1 (DIN = 0x8003, DIN = and magnetometers and compares their values against those of 0xD010, DIN = 0xD102) to use the rotation matrix format and the corresponding reference vectors. If the difference exceeds to preserve the fade enable setting. the percentage programmed in the disturbance thresholds, the Magnetometer Disable Control Bit algorithm automatically ignores the affected sensor group for the duration of the external disturbance. EKF_CNFG[1] (see Table 95) provides an on/off control bit for the magnetometer disable function, which disables the Table 96. ACC_DISTB_THR (Page 3, Base Address = 0x56) magnetometer influence over angle calculations in the EKF. Bits Description (Default = 0x0020) Gravity Removal Control Bit [15:8] Not used [7:0] Threshold, binary, scale factor = 0.39%/LSB (50%/128) EKF_CNFG[0] (see Table 95) provides an on/off control bit for the gravity removal function, which removes the gravity Table 97. MAG_DISTB_THR (Page 3, Base Address = 0x58) component from the accelerometer outputs. This function Bits Description (Default = 0x0030) applies only when using the local navigation frame mode. [15:8] Not used [7:0] Threshold, binary, scale factor = 0.39%/LSB (50%/128) Rev. H | Page 32 of 44

Data Sheet ADIS16480 CALIBRATION The ADIS16480 factory calibration produces correction formulas Manual Sensitivity Correction for the gyroscopes, accelerometers, magnetometers, and The x_GYRO_SCALE registers enable sensitivity adjustment barometers, and then programs them into the flash memory. (see Table 104, Table 105, and Table 106). In addition, there are a series of user configurable calibration registers, for in-system tuning. Table 104. X_GYRO_SCALE (Page 2, Base Address = 0x04) GYROSCOPES Bits Description (Default = 0x0000) [15:0] X-axis gyroscope scale correction; twos complement, The use calibration for the gyroscopes includes registers for 0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052% adjusting bias and sensitivity, as shown in Figure 23. Table 105. Y_GYRO_SCALE (Page 2, Base Address = 0x06) 1 + X_GYRO_SCALE Bits Description (Default = 0x0000) FACTORY [15:0] Y-axis gyroscope scale correction; twos complement, XG-YARXOIS CALIBARNADTION X_GYRO_OUT X_GYRO_LOW 0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052% FILTERING XG_BIAS_HIGH XG_BIAS_LOW 10278-023 Table 106. Z_GYRO_SCALE (Page 2, Base Address = 0x08) Bits Description (Default = 0x0000) Figure 23. User Calibration Signal Path, Gyroscopes [15:0] Z-axis gyroscope scale correction; twos complement, Manual Bias Correction 0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052% The xG_BIAS_HIGH registers (see Table 98, Table 99, and Linear Acceleration on Effect on Gyroscope Bias Table 100) and xG_BIAS_LOW registers (see Table 101, Table 102, and Table 103) provide a bias adjustment function MEMS gyroscopes typically have a bias response to linear for the output of each gyroscope sensor. acceleration that is normal to their axis of rotation. The ADIS16480 offers an optional compensation function for this effect. The Table 98. XG_BIAS_HIGH (Page 2, Base Address = 0x12) factory default setting for Register 0x00C0 enables this function. To Bits Description (Default = 0x0000) turn it off, turn to Page 3 (DIN = 0x8003) and set CONFIG[7] = 0 [15:0] X-axis gyroscope offset correction, upper word (DIN = 0x8A40, DIN = 0x8B00). Note that this also keeps the twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec point of percussion alignment function enabled. Table 99. YG_BIAS_HIGH (Page 2, Base Address = 0x16) Table 107. CONFIG (Page 3, Base Address = 0x0A) Bits Description (Default = 0x0000) Bits Description (Default = 0x00C0) [15:0] Y-axis gyroscope offset correction, upper word; [15:8] Not used twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec 7 Linear-g compensation for gyroscopes (1 = enabled) Table 100. ZG_BIAS_HIGH (Page 2, Base Address = 0x1A) 6 Point of percussion alignment (1 = enabled) Bits Description (Default = 0x0000) [5:2] Not used [15:0] Z-axis gyroscope offset correction, upper word; 1 Real-time clock, daylight savings time twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec (1: enabled, 0: disabled) 0 Real-time clock control Table 101. XG_BIAS_LOW (Page 2, Base Address = 0x10) (1: relative/elapsed timer mode, 0: calendar mode) Bits Description (Default = 0x0000) [15:0] X-axis gyroscope offset correction, lower word; twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec ÷ 216 = ~0.000000305°/sec Table 102. YG_BIAS_LOW (Page 2, Base Address = 0x14) Bits Description (Default = 0x0000) [15:0] Y-axis gyroscope offset correction, lower word; twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec ÷ 216 = ~0.000000305°/sec Table 103. ZG_BIAS_LOW (Page 2, Base Address = 0x18) Bits Description (Default = 0x0000) [15:0] Z-axis gyroscope offset correction, lower word twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec ÷ 216 = ~0.000000305°/sec Rev. H | Page 33 of 44

ADIS16480 Data Sheet ACCELEROMETERS Manual Sensitivity Correction The user calibration for the accelerometers includes registers for The x_ACCL_SCALE registers enable sensitivity adjustment adjusting bias and sensitivity, as shown in Figure 24. (see Table 114, Table 115, and Table 116). 1 + X_ACCL_SCALE Table 114. X_ACCL_SCALE (Page 2, Base Address = 0x0A) Bits Description (Default = 0x0000) FACTORY XA-CACXLIS CALIBARNADTION X_ACCL_OUT X_ACCL_LOW [15:0] X-axis accelerometer scale correction, FILTERING Twos complement, 0x0000 = unity gain, XA_BIAS_HIGH XA_BIAS_LOW 10278-024 1 LSB = 1 ÷ 215 = ~0.003052% Figure 24. User Calibration Signal Path, Accelerometers Table 115. Y_ACCL_SCALE (Page 2, Base Address = 0x0C) Manual Bias Correction Bits Description (Default = 0x0000) [15:0] Y-axis accelerometer scale correction, The xA_BIAS_HIGH registers (see Table 108, Table 109, Twos complement, 0x0000 = unity gain, and Table 110) and xA_BIAS_LOW registers (see Table 111, 1 LSB = 1 ÷ 215 = ~0.003052% Table 112, and Table 113) provide a bias adjustment function for the output of each accelerometer sensor. The xA_BIAS_HIGH Table 116. Z_ACCL_SCALE (Page 2, Base Address = 0x0E) registers use the same format as x_ACCL_OUT registers. Bits Description (Default = 0x0000) The xA_BIAS_LOW registers use the same format as [15:0] Z-axis accelerometer scale correction, x_ACCL_LOW registers. Twos complement, 0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052% Table 108. XA_BIAS_HIGH (Page 2, Base Address = 0x1E) Bits Description (Default = 0x0000) MAGNETOMETERS [15:0] X-axis accelerometer offset correction, high word, The user calibration registers enable both hard iron and soft Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg iron correction, as shown in the following relationship: Table 109. YA_BIAS_HIGH (Page 2, Base Address = 0x22) M  1+S S S  M  H  B[1i5ts:0 ] DYTw-eaosxcsisr c iapocmtcieoplnele r(moDmeenefatt,eu 0rl t og =f =f s0 e0xtx0 c00o00r0r00e),c 1ti oLSnB, h =ig 0h.8 w mogrd , MMYXZCCC= SS321111 1+S13S2222 1+S12S3333×MMYXZ+HHYXZ The M , M , and M variables represent the magnetometer X Y Z Table 110. ZA_BIAS_HIGH (Page 2, Base Address = 0x26) data, prior to application of the user correction formula. The Bits Description (Default = 0x0000) M , M , and M represent the magnetometer data, after the XC YC ZC [15:0] Z-axis accelerometer offset correction, high word, application of the user correction formula. Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg Table 111. XA_BIAS_LOW (Page 2, Base Address = 0x1C) Bits Description (Default = 0x0000) [15:0] X-axis accelerometer offset correction, low word, Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg ÷ 216 = ~0.0000122 mg Table 112. YA_BIAS_LOW (Page 2, Base Address = 0x20) Bits Description (Default = 0x0000) [15:0] Y-axis accelerometer offset correction, low word, Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg ÷ 216 = ~0.0000122 mg Table 113. ZA_BIAS_LOW (Page 2, Base Address = 0x24) Bits Description (Default = 0x0000) [15:0] Z-axis accelerometer offset correction, low word; Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg ÷ 216 = ~0.0000122 mg Rev. H | Page 34 of 44

Data Sheet ADIS16480 Hard Iron Correction Table 122. SOFT_IRON_S12 (Page 2, Base Address = 0x30) Bits Description (Default = 0x0000) Table 117, Table 118, and Table 119 describe the register format for the hard iron correction factors: HX, HY, and HZ. These [15:0] Magnetometer soft iron correction factor, S12 registers use a twos complement format. Table 120 provides Twos complement format, see Table 130 for examples some numerical examples for converting the digital codes for Table 123. SOFT_IRON_S13 (Page 2, Base Address = 0x32) these registers into their decimal equivalents. Bits Description (Default = 0x0000) Table 117. HARD_IRON_X (Page 2, Base Address = 0x28) [15:0] Magnetometer soft iron correction factor, S13 Bits Description (Default = 0x0000) Twos complement format, see Table 130 for examples [15:0] X-axis magnetometer hard iron correction factor, H X Table 124. SOFT_IRON_S21 (Page 2, Base Address = 0x34) Twos complement, ±3.2767 gauss range, 0.1 mgauss/LSB, 0 gauss = 0x0000 (see Table 120) Bits Description (Default = 0x0000) [15:0] Magnetometer soft iron correction factor, S 21 Table 118. HARD_IRON_Y (Page 2, Base Address = 0x2A) Twos complement format, see Table 130 for examples Bits Description (Default = 0x0000) [15:0] Y-axis magnetometer hard iron correction factor, H Table 125. SOFT_IRON_S22 (Page 2, Base Address = 0x36) Y Twos complement, ±3.2767 gauss range, Bits Description (Default = 0x0000) 0.1 mgauss/LSB, 0 gauss = 0x0000 (see Table 120) [15:0] Magnetometer soft iron correction factor, S 22 Twos complement format, see Table 130 for examples Table 119. HARD_IRON_Z (Page 2, Base Address = 0x2C) Bits Description (Default = 0x0000) Table 126. SOFT_IRON_S23 (Page 2, Base Address = 0x38) [15:0] Z-axis magnetometer hard iron correction factor, H Bits Description (Default = 0x0000) z Twos complement, ±3.2767 gauss range, [15:0] Magnetometer soft iron correction factor, S 23 0.1 mgauss/LSB, 0 gauss = 0x0000 (see Table 120) Twos complement format, see Table 130 for examples Table 120. HARD_IRON_x Data Format Examples Table 127. SOFT_IRON_S31 (Page 2, Base Address = 0x3A) Magnetic Field Decimal Hex Binary Bits Description (Default = 0x0000) +3.2767 gauss +32,767 0x7FFF 0111 1111 1111 1111 [15:0] Magnetometer soft iron correction factor, S 31 +0.2 mgauss +2 0x0002 0000 0000 0000 0010 Twos complement format, see Table 130 for examples +0.1 mgauss +1 0x0001 0000 0000 0000 0001 0 gauss 0 0x0000 0000 0000 0000 0000 Table 128. SOFT_IRON_S32 (Page 2, Base Address = 0x3C) −0.1 mgauss −1 0xFFFF 1111 1111 1111 1111 Bits Description (Default = 0x0000) −0.2 mgauss −2 0xFFFE 1111 1111 1111 1110 [15:0] Magnetometer soft iron correction factor, S32 −3.2768 gauss −32,768 0x8000 1000 0000 0000 0000 Twos complement format, see Table 130 for examples Soft Iron Correction Matrix Table 129. SOFT_IRON_S33 (Page 2, Base Address = 0x3E) Bits Description (Default = 0x0000) The soft iron correction matrix contains correction factors for [15:0] Magnetometer soft iron correction factor, S 33 both sensitivity (S , S , S ) and alignment (S , S , S , S , S , 11 22 33 12 13 21 23 31 Twos complement format, see Table 130 for examples S ). The registers that represent each soft iron correction factor 32 are in Table 121 (S11), Table 122 (S12), Table 123 (S13), Table 124 Table 130. Soft Iron Correction, Numerical Examples (S21), Table 125 (S22), Table 126 (S23), Table 127 (S31), Table 128 Delta (%) Decimal Hex Binary (S32), and Table 129 (S33). Table 130 offers some numerical +100 – 1/216 +32,767 0x7FFF 0111 1111 1111 1111 examples for converting between the digital codes and their +200/215 +2 0x0002 0000 0000 0000 0010 effect on the magnetometer output, in terms of percent-change. +100/215 +1 0x0001 0000 0000 0000 0001 0 0 0x0000 0000 0000 0000 0000 Table 121. SOFT_IRON_S11 (Page 2, Base Address = 0x2E) −100/215 −1 0xFFFF 1111 1111 1111 1111 Bits Description (Default = 0x0000) −200/215 −2 0xFFFE 1111 1111 1111 1110 [15:0] Magnetometer soft iron correction factor, S 11 −100 −32,768 0x8000 1000 0000 0000 0000 Twos complement format, see Table 130 for examples Rev. H | Page 35 of 44

ADIS16480 Data Sheet BAROMETERS RESTORING FACTORY CALIBRATION The BR_BIAS_HIGH register (see Table 131) and Turn to Page 3 (DIN = 0x8003) and set GLOB_CMD[6] = 1 BR_BIAS_LOW register (Table 132) provide an offset (DIN = 0x8240, DIN = 0x8300) to execute the factory calibration control function and use the same format as the output restore function. This function resets each user calibration register registers, BAROM_OUT and BAROM_LOW. to zero, resets all sensor data to 0, and automatically updates the flash memory within 72 ms. See Table 147 for more information Table 131. BR_BIAS_HIGH (Page 2, Base Address = 0x42) on GLOB_CMD. Bits Description (Default = 0x0000) POINT OF PERCUSSION ALIGNMENT [15:0] Barometric pressure bias correction factor, high word Twos complement, ±1.3 bar measurement range, CONFIG[6] offers a point of percussion alignment function 0 bar = 0x0000, 1 LSB = 40 µbar that maps the accelerometer sensors to the corner of the package identified in Figure 25. To activate this feature, turn to Page 3 Table 132. BR_BIAS_LOW (Page 2, Base Address = 0x40) (DIN = 0x8003), then set CONFIG[6] = 1 (DIN = 0x8A40, Bits Description (Default = 0x0000) DIN = 0x8B00). See Table 107 for more information on the [15:0] Barometric pressure bias correction factor, low word CONFIG register. Twos complement, ±1.3 bar measurement range, 0 bar = 0x0000, 1 LSB = 40 µbar ÷ 216 = ~0.00061 µbar PIN 23 PIN 1 PASOELIEIGN CNTO MONEFFN PITGE [RR6E]C.FUESRSEIONNCE POINT. 10278-025 Figure 25. Point of Percussion Reference Point Rev. H | Page 36 of 44

Data Sheet ADIS16480 ALARMS Each sensor has an independent alarm function that provides Table 138. ZA_ALM_MAGN (Page 3, Base Address = 0x32) controls for alarm magnitude, polarity, and enabling a dynamic Bits Description (Default = 0x0000) rate of change option. The ALM_STS register (see Table 62) [15:0] Z-axis accelerometer alarm threshold settings, contains the alarm output flags and the FNCTIO_CTRL register Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg (see Table 150) provides an option for configuring one of the digital I/O lines as an alarm indicator. Table 139. XM_ALM_MAGN (Page 3, Base Address = 0x34) STATIC ALARM USE Bits Description (Default = 0x0000) [15:0] X-axis magnetometer alarm threshold settings, The static alarm setting compares each sensor output with Twos complement, 0 gauss = 0x0000, the trigger settings in the xx_ALM_MAGN registers (see 1 LSB = 0.1 mgauss Table 133 through Table 142) of that sensor. The polarity controls for each alarm are in the ALM_CNFG_x registers (see Table 143, Table 140. YM_ALM_MAGN (Page 3, Base Address = 0x36) Table 144, Table 145) establish the relationship for the condition Bits Description (Default = 0x0000) that causes the corresponding alarm flag to be active. For example, [15:0] Y-axis magnetometer alarm threshold settings, when ALM_CNFG_0[13] = 1, the alarm flag for the x-axis Twos complement, 0 gauss = 0x0000, accelerometer (ALM_STS[3], see Table 62) becomes active 1 LSB = 0.1 mgauss (equal to 1) when X_ACCL_OUT is greater than Table 141. ZM_ALM_MAGN (Page 3, Base Address = 0x38) XA_ALM_MAGN. Bits Description (Default = 0x0000) DYNAMIC ALARM USE [15:0] Z-axis magnetometer alarm threshold settings, The dynamic alarm setting provides the option to compare the Twos complement, 0 gauss = 0x0000, 1 LSB = 0.1 mgauss change in each sensor output over a period of 48.7 ms with the xx_ALM_MAGN register of that sensor. Table 142. BR_ALM_MAGN (Page 3, Base Address = 0x3A) Bits Description (Default = 0x0000) Table 133. XG_ALM_MAGN (Page 3, Base Address = 0x28) [15:0] Z-axis barometer alarm threshold settings, Bits Description (Default = 0x0000) Twos complement, 0 bar = 0x0000, 1 LSB = 40 µbar [15:0] X-axis gyroscope alarm threshold settings, Twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec Table 143. ALM_CNFG_0 (Page 3, Base Address = 0x20) Bits Description (Default = 0x0000) Table 134. YG_ALM_MAGN (Page 3, Base Address = 0x2A) 15 X-axis accelerometer alarm (1 = enabled) Bits Description (Default = 0x0000) 14 Not used [15:0] Y-axis gyroscope alarm threshold settings, Twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec 13 X-axis accelerometer alarm polarity (1 = greater than) 12 X-axis accelerometer dynamic enable (1 = enabled) Table 135. ZG_ALM_MAGN (Page 3, Base Address = 0x2C) 11 Z-axis gyroscope alarm (1 = enabled) Bits Description (Default = 0x0000) 10 Not used [15:0] Z-axis gyroscope alarm threshold settings, 9 Z-axis gyroscope alarm polarity (1 = greater than) Twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec 8 Z-axis gyroscope dynamic enable (1 = enabled) 7 Y-axis gyroscope alarm (1 = enabled) Table 136. XA_ALM_MAGN (Page 3, Base Address = 0x2E) 6 Not used Bits Description (Default = 0x0000) 5 Y-axis gyroscope alarm polarity (1 = greater than) [15:0] X-axis accelerometer alarm threshold settings, 4 Y-axis gyroscope dynamic enable (1 = enabled) Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg 3 X-axis gyroscope alarm (1 = enabled) Table 137. YA_ALM_MAGN (Page 3, Base Address = 0x30) 2 Not used Bits Description (Default = 0x0000) 1 X-axis gyroscope alarm polarity (1 = greater than) [15:0] Y-axis accelerometer alarm threshold settings, 0 X-axis gyroscope dynamic enable (1 = enabled) Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg Rev. H | Page 37 of 44

ADIS16480 Data Sheet Table 144. ALM_CNFG_1 (Page 3, Base Address = 0x22) Alarm Example Bits Description (Default = 0x0000) Table 146 offers an alarm configuration example, which sets the 15 Y-axis magnetometer alarm (1 = enabled) z-axis gyroscope alarm to trip when Z_GYRO_OUT > 131.1°/sec 14 Not used (0x199B). 13 Y-axis magnetometer alarm polarity (1 = greater than) 12 Y-axis magnetometer dynamic enable (1 = enabled) Table 146. Alarm Configuration Example 11 X-axis magnetometer (1 = enabled) DIN Description 10 Not used 0xAC9B Set ZG_ALM_MAGN[7:0] = 0x9B 9 X-axis magnetometer alarm polarity (1 = greater than) 0xAD19 Set ZG_ALM_MAGN[15:8] = 0x19 8 X-axis magnetometer dynamic enable (1 = enabled) 0xA000 Set ALM_CNFG_0[7:0] = 0x00 7 Z-axis accelerometer alarm (1 = enabled) 0xA10A Set ALM_CNFG_0[15:8] = 0x0A 6 Not used 5 Z-axis accelerometer alarm polarity (1 = greater than) 4 Z-axis accelerometer dynamic enable (1 = enabled) 3 Y-axis accelerometer alarm (1 = enabled) 2 Not used 1 Y-axis accelerometer alarm polarity (1 = greater than) 0 Y-axis accelerometer dynamic enable (1 = enabled) Table 145. ALM_CNFG_2 (Page 3, Base Address = 0x24) Bits Description (Default = 0x0000) [15:8] Not used 7 Barometer alarm (1 = enabled) 6 Not used 5 Barometer alarm polarity (1 = greater than) 4 Barometer dynamic enable (1 = enabled) 3 Z-axis magnetometer alarm (1 = enabled) 2 Not used 1 Z-axis magnetometer alarm polarity (1 = greater than) 0 Z-axis magnetometer dynamic enable (1 = enabled) Rev. H | Page 38 of 44

Data Sheet ADIS16480 SYSTEM CONTROLS The ADIS16480 provides a number of system level controls MEMORY MANAGEMENT for managing its operation, which include reset, self-test, The data retention of the flash memory depends on the tempera- calibration, memory management, and I/O configuration. ture and the number of write cycles. Figure 26 characterizes the GLOBAL COMMANDS dependence on temperature, and the FLSHCNT_LOW and FLSHCNT_HIGH registers (see Table 148 and Table 149) The GLOB_CMD register (see Table 147) provides trigger bits for provide a running count of flash write cycles. The flash updates several operations. Write 1 to the appropriate bit in GLOB_CMD every time GLOB_CMD[6] or GLOB_CMD[3] is set to 1. to start a function. After the function completes, the bit restores to 0. Table 148. FLSHCNT_LOW (Page 2, Base Address = 0x7C) Bits Description Table 147. GLOB_CMD (Page 3, Base Address = 0x02) [15:0] Binary counter; number of flash updates, lower word Bits Description Execution Time 15 EKF reset 416 ms Table 149. FLSHCNT_HIGH (Page 2, Base Address = 0x7E) [14:10] Not used Not applicable Bits Description 9 Reset the reference rotation matrix 1 sample period [15:0] Binary counter; number of flash updates, upper word 8 Tare command 1 sample period 7 Software reset 1.8 seconds 6 Factory calibration restore 1 sample period [5:4] Not used Not applicable 600 3 Flash memory update 1100 ms 2 Flash memory test 53 ms s) ar 450 1 Self-test 12 ms Ye 0 Not used Not applicable ON ( NTI 300 E Software Reset ET R Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[7] = 1 150 (DIN = 0x8280, DIN = 0x8300) to reset the operation, which removes all data, initializes all registers from their flash settings, aanltder sntaatritvse d taot ath ceo RlleScTti poinn. T(sheies Tfuabnlcet i6o,n P pinr o8v)i.d es a firmware 030 40 55JUNCT7IO0N TEM85PERAT1U00RE (°C12)5 135 150 10278-026 Automatic Self-Test Figure 26. Flash Memory Retention Flash Memory Test Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[1] = 1 (DIN = 0x8202, then DIN = 0x8300) to run an automatic self- Turn to Page 3 (DIN = 0x8003), and then set GLOB_CMD[2] = 1 test routine, which executes the following steps: (DIN = 0x8204, DIN = 0x8300) to run a checksum test of the internal flash memory, which compares a factory programmed 1. Measure output on each sensor. value with the current sum of the same memory locations. The 2. Activate self-test on each sensor. result of this test loads into SYS_E_FLAG[6]. Turn to Page 0 3. Measure output on each sensor. (DIN = 0x8000) and use DIN = 0x0800 to read SYS_E_FLAG. 4. Deactivate the self-test on each sensor. 5. Calculate the difference with self-test on and off. 6. Compare the difference with internal pass/fail criteria. 7. Report the pass/fail results for each sensor in DIAG_STS. After waiting 12 ms for this test to complete, turn to Page 0 (DIN = 0x8000) and read DIAG_STS using DIN = 0x0A00. Note that using an external clock can extend this time. When using an external clock of 100 Hz, this time extends to 35 ms. Note that 100 Hz is too slow for optimal sensor performance. Rev. H | Page 39 of 44

ADIS16480 Data Sheet GENERAL-PURPOSE I/O General-Purpose I/O Control There are four general-purpose I/O pins: DIO1, DIO2, DIO3, and When FNCTIO_CTRL does not configure a DIOx pin, DIO4. The FNCTIO_CTRL register controls the basic function GPIO_CTRL provides register controls for general-purpose use of each I/O pin. Each I/O pin only supports one function at a of the pin. GPIO_CTRL[3:0] provides input/output assignment time. In cases where a single pin has two different assignments, controls for each pin. When the DIOx pins are inputs, monitor the enable bit for the lower priority function automatically their levels by reading GPIO_CTRL[7:4]. When the DIOx pins resets to zero and is disabled. The priority is (1) data-ready, (2) are used as outputs, set their levels by writing to GPIO_CTRL[7:4]. sync clock input, (3) alarm indicator, and (4) general-purpose, For example, use the following sequence to set DIO1 and where 1 identifies the highest priority and 4 indicates the lowest DIO3 as high and low output pins, respectively, and set DIO2 priority. and DIO4 as input pins. Turn to Page 3 (DIN = 0x8003) and set GPIO_CTRL[7:0] = 0x15 (DIN = 0x8815, then DIN = 0x8900). Table 150. FNCTIO_CTRL (Page 3, Base Address = 0x06) Bits Description (Default = 0x000D) Table 151. GPIO_CTRL (Page 3, Base Address = 0x08) [15:12] Not used Bits Description (Default = 0x00X0)1 11 Alarm indicator: 1 = enabled, 0 = disabled [15:8] Don’t care 10 Alarm indicator polarity: 1 = positive, 0 = negative 7 General-Purpose I/O Pin 4 (DIO4) data level [9:8] Alarm indicator line selection: 6 General-Purpose I/O Pin 3 (DIO3) data level 00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4 5 General-Purpose I/O Pin 2 (DIO2) data level 7 Sync clock input enable: 1 = enabled, 0 = disabled 4 General-Purpose I/O Pin 1 (DIO1) data level 6 Sync clock input polarity: 3 General-Purpose I/O Pin 4 (DIO4) direction control 1 = rising edge, 0 = falling edge (1 = output, 0 = input) [5:4] Sync clock input line selection: 2 General-Purpose I/O Pin 3 (DIO3) direction control 00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4 (1 = output, 0 = input) 3 Data-ready enable: 1 = enabled, 0 = disabled 1 General-Purpose I/O Pin 2 (DIO2) direction control 2 Data-ready polarity: 1 = positive, 0 = negative (1 = output, 0 = input) [1:0] Data-ready line selection: 0 General-Purpose I/O Pin 1 (DIO1) direction control 00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4 (1 = output, 0 = input) 1 GPIO_CTRL[7:4] reflects levels on the DIOx pins and does not have a default Data-Ready Indicator setting FNCTIO_CTRL[3:0] provide some configuration options for POWER MANAGEMENT using one of the DIOx pins as a data-ready indicator signal, The SLP_CNT register (see Table 152) provides controls for which can drive a processor interrupt control line. The factory both power-down mode and sleep mode. The trade-off between default assigns DIO2 as a positive polarity, data-ready signal. power-down mode and sleep mode is between idle power and Use the following sequence to change this assignment to DIO1 recovery time. Power-down mode offers the best idle power with a negative polarity: turn to Page 3 (DIN = 0x8003) and set consumption but requires the most time to recover. Also, all FNCTIO_CTRL[3:0] = 1000 (DIN = 0x8608, then DIN = 0x8700). volatile settings are lost during power-down but are preserved The timing jitter on the data-ready signal is ±1.4 µs. during sleep mode. Input Sync/Clock Control For timed sleep mode, turn to Page 3 (DIN = 0x8003), write the FNCTIO_CTRL[7:4] provide some configuration options for amount of sleep time to SLP_CNT[7:0] and then, set SLP_CNT[8] using one of the DIOx pins as an input synchronization signal = 1 (DIN = 0x9101) to start the sleep period. For a timed power- for sampling inertial sensor data. For example, use the following down period, change the last command to set SLP_CNT[9] = 1 sequence to establish DIO4 as a positive polarity, input clock pin (DIN = 0x9102). To power down or sleep for an indefinite period, and keep the factory default setting for the data-ready function: set SLP_CNT[7:0] = 0x00 first, then set either SLP_CNT[8] or turn to Page 3 (DIN = 0x8003) and set FNCTIO_CTRL[7:0] SLP_CNT[9] to 1. Note that the command takes effect when the = 0xFD (DIN = 0x86FD, then DIN = 0x8700). Note that this CS pin goes high. To awaken the device from sleep or power-down command also disables the internal sampling clock, and no mode, use one of the following options to restore normal operation: data sampling takes place without the input clock signal. • Assert CS from high to low. When selecting a clock input frequency, consider the 330 Hz • Pulse RST low, then high again. sensor bandwidth, because under sampling the sensors can degrade noise and stability performance. • Cycle the power. Rev. H | Page 40 of 44

Data Sheet ADIS16480 For example, set SLP_CNT[7:0] = 0x64 (DIN = 0x9064), then When using the clock/calendar mode, write the current time to set SLP_CNT[8] = 1 (DIN = 0x9101) to start a sleep period of the real-time registers in the following sequence: seconds 100 seconds. (TIME_MS_OUT[5:0]), minutes (TIME_ MS_OUT[13:8]), hours (TIME_DH_OUT[5:0]), day (TIME_ DH_OUT[12:8]), Table 152. SLP_CNT (Page 3, Base Address = 0x10) month (TIME_YM_OUT[3:0]), and year (TIME_YM_ Bits Description OUT[14:8]). The updates to the timer do not become active [15:10] Not used until there is a successful write to the TIME_ YM_OUT[14:8] 9 Power-down mode byte. The real-time clock registers reflect the newly updated 8 Normal sleep mode values only after the next seconds tick of the clock that follows [7:0] Programmable time bits; 1 sec/LSB; the write to TIME_YM_OUT[14:8] (year). Writing to TIME_ 0x00 = indefinite YM_OUT[14:8] activates all timing values; therefore, always write to this location last when updating the timer, even if the If the sleep mode and power-down mode bits are both set high, year information does not require updating. the normal sleep mode (SLP_CNT[8]) bit takes precedence. Write the current time to each time data register after setting General-Purpose Registers CONFIG[0] = 1 (DIN = 0x8003, DIN = 0x8A01). Note that The USER_SCR_x registers (see Table 153, Table 154, Table 155, CONFIG[1] provides a bit for managing daylight savings time. and Table 156) provide four 16-bit registers for storing data. After the CONFIG and TIME_xx_OUT registers are configured, set GLOB_CMD[3] = 1 (DIN = 0x8003, DIN = 0x8208, DIN = Table 153. USER_SCR_1 (Page 2, Base Address = 0x74) 0x8300) to back up these settings in flash, and use a separate Bits Description 3.3 V source to supply power to the VDDRTC function. Note [15:0] User-defined that access to time data in the TIME_xx_OUT registers requires normal operation (VDD = 3.3 V and full startup), but the timer Table 154. USER_SCR_2 (Page 2, Base Address = 0x76) function only requires that VDDRTC = 3.3 V when the rest of Bits Description the ADIS16480 is turned off. [15:0] User-defined Table 157. TIME_MS_OUT (Page 0, Base Address = 0x78) Table 155. USER_SCR_3 (Page 2, Base Address = 0x78) Bits Description Bits Description [15:14] Not used [15:0] User-defined [13:8] Minutes, binary data, range = 0 to 59 [7:6] Not used Table 156. USER_SCR_4 (Page 2, Base Address = 0x7A) [5:0] Seconds, binary data, range = 0 to 59 Bits Description [15:0] User-defined Table 158. TIME_DH_OUT (Page 0, Base Address = 0x7A) Bits Description Real-Time Clock Configuration/Data [15:13] Not used The VDDRTC power supply pin (see Table 6, Pin 23) provides [12:8] Day, binary data, range = 1 to 31 a separate supply for the real-time clock (RTC) function. This [7:6] Not used enables the RTC to keep track of time, even when the main supply [5:0] Hours, binary data, range = 0 to 23 (VDD) is off. Configure the RTC function by selecting one of two modes in CONFIG[0] (see Table 107). The real-time clock Table 159. TIME_YM_OUT (Page 0, Base Address = 0x7C) data is available in the TIME_MS_OUT register (see Table 157), Bits Description TIME_DH_OUT register (see Table 158), and TIME_YM_OUT [15] Not used register (see Table 159). When using the elapsed timer mode, [14:8] Year, binary data, range = 0 to 99, relative to 2000 A.D. the time data registers start at 0x0000 when the device starts up [7:4] Not used (or resets) and begin keeping time in a manner that is similar to [3:0] Month, binary data, range = 1 to 12 a stopwatch. Rev. H | Page 41 of 44

ADIS16480 Data Sheet APPLICATIONS INFORMATION MOUNTING TIPS 39.600BSC 19.800BSC For best performance, follow these simple rules when installing the ADIS16480 into a system: PASS-THROUGH HOLE FOR MOUNTING SCREWS DIAMETER OF THE HOLE 1. Eliminate opportunity for translational force (x-axis and MUST ACCOMMODATE DIMENSIONAL TOLERANCE y-axis direction, see Figure 6) application on the electrical BETWEEN THE CONNECTOR AND HOLES. connector. 2. Isolate mounting force to the four corners, on the part of 42.600 ADIS16480 OUTLINE the package surface that surrounds the mounting holes. C C 3. Ususgeg uenstiefodr tmor qmuoeu snettitningg f oisr c4e0s ionnc ha-lol fuonucre cs o(r0n.2e8r5s. NTh-me ). 21.300BS 1.642BS FAOLR0IG.M5N6AM0TIEBNNSGTCSH2O×OCLKEEST These three rules help prevent nonuniform force profiles, which can warp the package and introduce bias errors in the sensors. 5BSC 5BSC Fpaigcukraeg e2 o7f pf rthoev imdeosu annti nexg asmurpfalec et haantd l euvseers a2g.8e5s wmamsh pearsss t-oth sreotu tghhe N12..O ATTHLELES DCIOMNENNESCIOTNOSR IFNAmCmESU DNOITWSN. AND ARE NOT VISIBLE FROM THIS VIEW. 10278-129 holes and backside washers/nuts for attachment. Figure 28 and Figure 28. Suggested PCB Layout Pattern, Connector Down Figure 29 provide some details for mounting hole and connector 0.4334[11.0] alignment pin drill locations. For more information on mounting 0.019685 the ADIS16480, see the AN-1295 Application Note. [0.5000] 0.0240[0.610] (TYP) MOUNTING SCREWS M2 × 0.4mm, 4× 0.054[1.37] 0.0394[1.00] 0[.41.85070] ADIS16480 SPACWME2AR,S 4SH×/WERASS H(OEPRTSIONAL) NT0.HO0R2N2OP±ULAGTHEDHDIAOL(TEY2P×) 0N.O02N2PDLIAATTEHDRTOHURGOHUGHOHLHEO(LTEYP) 0.0394[1.00] 10278-130 SUGGESTED, 4× Figure 29. Suggested Layout and Mechanical Design When Using Samtec P/N CLM-112-02-G-D-A for the Mating Connector PCB MATING CONNECTOR CLM-112-02 PASS-THROUGH HOLES DIAMETER≥ 2.85mm WASHERS (OPTIONAL) M2, 4× M2 × N0U.4TmSm, 4× 10278-227 Figure 27. Mounting Example Rev. H | Page 42 of 44

Data Sheet ADIS16480 EVALUATION TOOLS T VDD Breakout Board, ADIS16IMU1/PCB The ADIS16IMU1/PCBZ (sold separately) provides a breakout 1 board function for the ADIS16480, which means that it provides access to the ADIS16480 through larger connectors that support standard 1 mm ribbon cabling. It also provides four mounting holes for attachment of the ADIS16480 to the breakout board. For more information on the ADIS16IMU1/PCBZ, see www.analog.com/ADIS16IMU1/PCBZ. CURRENT PC-Based Evaluation, EVAL-ADIS2 4 Use the EVAL-ADIS2 and ADIS16IMU1/PCBZ to evaluate the ADIS16480 on a PC-based platform. CCHH41 120.000mVA Ω 100ms/DIV 10278-230 POWER SUPPLY CONSIDERATIONS Figure 30. Transient Current Demand, Start-up The ADIS16480 has approximately ~24 μF of capacitance across T the VDD and GND pins. While this capacitor bank provides a large amount of localized filtering, it also presents an opportunity for excessive charging current when the VDD voltage ramps too quickly. Use the following relationship to help determine the appropriate VDD voltage profile, with respect to any current limit functions that can cause the power supply to lose regulation and CURRENT potentially introduce unsafe conditions for the ADIS16480. i(t)=CdV dt In addition to managing the initial voltage ramp, take note of the 4 transient current demand that the ADIS16480 requires during its AstaDrtI-Su1p6/4s8el0f- bineigtiinalsi zitast isotnar pt-ruopc epsrso. cOenssc.e F VigDurDe r3e0a cohffeesr 2s .a8 5b rVo,a tdh e CH4 100mA Ω 1T. 0 90.m80s01%.00M1MS/ sPOINCTHS1 2.72V 10278-231 Figure 31. Transient Current Demand, Peak Demand perspective that communicates when to expect the spikes in current, while Figure 31 provides more detail on the current/time X-RAY SENSITIVITY behavior during the peak transient condition, which typically Exposure to high dose rate X-rays, such as those in production occurs approximately 350 ms after VDD reaches 2.85 V. In systems that inspect solder joints in electronic assemblies, may Figure 31, notice that the peak current approaches 600 mA and affect accelerometer bias errors. For optimal performance, avoid the transient condition lasts for approximately 1.75 ms. exposing the ADIS16480 to this type of inspection. Rev. H | Page 43 of 44

ADIS16480 Data Sheet OUTLINE DIMENSIONS 44.254 44.000 43.746 39.854 39.600 39.346 2.20 BSC 20.10 (8 PLACES) 19.80 19.50 Ø 2.40 BSC 15.00 DETAIL A (4PLACES) BSC 1.942 PIN 1 1.642 1.342 8.25 BSC 42.854 42.600 1.00 BSC 42.346 47.254 47.000 46.746 DETAIL A BOTTOM VIEW 14.254 DETAIL B 14.000 FRONT VIEW 13.746 6.50 BSC 3.454 3.200 5.50 5.50 2.946 BSC BSC 2.84 BSC 1.0P0 IBTSCCH DETAIL B 0.30 SQ BSC 12-07-2012-E Figure 32. 24-Lead Module with Connector Interface [MODULE] (ML-24-6) Dimensions shown in millimeters ORDERING GUIDE Model1 Temperature Range Package Description Package Option ADIS16480BMLZ −40°C to +105°C 24-Lead Module with Connector Interface [MODULE] ML-24-6 1 Z = RoHS Compliant Part. ©2012–2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D10278-0-1/19(H) Rev. H | Page 44 of 44