ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > AD8648ARZ
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
AD8648ARZ产品简介:
ICGOO电子元器件商城为您提供AD8648ARZ由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 AD8648ARZ价格参考。AnalogAD8648ARZ封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 4 电路 满摆幅 14-SOIC。您可以下载AD8648ARZ参考资料、Datasheet数据手册功能说明书,资料中有AD8648ARZ 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | - |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC OPAMP GP 24MHZ RRO 14SOIC精密放大器 24MHz RR Quad |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC |
品牌 | Analog Devices Inc |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 放大器 IC,精密放大器,Analog Devices AD8648ARZ- |
数据手册 | |
产品型号 | AD8648ARZ |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30008http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26202 |
产品目录页面 | |
产品种类 | 精密放大器 |
供应商器件封装 | 14-SOIC |
共模抑制比—最小值 | 84 dB |
关闭 | No |
包装 | 管件 |
压摆率 | 11 V/µs |
可用增益调整 | 116 dB |
商标 | Analog Devices |
增益带宽生成 | 24 MHz |
增益带宽积 | 24MHz |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Tube |
封装/外壳 | 14-SOIC(0.154",3.90mm 宽) |
封装/箱体 | SOIC-14 |
工作温度 | -40°C ~ 125°C |
工作电源电压 | 2.7 V to 5.5 V |
工厂包装数量 | 56 |
放大器类型 | 通用 |
最大工作温度 | + 125 C |
最小工作温度 | - 40 C |
标准包装 | 56 |
电压-电源,单/双 (±) | 2.7 V ~ 5.5 V, ±1.35 V ~ 2.75 V |
电压-输入失调 | 600µV |
电压增益dB | 116 dB |
电流-电源 | 1.5mA |
电流-输入偏置 | 0.3pA |
电流-输出/通道 | 120mA |
电源电压-最大 | 5.5 V |
电源电压-最小 | 2.7 V |
电源电流 | 1.5 mA |
电源类型 | Single |
电路数 | 4 |
系列 | AD8648 |
视频文件 | http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193153001http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193159001 |
转换速度 | 11 V/us |
输入偏压电流—最大 | 550 pA |
输入电压范围—最大 | 5 V |
输入补偿电压 | 0.6 mV |
输出电流 | 120 mA |
输出类型 | 满摆幅 |
通道数量 | 4 Channel |
24 MHz Rail-to-Rail Amplifiers with Shutdown Option Data Sheet AD8646/AD8647/AD8648 FEATURES PIN CONFIGURATIONS Offset voltage: 2.5 mV maximum OUTA 1 8 V+ Single-supply operation: 2.7 V to 5.5 V –INA 2 AD8646 7 OUTB Low noise: 8 nV/√Hz +INA 3 TOP VIEW 6 –INB WSleidwe rbaaten:d 1w1i dVt/μhs: 24 MHz V– 4 (Not to Scale) 5 +INB 06527-001 Figure 1. 8-Lead SOIC and MSOP Short-circuit output current: 120 mA Qualified for automotive applications OUTA 1 10 V+ No phase reversal –INA 2 AD8647 9 OUTB Low input bias current: 1 pA +INA 3 TOP VIEW 8 –INB LUonwit ys ugpapinly s tcaubrrlee nt per amplifier: 2 mA maximum SDVA– 45 (Not to Scale) 76 +SIDNBB 06527-002 Figure 2. 10-Lead MSOP APPLICATIONS Battery-powered instruments OUTA 11 1144 OUTD –INA 22 1133 –IND Multipole filters ADC front ends +INA 33 AADD88664488 1122 +IND TTOOPPVVIIEEWW Sensors V+ 44 ((NNoottttooSSccaallee)) 1111 V– Barcode scanners +INB 55 1100 +INC –INB 66 99 –INC AAuSIdCi oin apmupt loifri eorust put amplifiers OUTB 77 88 OUTC 06527-003 Photodiode amplifiers Figure 3. 14-Lead SOIC and TSSOP Datapath/mux/switch control GENERAL DESCRIPTION The AD8646 and the AD8647 are the dual, and the AD8648 is AD8647/AD8648 offer high output drive capability, which is the quad, rail-to-rail, input and output, single-supply amplifiers excellent for audio line drivers and other low impedance featuring low offset voltage, wide signal bandwidth, low input applications. The AD8646 and AD8648 are available for voltage, and low current noise. The AD8647 also has a low automotive applications (see the Ordering Guide). power shutdown function. Applications include portable and low powered instrumenta- The combination of 24 MHz bandwidth, low offset, low noise, tion, audio amplification for portable devices, portable phone and very low input bias current makes these amplifiers useful in headsets, barcode scanners, and multipole filters. The ability to a wide variety of applications. Filters, integrators, photodiode swing rail to rail at both the input and output enables designers amplifiers, and high impedance sensors all benefit from the to buffer CMOS ADCs, DACs, ASICs, and other wide output combination of performance features. AC applications benefit swing devices in single-supply systems. from the wide bandwidth and low distortion. The AD8646/ Rev. F Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 ©2006–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. Technical Support www.analog.com
AD8646/AD8647/AD8648 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 ESD Caution...................................................................................6 Applications ....................................................................................... 1 Typical Performance Characteristics ..............................................7 Pin Configurations ........................................................................... 1 Theory of Operation ...................................................................... 15 General Description ......................................................................... 1 Power-Down Operation ............................................................ 15 Revision History ............................................................................... 2 Multiplexing Operation ............................................................. 15 Specifications ..................................................................................... 3 Outline Dimensions ....................................................................... 16 Absolute Maximum Ratings ............................................................ 6 Ordering Guide .......................................................................... 18 Thermal Resistance ...................................................................... 6 REVISION HISTORY Revision History: AD8646/AD8647/AD8648 Revision History: AD8646 8/2016—Rev. E to Rev. F 10/2007—Rev. 0 to Rev. B Changes to Figure 18 and Figure 21 ............................................... 9 Combined with AD8648 ................................................... Universal Changes to Figure 39 ...................................................................... 12 Added AD8647 ................................................................... Universal Deleted Figure 4 and Figure 7 .......................................................... 7 3/2014—Rev. D to Rev. E Deleted Figure 33 ............................................................................ 11 Changes to Differential Input Voltage, Table 3 ............................. 6 8/2007—Revision 0: Initial Version 4/2010—Rev. C to Rev. D Revision History: AD8648 Changes to Features Section and General Description Section . 1 Updated Outline Dimensions ....................................................... 16 10/2007—Rev. A to Rev. B Changes to Ordering Guide Section ............................................ 18 Combined with AD8646 ................................................... Universal Added AD8647 ................................................................... Universal 2/2009—Rev. B to Rev. C Deleted Figure 7 ................................................................................. 6 Change to Supply Current Shutdown Mode (AD8647 Only) Deleted Figure 11 ............................................................................... 7 Parameter, Table 1 ............................................................................. 3 Deleted Figure 16 and Figure 17 ..................................................... 8 Change to Supply Current Shutdown Mode (AD8647 Only) Deleted Figure 24 ............................................................................... 9 Parameter, Table 2 ............................................................................. 5 Deleted Figure 27, Figure 28, Figure 31, and Figure 32 ............ 10 Added Figure 50; Renumbered Sequentially .............................. 15 Updated Outline Dimensions ....................................................... 16 6/2007—Rev. 0 to Rev. A Changes to Ordering Guide .......................................................... 18 Changes to General Description ..................................................... 1 Updated Outline Dimensions ....................................................... 12 10/2007—Revision B: Initial Combined Version Changes to Ordering Guide .......................................................... 12 1/2006—Revision 0: Initial Version Rev. F | Page 2 of 18
Data Sheet AD8646/AD8647/AD8648 SPECIFICATIONS V = 5 V, V = V /2, T = +25oC, unless otherwise noted. SY CM SY A Table 1. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage V V = 0 V to 5 V 0.6 2.5 mV OS CM −40°C < T < +125°C 3.2 mV A Offset Voltage Drift ΔV /ΔT −40°C < T < +125°C 1.8 7.5 μV/°C OS A Input Bias Current I 0.3 1 pA B −40°C < T < +85°C 50 pA A −40°C < T < +125°C 550 pA A Input Offset Current I 0.1 0.5 pA OS −40°C < T < +85°C 50 pA A −40°C < T < +125°C 250 pA A Input Voltage Range V 0 5 V CM Common-Mode Rejection Ratio CMRR V = 0 V to 5 V 67 84 dB CM Large Signal Voltage Gain A R = 2 kΩ, V = 0.5 V to 4.5 V 104 116 dB VO L O Input Capacitance Differential C 2.5 pF DIFF Common Mode C 6.7 pF CM OUTPUT CHARACTERISTICS Output Voltage High V I = 1 mA 4.98 4.99 V OH OUT −40°C < T < +125°C 4.90 V A I = 10 mA 4.85 4.92 V OUT −40°C < T < +125°C 4.70 V A Output Voltage Low V I = 1 mA 8.4 20 mV OL OUT −40°C < T < +125°C 40 mV A I = 10 mA 78 145 mV OUT −40°C < T < +125°C 200 mV A Output Current I Short circuit ±120 mA sc Closed-Loop Output Impedance Z At 1 MHz, A = 1 5 Ω OUT V POWER SUPPLY Power Supply Rejection Ratio PSRR V = 2.7 V to 5.5 V 63 80 dB SY Supply Current per Amplifier I 1.5 2.0 mA SY −40°C < T < +125°C 2.5 mA A Supply Current Shutdown Mode I Both amplifiers shut down, 10 nA SD (AD8647 Only) V and V = 0 V IN_SDA IN_SDB −40°C < TA < +125°C 1 μA SHUTDOWN INPUTS (AD8647) Logic High Voltage (Enabled) V −40°C < T < +125°C +2.0 V INH A Logic Low Voltage (Power-Down) V −40°C < T < +125°C +0.8 V INL A Logic Input Current (Per Pin) I −40°C < T < +125°C 1 μA IN A Output Pin Leakage Current −40°C < T < +125°C (shutdown active) 1 nA A DYNAMIC PERFORMANCE Slew Rate SR R = 2 kΩ 11 V/μs L Gain Bandwidth Product GBP 24 MHz Phase Margin Ø 74 Degrees m Settling Time t To 0.1% 0.5 μs s Amplifier Turn-On Time (AD8647) t 25°C, A = 1, R = 1 kΩ (see Figure 44) 1 μs on V L Amplifier Turn-Off Time (AD8647) t 25°C, A = 1, R = 1 kΩ (see Figure 45) 1 μs off V L Rev. F | Page 3 of 18
AD8646/AD8647/AD8648 Data Sheet Parameter Symbol Conditions Min Typ Max Unit NOISE PERFORMANCE Peak-to-Peak Noise e p-p 0.1 Hz to 10 Hz 2.3 μV n Voltage Noise Density e f = 1 kHz 8 nV/√Hz n f = 10 kHz 6 nV/√Hz Channel Separation CS f = 10 kHz −115 dB f = 100 kHz −110 dB Total Harmonic Distortion Plus Noise THD + N V p-p = 0.1 V, R = 600 Ω, f = 25 kHz, T = 25°C L A A = +1 0.010 % V A = −10 0.021 % V Rev. F | Page 4 of 18
Data Sheet AD8646/AD8647/AD8648 V = 2.7 V, V = V /2, T = +25oC, unless otherwise noted. SY CM SY A Table 2. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage V V = 0 V to 2.7 V 0.6 2.5 mV OS CM −40°C < T < +125°C 3.2 mV A Offset Voltage Drift ΔV /ΔT −40°C < T < +125°C 1.8 7.0 μV/°C OS A Input Bias Current I 0.2 1 pA B −40°C < T < +85°C 50 pA A −40°C < T < +125°C 550 pA A Input Offset Current I 0.1 0.5 pA OS −40°C < T < +85°C 50 pA A −40°C < T < +125°C 250 pA A Input Voltage Range V 0 2.7 V CM Common-Mode Rejection Ratio CMRR V = 0 V to 2.7 V 62 79 dB CM Large Signal Voltage Gain A R = 2 kΩ, V = 0.5 V to 2.2 V 95 102 dB VO L O Input Capacitance Differential C 2.5 pF DIFF Common Mode C 7.8 pF CM OUTPUT CHARACTERISTICS Output Voltage High V I = 1 mA 2.65 2.68 V OH OUT −40°C < T < +125°C 2.60 V A Output Voltage Low V I = 1 mA 11 25 mV OL OUT −40°C < T < +125°C 30 mV A Output Current I Short circuit ±63 mA sc Closed-Loop Output Impedance Z At 1 MHz, A = 1 5 Ω OUT V POWER SUPPLY Power Supply Rejection Ratio PSRR V = 2.7 V to 5.5 V 63 80 dB SY Supply Current per Amplifier I 1.6 2.0 mA SY −40°C < T < +125°C 2.5 mA A Supply Current Shutdown Mode I Both amplifiers shut down, 10 nA SD (AD8647 Only) V and V = 0 V IN_SDA IN_SDB −40°C < T < +125°C 1 µA A SHUTDOWN INPUTS (AD8647) Logic High Voltage (Enabled) V −40°C < T < +125°C +2.0 V INH A Logic Low Voltage (Power-Down) V −40°C < T < +125°C +0.8 V INL A Logic Input Current (Per Pin) I −40°C < T < +125°C 1 µA IN A Output Pin Leakage Current −40°C < T < +125°C (shutdown active) 1 nA A DYNAMIC PERFORMANCE Slew Rate SR R = 2 kΩ 11 V/μs L Gain Bandwidth Product GBP 24 MHz Phase Margin Øm 53 Degrees Settling Time t To 0.1% 0.3 μs s Amplifier Turn-On Time (AD8647) t 25°C, A = 1, R = 1 kΩ (see Figure 41) 1.2 μs on V L Amplifier Turn-Off Time (AD8647) t 25°C, A = 1, R = 1 kΩ (see Figure 42) 1 μs off V L NOISE PERFORMANCE Peak-to-Peak Noise e p-p 0.1 Hz to 10 Hz 2.3 μV n Voltage Noise Density e f = 1 kHz 8 nV/√Hz n f = 10 kHz 6 nV/√Hz Channel Separation CS f = 10 kHz −115 dB f = 100 kHz −110 dB Rev. F | Page 5 of 18
AD8646/AD8647/AD8648 Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter Rating θ is specified for the worst-case conditions, that is, a device JA Supply Voltage 6 V soldered in a circuit board for surface-mount packages. Input Voltage GND to V SY Table 4. Thermal Resistance Differential Input Voltage ±6 V Package Type θ θ Unit Output Short Circuit to GND Indefinite JA JC 8-Lead SOIC_N 125 43 °C/W Storage Temperature Range −65°C to +150°C 8-Lead MSOP 210 45 °C/W Operating Temperature Range −40°C to +125°C 10-Lead MSOP 200 44 °C/W Lead Temperature (Soldering 60 sec) 300°C 14-Lead SOIC_N 120 36 °C/W Junction Temperature 150°C 14-Lead TSSOP 180 35 °C/W Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a ESD CAUTION stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. F | Page 6 of 18
Data Sheet AD8646/AD8647/AD8648 TYPICAL PERFORMANCE CHARACTERISTICS 300 200 VSY = 2.7V VSY = 5V VCM = 1.35V 180 VCM = 2.5V 250 TA = 25°C TA = 25°C 2244 AMPLIFIERS 160 2244 AMPLIFIERS S S ER ER 140 FI 200 FI PLI PLI 120 M M A A F 150 F 100 O O R R 80 E E UMB 100 UMB 60 N N 40 50 20 0 0 –2.0 –1.5 –1.0 –0.5 VO0S (mV)0.5 1.0 1.5 2.0 06527-004 –2.0 –1.5 –1.0 –0.5 VO0S (mV)0.5 1.0 1.5 2.0 06527-007 Figure 4. Input Offset Voltage Distribution Figure 7. Input Offset Voltage Distribution 35 35 VSY = 2.7V VSY = 5V –40°C < TA < +125°C –40°C < TA < +125°C 30 30 S S R 25 R 25 E E FI FI LI LI MP 20 MP 20 A A F F O O R 15 R 15 E E B B M M U 10 U 10 N N 5 5 0 0 0 1 2 T3CVOS (µ4V/°C) 5 6 7 06527-005 0 1 2 3 TCVO4S (µV/°C5) 6 7 8 06527-008 Figure 5. VOS Drift (TCVOS) Distribution Figure 8. VOS Drift (TCVOS) Distribution 2500 2500 VSY = 2.7V VSY=5V 2000 TA = 25°C 2000 TA=25°C V) 1500 V) 1500 E (µ 1000 E(µ 1000 G G A A LT 500 LT 500 O O V V ET 0 ET 0 S S OFF –500 OFF –500 UT –1000 UT–1000 P P IN–1500 IN–1500 –2000 –2000 –25000 0.5INPUT C1.O0MMON-M1.O5DE VOL2T.0AGE (V)2.5 3.0 06527-006 –25000 1INPUTCOMM2ON-MODEV3OLTAGE(V4) 5 06527-009 Figure 6. Input Offset Voltage vs. Input Common-Mode Voltage Figure 9. Input Offset Voltage vs. Input Common-Mode Voltage Rev. F | Page 7 of 18
AD8646/AD8647/AD8648 Data Sheet 10000 10000 VSY = 2.7V VSY = 5V V) TA = 25°C V) TA = 25°C m m E ( 1000 VSY – VOH E ( 1000 G G A A T T L L O O V 100 V 100 N N O O TI TI A A UR 10 UR 10 AT VOL AT S S T T VSY – VOH U U P 1 P 1 T T U U O O VOL 0.1 0.1 0.001 0.01 LOA0.D1 CURRENT1 (mA) 10 100 06527-010 0.001 0.01 0L.1OAD CUR1RENT (mA1)0 100 1000 06527-013 Figure 10. Output Saturation Voltage vs. Load Current Figure 13. Output Saturation Voltage vs. Load Current 25 120 VSY = 2.7V VSY = 5V V) IL = 1mA V) VSY – VOH= 10mA m m 100 E ( 20 E ( G G A A LT VSY – VOH LT 80 VO 15 VO VOL= 10mA N N TIO TIO 60 A A UR 10 UR AT VOL AT 40 S S T T U U P 5 P UT UT 20 O O VSY – VOH= 1mA 0 0 VOL= 1mA –40 –25 –10 5 T2E0MPE35RATU50RE (°6C5) 80 95 110 125 06527-011 –40 –25 –10 5 T2E0MPE35RATU50RE (°6C5) 80 95 110 125 06527-014 Figure 11. Output Saturation Voltage vs. Temperature Figure 14. Output Saturation Voltage vs. Temperature 300 300 VSY = 2.7V VSY = 5V TA = 125°C TA = 125°C 250 250 A) A) p p T ( 200 T ( 200 N N E E R R R R CU 150 CU 150 S S A A BI BI T 100 T 100 U U P P N N I I 50 50 0 0 0.50 0.75 CO1M.0M0ON-MO1D.2E5 VOLTA1G.5E0 (V) 1.75 2.00 06527-012 0.5 1.0 1.5COMM2O.0N-MO2D.E5 VOL3T.A0GE (V3).5 4.0 4.5 06527-015 Figure 12. Input Bias Current vs. Common-Mode Voltage Figure 15. Input Bias Current vs. Common-Mode Voltage Rev. F | Page 8 of 18
Data Sheet AD8646/AD8647/AD8648 80 0 80 0 VSY = 2.7V VSY = 5V RL = 1kΩ RL = 1kΩ 60 CL= 10pF 45 grees) 60 CL = 10pF 45 grees) B) De B) PHASE De OPEN-LOOP GAIN (d 42000 ФM = 52° 91103850 N-LOOP PHASE SHIFT ( OPEN-LOOP GAIN (d 24000 GAIN ФM = 74° 91103850 N-LOOP PHASE SHIFT ( E E –20 225 OP –20 225 OP –40 270 –40 270 10k 100k FREQUE1NMCY (Hz) 10M 100M 06527-016 10k 100k FREQUE1MNCY (Hz) 10M 100M 06527-019 Figure 16. Open-Loop Gain and Phase vs. Frequency Figure 19. Open-Loop Gain and Phase vs. Frequency 60 60 VSY = 2.7V VSY = 5V AV = 100 TA = 25°C AV = 100 TA = 25°C 40 40 B) B) N (d 20 AV = 10 N (d 20 AV = 10 AI AI G G OP 0 AV = 1 OP 0 AV = 1 O O L L D- D- E E OS –20 OS –20 L L C C –40 –40 –60 –60 1k 10k F10R0EkQUENCY 1(HMz) 10M 100M 06527-017 1k 10k F10R0EkQUENCY 1(HMz) 10M 100M 06527-020 Figure 17. Closed-Loop Gain vs. Frequency Figure 20. Closed-Loop Gain vs. Frequency 250 120 VSY = 2.7V VSY = 5V TA = 25°C TA = 25°C 100 200 AV = 1 AV = 1 80 150 Ω) Ω) (UT (UT 60 AV = 10 O O Z Z 100 AV = 10 40 AV = 100 AV = 100 50 20 0 0 1 10 100FREQU1E,0N0C0Y (kH1z0),000 100,000 1,000,000 06527-018 1 10 100FREQU1E,0N0C0Y (kH1z0),000 100,000 1,000,000 06527-021 Figure 18. ZOUT vs. Frequency Figure 21. ZOUT vs. Frequency Rev. F | Page 9 of 18
AD8646/AD8647/AD8648 Data Sheet 100 100 VSY = 2.7V VSY = 5V TA = 25°C TA = 25°C 80 80 B) 60 B) 60 d d R ( R ( R R M M C 40 C 40 20 20 0 0 1k 10k F10R0EkQUENCY 1(HMz) 10M 100M 06527-022 1k 10k F10R0EkQUENCY 1(HMz) 10M 100M 06527-025 Figure 22. CMRR vs. Frequency Figure 25. CMRR vs. Frequency 100 100 VSY = 2.7V PSRR+ VSY = 5V PSRR+ TA = 25°C TA = 25°C 80 80 PSRR– B) 60 PSRR– B) 60 d d R ( R ( R R S S P 40 P 40 20 20 0 0 1k 10k FREQU1E0N0kCY (Hz) 1M 10M 06527-023 1k 10k FREQU1E0N0kCY (Hz) 1M 10M 06527-026 Figure 23. PSRR vs. Frequency Figure 26. PSRR vs. Frequency 60 70 VSY = ±1.35V VSY = 5V TA = 25°C RL = 10kΩ 50 60 TA = 25°C –OS 50 %) 40 +OS %) OT ( OT ( 40 HO 30 HO OS+ S S R R 30 OS– E E V V O 20 O 20 10 10 0 0 1 10 CLOAD (pF) 100 1000 06527-024 10 CLO1A0D0 (pF) 1000 06527-027 Figure 24. Overshoot vs. Load Capacitance Figure 27. Overshoot vs. Load Capacitance Rev. F | Page 10 of 20
Data Sheet AD8646/AD8647/AD8648 VSY = 2.7V, VCM = 1.35V, VIN = 100mV p-p, VSY = 5V, VCM = 2.5V, VIN = 100mV p-p, TA = 25°C, RL = 10kΩ, CL = 100pF TA = 25°C, RL = 10kΩ, CL = 100pF V) V) DI DI V/ V/ m m (50 (50 (200ns/DIV) 06527-028 (200ns/DIV) 06527-031 Figure 28. Small-Signal Transient Response Figure 31. Small-Signal Transient Response VSY = 2.7V, VIN = 2V p-p, VSY = 5V, VIN = 4V p-p, TA = 25°C, RL = 10kΩ, CL = 100pF TA = 25°C, RL = 10kΩ, CL = 100pF V) V) DI DI V/ V/ 2 2 ( ( (200ns/DIV) 06527-029 (200ns/DIV) 06527-032 Figure 29. Large-Signal Transient Response Figure 32. Large-Signal Transient Response 0.08 0.08 VSY = ±2.5V VSY = ±2.5V 0.07 RL = 600Ω 0.07 RL = 600Ω AV = 1 AV = –10 TA = 25°C TA = 25°C 0.06 0.06 0.05 0.05 %) %) N ( N ( + 0.04 + 0.04 D D H H T 0.03 T 0.03 0.02 0.02 0.01 0.01 0 0 10 100 FREQUE1kNCY (Hz) 10k 100k 06527-030 10 100 FREQUE1kNCY (Hz) 10k 100k 06527-033 Figure 30. THD + Noise vs. Frequency Figure 33. THD + Noise vs. Frequency Rev. F | Page 11 of 18
AD8646/AD8647/AD8648 Data Sheet 1 VSY = 2.7V TO 5V TA = 25°C 0.1 V) DI TAGE (1µV/ HD + N (%) 0.01 L T O V 0.001 VSY = 5V AV = 1 BW = 30kHz RL = 100kΩ f = 1kHz TIME (1s/DIV) 06527037 0.00001.001 O0.U01TPUT AMPLITUD0E. 1(V rms) 1 06527-034 Figure 34. 0.1 Hz to 10 Hz Voltage Noise Figure 37. THD + Noise vs. Output Amplitude 1000 1000 VSY = 2.7VTO 5V VSY = 5V TA = 25°C Hz) √ V/ A) 100 Y (n 100 T (p T N SI E N R E R SE D S CU 10 NOI BIA GE 10 UT LTA INP 1 O V 1 0.1 10 100FREQUENCY (Hz)1k 10k 06527-035 25 45 TE6M5PERATURE8 0(°C) 105 125 06527-038 Figure 35. Voltage Noise Density vs. Frequency Figure 38. Input Bias Current vs. Temperature 2.5 5.0 TA = 25°C VSY = 5V mA) 4.5 VAIVN == 14.9V R ( 2.0 4.0 RL = 10kΩ MPLIFIE V p-p) 3.5 TA = 25°C PER A 1.5 WING ( 32..05 T S EN 1.0 UT 2.0 RR TP CU OU 1.5 Y PL 0.5 1.0 P U S 0.5 0 0 0 0.5 1.0 1.5SUP2P.0LY V2O.5LTA3G.0E (V)3.5 4.0 4.5 5.0 06527-039 100 FREQU1E,0N0C0Y (kHz) 10,000 06527-036 Figure 36. Supply Current per Amplifier vs. Supply Voltage Figure 39. Maximum Output Swing vs. Frequency Rev. F | Page 12 of 18
Data Sheet AD8646/AD8647/AD8648 4.0 0 ER (mA) 33..50 VOUT = VSY/2 B) –20 VARTASLVY === = 22– 5k51°VΩ0C0 CS (dB) = 320 loVg+ (UV1OUT/100 = VIN) U2R021VΩ– 6 20R02Ω PER AMPLIFI 22..50 VSY = 2.7V PARATION (d ––4600 VIN 0+– 2 VVV+–– 0R2k3Ω 5 VVV–++ 7 0 0 NT VSY = 5V SE RE 1.5 EL R N –80 U N C A PPLY 1.0 CH –100 VIN = 2V p-p U 0.5 S VIN = 0.5V p-p 0 –120 –40 –20 0 T2E0MPER4A0TURE6 (0°C) 80 100 120 06527-040 1k FREQU1E0NkCY (Hz) 100k 06527-042 Figure 40. Supply Current per Amplifier vs. Temperature Figure 43. Channel Separation SHUTDOWN PIN VSY = 5V SHUTDOWN PIN RL = 1kΩ VRSLY = = 1 k2Ω.7V ATAV == 215°C V) AV = 1 V) DI TA = 25°C DI V/ V/ GE (1 GE (1 AMPLIFIER OUTPUT A A LT LT O O V V AMPLIFIER OUTPUT TIME (200ns/DIV) 06527-045 TIME (200ns/DIV) 06527-043 Figure 41. Turn-On Time Figure 44. Turn-On Time VSY = 2.7V VSY = 5V RL = 1kΩ RL = 1kΩ AV = 1 AV = 1 TA = 25°C TA = 25°C V) SHUTDOWN PIN V) DI DI E (1V/ E (1V/ SHUTDOWN PIN G G OLTA OLTA V V AMPLIFIER OUTPUT AMPLIFIER OUTPUT TIME (200ns/DIV) 06527-046 TIME (200ns/DIV) 06527-044 Figure 42. Turn-Off Time Figure 45. Turn-Off Time Rev. F | Page 13 of 18
AD8646/AD8647/AD8648 Data Sheet 100 100 VSY = 2.7V VSY = 5V 10 10 A) A) (nSY 1 (nSY 1 I I 0.1 0.1 0.01–40 –25 –10 5 T2E0MPE3R5ATU5R0E (°6C5) 80 95 110 125 06527-048 0.01–40 –25 –10 5 T2E0MPE3R5ATU5R0E (°6C5) 80 95 110 125 06527-047 Figure 46. Supply Current with Op-Amp Shutdown vs. Temperature Figure 47. Supply Current with Op-Amp Shutdown vs. Temperature Rev. F | Page 14 of 18
Data Sheet AD8646/AD8647/AD8648 THEORY OF OPERATION POWER-DOWN OPERATION The shutdown function of the AD8647 is referenced to the 2V negative supply voltage of the operational amplifier. A logic 1V level high (> 2.0 V) enables the device, while a logic level low (< 0.8 V) disables the device and places the output in a high 0V impedance condition. Several outputs can be wire-OR’ed, thus eliminating a multiplexer. The logic input is a high impedance CMOS input. If dual or split supplies are used, the logic signals must be properly referred to the negative supply voltage. 5V MULTIPLEXING OPERATION 0V Because each op amp has a separate logic input enable pin, the oonutlyp uotnse c oapn abme pco ins nacetcitveed a tto agneyt htiemr eif. iBt yc acnon bnee gcutianrga tnhtee eodp t ahmatp s TIME (200µs/DIV) 06527-050 Figure 49. Switching Waveforms as shown in Figure 48, a multiplexer can be eliminated. With the reasonably short turn-on and turn-off times, low frequency signal paths can be smoothly selected. The turn-off time is 80 slightly faster than the turn-on time so, even when using 70 sections from two different packages, the overlap is less than 300 nanoseconds. 60 A) µ 50 1/2 T ( 8 AD8647 REN 40 9 R U 7 C 30 6 Y L 5kHz PP 20 5V SU VSY = 5V 10 1/2 AD8647 VSY = 2.7V 0 2 10 13kHz 3 4 5 1 –100 0.1 0.2 0.V3IN_S0D.4A AN0D.5 VIN_0S.D6B (V0).7 0.8 0.9 1.0 06527-051 Figure 50. Supply Current Shutdown Mode, AD8647 2kHz 1 2 06527-049 Figure 48. AD8647 Output Switching Rev. F | Page 15 of 18
AD8646/AD8647/AD8648 Data Sheet OUTLINE DIMENSIONS 5.00(0.1968) 4.80(0.1890) 8 5 4.00(0.1574) 6.20(0.2441) 3.80(0.1497) 1 4 5.80(0.2284) 1.27(0.0500) 0.50(0.0196) BSC 1.75(0.0688) 0.25(0.0099) 45° 0.25(0.0098) 1.35(0.0532) 8° 0.10(0.0040) 0° COPLANARITY 0.51(0.0201) 0.10 SEATING 0.31(0.0122) 0.25(0.0098) 10..2470((00..00510507)) PLANE 0.17(0.0067) COMPLIANTTOJEDECSTANDARDSMS-012-AA C(RINOEFNPEATRRREOENNLCLTEIHNEOGSNDELISYM)AEANNRDSEIAORRNOESUNANORDETEDAIN-POMPFRIFLOLMPIMIRLELIATIMTEEERTFSEO;RIRNECUQHSUEDIVIINMAELDENENSSTIIOGSNNFS.OR 012407-A Figure 51. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) 3.20 3.00 2.80 8 5 5.15 3.20 4.90 3.00 4.65 2.80 1 4 PIN1 IDENTIFIER 0.65BSC 0.95 15°MAX 0.85 1.10MAX 0.75 0.80 0.15 0.40 6° 0.23 0.55 CO0P.0L5ANARITY 0.25 0° 0.09 0.40 0.10 COMPLIANTTOJEDECSTANDARDSMO-187-AA 100709-B Figure 52. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Rev. F | Page 16 of 18
Data Sheet AD8646/AD8647/AD8648 3.10 3.00 2.90 10 6 5.15 3.10 4.90 3.00 4.65 2.90 1 5 PIN1 IDENTIFIER 0.50BSC 0.95 15°MAX 0.85 1.10MAX 0.75 0.70 0.15 0.30 6° 0.23 0.55 CO0P.0L5ANARITY 0.15 0° 0.13 0.40 0.10 COMPLIANTTOJEDECSTANDARDSMO-187-BA 091709-A Figure 53. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters 5.10 5.00 4.90 14 8 4.50 4.40 6.40 BSC 4.30 1 7 PIN 1 0.65 BSC 1.05 1.00 1M.2A0X 0.20 0.80 0.09 0.75 0.15 8° 0.60 0.05 0.30 SPELAATNIENG 0° 0.45 COPLANARITY 0.19 0.10 COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 061908-A Figure 54. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters Rev. F | Page 17 of 18
AD8646/AD8647/AD8648 Data Sheet 8.75 (0.3445) 8.55 (0.3366) 4.00 (0.1575) 14 8 6.20 (0.2441) 3.80 (0.1496) 1 7 5.80 (0.2283) 1.27 (0.0500) 0.50 (0.0197) BSC 1.75 (0.0689) 0.25 (0.0098) 45° 0.25 (0.0098) 1.35 (0.0531) 8° 0.10 (0.0039) 0° COPLANARITY SEATING 0.10 0.51 (0.0201) PLANE 0.25 (0.0098) 1.27 (0.0500) 0.31 (0.0122) 0.17 (0.0067) 0.40 (0.0157) COMPLIANTTO JEDEC STANDARDS MS-012-AB C(RINOEFNPETARRREOENNLCLTEIHN EOGSN EDLSIYM)AEANNRDSEI AORRNOESU NANORDEET DAIN-PO MPFRIFLO LMPIIMRLELIATIMTEEER TFSEO; RIRN ECUQHSU EDI VIINMA LEDENENSSTIIOGSN NFS.OR 060606-A Figure 55. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches) ORDERING GUIDE Model1, 2 Temperature Range Package Description Package Option Branding AD8646ARZ −40°C to +125°C 8-Lead SOIC_N R-8 AD8646ARZ-REEL −40°C to +125°C 8-Lead SOIC_N R-8 AD8646ARZ-REEL7 −40°C to +125°C 8-Lead SOIC_N R-8 AD8646ARMZ −40°C to +125°C 8-Lead MSOP RM-8 A1V AD8646ARMZ-REEL −40°C to +125°C 8-Lead MSOP RM-8 A1V AD8646WARZ-RL −40°C to +125°C 8-Lead SOIC_N R-8 AD8646WARZ-R7 −40°C to +125°C 8-Lead SOIC_N R-8 AD8646WARMZ-RL −40°C to +125°C 8-Lead MSOP RM-8 A1V AD8646WARMZ-R7 −40°C to +125°C 8-Lead MSOP RM-8 A1V AD8647ARMZ −40°C to +125°C 10-Lead MSOP RM-10 A1W AD8647ARMZ-REEL −40°C to +125°C 10-Lead MSOP RM-10 A1W AD8648ARZ −40°C to +125°C 14-Lead SOIC_N R-14 AD8648ARZ-REEL −40°C to +125°C 14-Lead SOIC_N R-14 AD8648ARZ-REEL7 −40°C to +125°C 14-Lead SOIC_N R-14 AD8648ARUZ −40°C to +125°C 14-Lead TSSOP RU-14 AD8648ARUZ-REEL −40°C to +125°C 14-Lead TSSOP RU-14 AD8648WARUZ −40°C to +125°C 14-Lead TSSOP RU-14 AD8648WARUZ-RL −40°C to +125°C 14-Lead TSSOP RU-14 1 Z = RoHS Compliant Part. 2 W = Qualified for Automotive Applications. ©2006–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06527-0-8/16(F) Rev. F | Page 18 of 18
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: A nalog Devices Inc.: AD8647ARMZ AD8646WARMZ-RL AD8648ARUZ AD8646WARZ-RL AD8646ARZ AD8646WARMZ-R7 AD8648ARZ AD8647ARMZ-REEL AD8648ARUZ-REEL AD8648ARZ-REEL7 AD8646ARMZ-REEL AD8648ARZ- REEL AD8646ARZ-REEL AD8646ARMZ AD8646WARZ-R7 AD8646ARZ-REEL7