ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > AD8614ARTZ-REEL7
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
AD8614ARTZ-REEL7产品简介:
ICGOO电子元器件商城为您提供AD8614ARTZ-REEL7由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 AD8614ARTZ-REEL7价格参考¥23.90-¥23.90。AnalogAD8614ARTZ-REEL7封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 1 电路 满摆幅 SOT-23-5。您可以下载AD8614ARTZ-REEL7参考资料、Datasheet数据手册功能说明书,资料中有AD8614ARTZ-REEL7 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | - |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC OPAMP GP 5.5MHZ RRO SOT23-5精密放大器 IC 18V Single |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC |
品牌 | Analog Devices Inc |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 放大器 IC,精密放大器,Analog Devices AD8614ARTZ-REEL7- |
数据手册 | |
产品型号 | AD8614ARTZ-REEL7 |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30008http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26202 |
产品目录页面 | |
产品种类 | 精密放大器 |
供应商器件封装 | SOT-23-5 |
共模抑制比—最小值 | 75 dB |
关闭 | No |
其它名称 | AD8614ARTZ-REEL7-ND |
包装 | 带卷 (TR) |
压摆率 | 7.5 V/µs |
商标 | Analog Devices |
增益带宽生成 | 5.5 MHz |
增益带宽积 | 5.5MHz |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | SC-74A,SOT-753 |
封装/箱体 | SOT-23-5 |
工作温度 | -20°C ~ 85°C |
工作电源电压 | 5 V to 18 V |
工厂包装数量 | 3000 |
放大器类型 | 通用 |
最大工作温度 | + 85 C |
最小工作温度 | - 20 C |
标准包装 | 3,000 |
电压-电源,单/双 (±) | 5 V ~ 18 V |
电压-输入失调 | 1mV |
电压增益dB | 103.52 dB |
电流-电源 | 800µA |
电流-输入偏置 | 80nA |
电流-输出/通道 | 70mA |
电源电压-最大 | 18 V |
电源电压-最小 | 5 V |
电源电流 | 0.8 mA |
电源类型 | Single |
电路数 | 1 |
系列 | AD8614 |
视频文件 | http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193153001http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193159001 |
转换速度 | 7.5 V/us |
输入偏压电流—最大 | 500 nA |
输入电压范围—最大 | 18 V |
输入补偿电压 | 1 mV |
输出电流 | 70 mA |
输出类型 | 满摆幅 |
通道数量 | 1 Channel |
Single and Quad 18 V Operational Amplifiers AD8614/AD8644 FEATURES PIN CONFIGURATIONS Unity-gain bandwidth: 5.5 MHz Low voltage offset: 1.0 mV OUTA 1 5 V+ AD8614 Slew rate: 7.5 V/μs V– 2 TOPVIEW Single-supply operation: 5 V to 18 V (NottoScale) High output current: 70 mA +IN 3 4 –IN 06485-001 Low supply current: 800 μA/amplifier Figure 1. 5-Lead SOT-23 Stable with large capacitive loads (RJ-5) Rail-to-rail inputs and outputs APPLICATIONS OUTA 1 14 OUTD –INA 2 13 –IND LCD gamma and VCOM drivers +INA 3 AD8644 12 +IND Modems TOPVIEW V+ 4 (NottoScale) 11 V– Portable instrumentation +INB 5 10 +INC Direct access arrangement –INB 6 9 –INC GENERAL DESCRIPTION OUTB 7 8 OUTC 06485-002 The AD8614 (single) and AD8644 (quad) are single-supply, Figure 2. 14-Lead TSSOP (RU-14) 5.5 MHz bandwidth, rail-to-rail amplifiers optimized for LCD monitor applications. OUTA 1 14 OUTD They are processed using the Analog Devices, Inc. high voltage, –INA 2 13 –IND extra fast complementary bipolar (HV XFCB) process. This +INA 3 AD8644 12 +IND proprietary process includes trench-isolated transistors that V+ 4 (NToOtPtoVSIEcaWle) 11 V– +INB 5 10 +INC lower internal parasitic capacitance, which improves gain bsuapnpdlwy icduthrr,e pnht aosfe 8 m00a rμgAin (, taynpdic caal)p paceirt iavme ploliafdie dr riisv cer. iTtihcael lfoowr O–UINTBB 67 98 –OIUNTCC 06485-003 Figure 3. 14-Lead Narrow Body SOIC portable or densely packed designs. In addition, the rail-to-rail (R-14) output swing provides greater dynamic range and control than standard video amplifiers provide. These products operate from supplies of 5 V to as high as 18 V. The unique combination of an output drive of 70 mA, high slew rates, and high capacitive drive capability makes the AD8614/AD8644 an ideal choice for LCD applications. The AD8614 and AD8644 are specified over the temperature range of –20°C to +85°C. They are available in 5-lead SOT-23, 14-lead TSSOP, and 14-lead SOIC surface-mount packages in tape and reel. Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 www.analog.com Trademarks and registered trademarks are the property of their respective owners. Fax: 781.461.3113 ©1999–2007 Analog Devices, Inc. All rights reserved.
AD8614/AD8644 TABLE OF CONTENTS Features..............................................................................................1 Output Short-Circuit Protection.................................................9 Applications.......................................................................................1 Input Overvoltage Protection...................................................10 General Description.........................................................................1 Output Phase Reversal...............................................................10 Pin Configurations...........................................................................1 Power Dissipation.......................................................................10 Revision History...............................................................................2 Unused Amplifiers.....................................................................10 Specifications.....................................................................................3 Capacitive Load Drive...............................................................11 Electrical Characteristics.............................................................3 Direct Access Arrangement......................................................11 Absolute Maximum Ratings............................................................4 A One-Chip Headphone/Microphone Preamplifier Thermal Resistance......................................................................4 Solution........................................................................................11 ESD Caution..................................................................................4 Outline Dimensions.......................................................................13 Typical Performance Characteristics.............................................5 Ordering Guide..........................................................................14 Theory of Operation........................................................................9 REVISION HISTORY 9/07—Rev. A to Rev B Change to Current Noise Density in Table 1................................3 12/06—Rev. 0 to Rev. A Updated Format..................................................................Universal Deleted SPICE Model Availability Section..................................12 Updated Outline Dimensions.......................................................13 Changes to Ordering Guide..........................................................14 10/99—Revision 0: Initial Version Rev. B | Page 2 of 16
AD8614/AD8644 SPECIFICATIONS ELECTRICAL CHARACTERISTICS 5 V ≤ V ≤ 18 V, V = V/2, T = 25°C, unless otherwise noted.1 S CM S A Table 1. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage V 1.0 2.5 mV OS −20°C ≤ T ≤ +85°C 3 mV A Input Bias Current I 80 400 nA B −20°C ≤ T ≤ +85°C 500 nA A Input Offset Current I 5 100 nA OS −20°C ≤ T ≤ +85°C 200 nA A Input Voltage Range 0 V V S Common-Mode Rejection Ratio CMRR V = 0 V to V 60 75 dB CM S Voltage Gain A V = 0.5 V to V – 0.5 V, R = 10 kΩ 10 150 V/mV VO OUT S L OUTPUT CHARACTERISTICS Output Voltage High V I = 10 mA V − 0.15 V OH LOAD S Output Voltage Low V I = 10 mA 65 150 mV OL LOAD Output Short-Circuit Current I 35 70 mA SC −20°C ≤ T ≤ +85°C 30 mA A POWER SUPPLY Power Supply Rejection Ratio PSRR V = ±2.25 V to ±9.25 V 80 110 dB S Supply Current/Amplifier I 0.8 1.1 mA SY −20°C ≤ T ≤ +85°C 1.5 mA A DYNAMIC PERFORMANCE Slew Rate SR C = 200 pF 7.5 V/μs L Gain Bandwidth Product GBP 5.5 MHz Phase Margin Φo 65 Degrees Settling Time t 0.01%, 10 V step 3 μs S NOISE PERFORMANCE Voltage Noise Density e f = 1 kHz 12 nV/√Hz n e f = 10 kHz 11 nV/√Hz n Current Noise Density i f = 10 kHz 1 pA/√Hz n 1 All typical values are for VS = 18 V. Rev. B | Page 3 of 16
AD8614/AD8644 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 2. θ is specified for the worst-case conditions, that is, a device Parameter Rating JA soldered in a circuit board for surface-mount packages. Supply Voltage 20 V Input Voltage GND to V S Table 3. Thermal Resistance Storage Temperature Range −65°C to +150°C Package Type θ θ Unit JA JC Operating Temperature Range −20°C to +85°C 5-Lead SOT-23 (RJ) 230 140 °C/W Junction Temperature Range −65°C to +150°C 14-Lead TSSOP (RU) 180 35 °C/W Lead Temperature Range (Soldering, 60 sec) 300°C 14-Lead SOIC (R) 120 56 °C/W Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress ESD CAUTION rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. B | Page 4 of 16
AD8614/AD8644 TYPICAL PERFORMANCE CHARACTERISTICS 50 7.5 VS=18V VS=5V 45 RL=2kΩ 6.5 RL=2kΩ TA=25°C CL=200pF %) 40 5.5 AV=1 T ( TA=25°C HOO 35 V) 4.5 OVERS 3205 E (1V/DI 32..55 L G A A GN 20 LT 1.5 L SI 15 VO 0.5 L +OS A SM 10 –0.5 –OS 05 06485-004 ––12..55 06485-007 10 100 1k 10k TIME(1µs/DIV) CAPACITANCE(pF) Figure 4. Small Signal Overshoot vs. Load Capacitance Figure 7. Large Signal Transient Response, VS = 5 V 12 29 VS=18V 25 RL=2kΩ V 8 21 CALV==2100pF O ± 0.1% TA=25°C G FROM 0 T 40 0.01% E (4V/DIV) 11739 N G SWI LTA 5 UT –4 VO TP 0.1% 0.01% 1 U O –3 –8 –12 06485-005 –1–17 06485-008 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 TIME(1µs/DIV) SETTLINGTIME(µs) Figure 5. Output Swing vs. Settling Time Figure 8. Large Signal Transient Response, VS = 18 V 80 60 45 GAIN (dB) 42000 R5CTVALL≤===V2145M0S°pΩ≤CF18V 91103850 ASE SHIFT (Degrees) OLTAGE (50mV/DIV) V2S VRCSLL===522V0k0Ω≤pFVS≤18V PH V AV=1 TA=25°C 06485-006 06485-009 1k 10k 100k 1M 10M 100M TIME(500ns/DIV) FREQUENCY(Hz) Figure 6. Open-Loop Gain and Phase Shift vs. Frequency Figure 9. Small Signal Transient Response Rev. B | Page 5 of 16
AD8614/AD8644 10k 400 5V≤VS≤18V VS=±9V TA=25°C 300 V) 1k A) 200 m n PUT VOLTAGE ( 100 BIAS CURRENT ( –1100000 ΔOUT 10 SINK SOURCE NPUT –200 I 1 06485-010 ––430000 06485-013 0.001 0.01 0.1 1 10 100 –9 –7 –5 –3 –1 0 1 3 5 7 9 LOADCURRENT(mA) COMMON-MODEVOLTAGE(V) Figure 10. Output Voltage to Supply Rail vs. Load Current Figure 13. Input Bias Current vs. Common-Mode Voltage, VS = ±9 V 1000 180 TA=25°C 2.5V≤VS≤9V 900 160 TA=25°C A) R (µ 800 140 MPLIFIE 760000 plifiers) 120 A m 100 RRENT/ 450000 TITY (A 80 U N LY C 300 QUA 60 UPP 200 40 S 1000 06485-011 200 06485-014 0 1 2 3 4 5 6 7 8 9 10 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 SUPPLYVOLTAGE(±V) INPUT OFFSETVOLTAGE(mV) Figure 11. Supply Current vs. Supply Voltage Figure 14. Input Offset Voltage Distribution 400 1.0 VS=±2.5V 300 A) m 0.9 T (nA) 200 FIER ( VS=18V REN 100 MPLI 0.8 CUR 0 T/A PUT BIAS –100 Y CURREN 0.7 VS=5V N –200 L I P P 0.6 U ––430000 06485-012 S 0.5 06485-015 –2.5 –1.5 –0.5 0.5 1.5 2.5 –35 –15 5 25 45 65 85 COMMON-MODEVOLTAGE(V) TEMPERATURE(°C) Figure 12. Input Bias Current vs. Common-Mode Voltage, VS = ±2.5 V Figure 15. Supply Current vs. Temperature Rev. B | Page 6 of 16
AD8614/AD8644 6 5V≤VS≤18V TA=25°C 5 40 VS=5V p) AVCL=1 p- 4 RL=2kΩ G (V TA=25°C B) 20 WIN 3 N (d S AI UT G 0 P T 2 U O 1 0 06485-016 06485-019 100 1k 10k 100k 1M 10M 1k 10k 100k 1M 10M 100M FREQUENCY(Hz) FREQUENCY(Hz) Figure 16. Maximum Output Swing vs. Frequency, VS = 5 V Figure 19. Closed-Loop Gain vs. Frequency 20 140 5V≤VS≤18V 18 TA=25°C 16 VASVC=L1=8V1 dB) 120 V p-p) 14 RTAL==225k°ΩC CTION ( 100 G ( 12 JE 80 N E UT SWI 108 MODE R 60 TP N- OU 6 MO 40 M 4 O C 20 02 06485-017 0 06485-020 100 1k 10k 100k 1M 10M 100 1k 10k 100k 1M 10M FREQUENCY(Hz) FREQUENCY(Hz) Figure 17. Maximum Output Swing vs. Frequency, VS = 18 V Figure 20. Common-Mode Rejection vs. Frequency 300 100 5V≤VS≤18V VS=18V TA=25°C TA=25°C 240 dB) 80 N ( O Ω) CTI E ( 180 JE 60 C E N R EDA PLY PSRR+ P 120 P 40 IM SU PSRR– R E W 60 O 20 AV=1 P 0 AV=100 AV=10 06485-018 0 06485-021 1k 10k 100k 1M 10M 100 1k 10k 100k 1M 10M FREQUENCY(Hz) FREQUENCY(Hz) Figure 18. Closed-Loop Output Impedance vs. Frequency Figure 21. Power Supply Rejection vs. Frequency Rev. B | Page 7 of 16
AD8614/AD8644 9 100 VS=18V 8 TA=25°C SR+ Hz) 7 V/ n s) 6 Y ( µ SR– T V/ SI E ( 5 EN W RAT 4 OISE D 10 SLE 3 E N G A 2 AV=1 OLT RL=2kΩ V 01 CTAL==2250°0CpF 06485-022 1 06485-024 0 2 4 6 8 10 12 14 16 18 20 10 100 1k 10k SUPPLYVOLTAGE(V) FREQUENCY(Hz) Figure 22. Slew Rate vs. Supply Voltage Figure 24. Voltage Noise Density vs. Frequency, VS = 18 V 100 VS=5V TA=25°C Hz) V/ n Y ( T SI N E E D 10 S OI N E G A T L O V 1 06485-023 10 100 1k 10k FREQUENCY(Hz) Figure 23. Voltage Noise Density vs. Frequency, VS = 5 V Rev. B | Page 8 of 16
AD8614/AD8644 THEORY OF OPERATION The AD8614/AD8644 are processed using Analog Devices high OUTPUT SHORT-CIRCUIT PROTECTION voltage, extra fast complementary bipolar (HV XFCB) process. To achieve a wide bandwidth and high slew rate, the output of This process includes trench-isolated transistors that lower the AD8614/AD8644 is not short-circuit protected. Shorting parasitic capacitance. the output directly to ground or to a supply rail can destroy the Figure 26 shows a simplified schematic of the AD8614/AD8644. device. The typical maximum safe output current is 70 mA. The input stage is rail-to-rail, consisting of two complementary In applications where some output current protection is needed, differential pairs, one NPN pair and one PNP pair. The input but not at the expense of reduced output voltage headroom, a stage is protected against avalanche breakdown by two back-to- low value resistor in series with the output can be used. This is back diodes. Each input has a 1.5 kΩ resistor that limits input shown in Figure 25. The resistor is connected within the current during overvoltage events and furnishes phase reversal feedback loop of the amplifier so that if V is shorted to OUT protection if the inputs are exceeded. The two differential pairs ground and V swings up to 18 V, the output current does not IN are connected to a double-folded cascode. This is the stage in exceed 70 mA. the amplifier with the most gain. The double-folded cascode For 18 V single-supply applications, resistors less than 261 Ω are differentially feeds the output stage circuitry. Two complemen- not recommended. tary common emitter transistors are used as the output stage. This allows the output to swing to within 125 mV from each rail 18V with a 10 mA load. The gain of the output stage, and thus the open-loop gain of the op amp, depends on the load resistance. VIN 261Ω The AD8614/AD8644 have no built-in short-circuit protection. AD86x4 VOUT The short-circuit limit is a function of high current roll-off of the output stage transistors and the voltage drop over the resistor shown on the schematic at the output stage. The voltage 06485-026 over this resistor is clamped to one diode during short-circuit Figure 25. Output Short-Circuit Protection voltage events. VCC – 1.5kΩ 1.5kΩ + VCC VCC VOUT VEE 06485-025 Figure 26. Simplified Schematic Rev. B | Page 9 of 16
AD8614/AD8644 INPUT OVERVOLTAGE PROTECTION To calculate the internal junction temperature of the AD8614/AD8644, the following formula can be used: As with any semiconductor device, whenever the condition T = P × θ + T exists for the input to exceed either supply voltage, attention J DISS JA A needs to be paid to the input overvoltage characteristic. As an where: overvoltage occurs, the amplifier can be damaged, depending T is the AD8614/AD8644 junction temperature. J on the voltage level and the magnitude of the fault current. P is the AD8614/AD8644 power dissipation. DISS When the input voltage exceeds either supply by more than θ is the AD8614/AD8644 junction-to-ambient package thermal JA 0.6 V, internal pin junctions energize, allowing current to flow resistance. from the input to the supplies. Observing Figure 26, the T is the ambient temperature of the circuit. A AD8614/AD8644 have 1.5 kΩ resistors in series with each The power dissipated by the device can be calculated as: input, which helps to limit the current. This input current is not inherently damaging to the device as long as it is limited to P = I × (V – V ) DISS LOAD S OUT 5 mA or less. If the voltage is large enough to cause more than where: 5 mA of current to flow, an external series resistor should be I is the AD8614/AD8644 output load current. added. The size of this resistor is calculated by dividing the LOAD V is the AD8614/AD8644 supply voltage. maximum overvoltage by 5 mA and subtracting the internal S V is the AD8614/AD8644 output voltage. 1.5 kΩ resistor. For example, if the input voltage could reach 100 V, OUT the external resistor should be (100 V ÷ 5 mA) – 1.5 kΩ = 18.5 kΩ. Figure 27 provides a convenient way to determine if the device This resistance should be placed in series with either or both is being overheated. The maximum safe power dissipation can inputs if they are subjected to the overvoltages. be found graphically, based on the package type and the ambient temperature around the package. By using the previous equation, it OUTPUT PHASE REVERSAL is a simple matter to see if P exceeds the device’s power derating DISS The AD8614/AD8644 are immune to phase reversal as long as curve. To ensure proper operation, it is important to observe the the input voltage is limited to within the supply rails. Although recommended derating curves shown in Figure 27. the device’s output does not change phase, large currents due to 1.5 input overvoltage can result, damaging the device. In applica- tsiuopnpsl yw vhoelrtea gthe ee xpiosstss,i boivlietryv oofl taang ein ppruott evcotlitoang es heoxucelde dbien gu stehde, as ON (W) 1θJ4A-L=EA12D0°SCO/WICPACKAGE described in the previous section. TI A 1.0 P POWER DISSIPATION SSI 14-LEADTSSOPPACKAGE DI θJA=180°C/W The maximum power that can be safely dissipated by the ER W AD8614/AD8644 is limited by the associated rise in junction O temperature. The maximum safe junction temperature is 150°C, UM P 0.5 5-LEADSOT-23PACKAGE and should not be exceeded or device performance could suffer. XIM θJA=230°C/W A Iofp tehriast mionax iism reusmto rise dm aosm soenotna raisl yt heex cdeieed teedm, pperroaptuerr ec iirsc rueidt uced. M 0 06485-027 Leaving the device in an overheated condition for an extended –35 –15 5 25 45 65 85 AMBIENTTEMPERATURE(°C) period can result in permanent damage to the device. Figure 27. Maximum Power Dissipation vs. Temperature (5-Lead and 14-Lead Package Types) UNUSED AMPLIFIERS It is recommended that any unused amplifiers in the quad package be configured as a unity-gain follower with a 1 kΩ feedback resistor connected from the inverting input to the output, and the noninverting input tied to the ground plane. Rev. B | Page 10 of 16
AD8614/AD8644 CAPACITIVE LOAD DRIVE P1 Tx GAIN ADJUST R2 The AD8614/AD8644 exhibit excellent capacitive load driving 9.09kΩ capabilities. Although the device is stable with large capacitive TOTELLIENPEHONE R3 2kΩ 2 10Rk1Ω 0.C11µF TRATNxSAMIT loads, there is a decrease in amplifier bandwidth as the 1:1 360Ω 1 A1 3 capacitive load increases. 6.2V R5 ZO 10kΩ 600Ω When driving heavy capacitive loads directly from the 6.2V 5VDC AD8614/AD8644 output, a snubber network can be used to T1 R6 MIDCOM 10kΩ 6 improve the transient response. This network consists of a 671-8005 7 A2 R107kΩ 5 series R-C connected from the amplifier’s output to ground, R8 placing it in parallel with the capacitive load. The configuration 10µF 10kΩ is shown in Figure 28. Although this network does not increase R9 R10 10kΩ 10kΩ P2 the bandwidth of the amplifier, it does significantly reduce the Rx GAIN 2 R13 R14 ADJUST RECEIVE amount of overshoot. R11 1 10kΩ 14.3kΩ RxA 10kΩ 3 A3 6 2kΩ C2 5V AA13,,AA24==11//22AADD88664444 10Rk1Ω2 5 A4 7 0.1µF 06485-029 Figure 29. A Single-Supply Direct Access Arrangement for Modems AD86x4 VOUT A ONE-CHIP HEADPHONE/MICROPHONE VIN RX CL PREAMPLIFIER SOLUTION CX 06485-028 Because of its high output current performance, the AD8644 Figure 28. Snubber Network Compensation for Capacitive Loads makes an excellent amplifier for driving an audio output jack in a computer application. Figure 30 shows how the AD8644 can The optimum values for the snubber network should be be interfaced with an ac codec to drive headphones or speakers. determined empirically based on the size of the capacitive load. 5V Table 4 shows a few sample snubber network values for a given load capacitance. AVDD1 25 5V Table 4. Snubber Networks for Large Capacitive Loads VREFOUT 28 2 10 1+0C01µF 2R03Ω U1-A Load Capacitance (CL) Snubber Network (RX, CX) 1 LINE_OUT_L 35 4 R1 0.47 nF 300 Ω, 0.1 μF 3 2kΩ 5 4.7 nF 30 Ω, 1 μF AD1881A 47 nF 5 Ω, 10 μF (AC'97) DIRECT ACCESS ARRANGEMENT 6 Figure 29 shows a schematic for a 5 V single-supply transmit/ LINE_OUT_R 36 7 10C02µF 2R04Ω receive telephone line interface for 600 Ω transmission systems. It AVSS1 26 U1-B 9 + allows full duplex transmission of signals on a transformer- R2 8 2kΩ coupled 600 Ω line. Amplifier A1 provides gain that can be adjusted to meet the modem’s output drive requirements. Both Asig1n aanld t oA t2h aer etr caonnsffiogrumreedr. t To hape plalyr gtheset l asirggnesatl paovsasiilbalbel ed ioffne rae nsitniagl le N1.O ATDEDSITIONAL PINS OMITTED FOUR1 C =L AARDIT8Y6.44 06485-030 Figure 30. A PC-99-Compliant Headphone/Line Out Amplifier 5 V supply is approximately 4.0 V p-p into a 600 Ω transmission system. Amplifier A3 is configured as a difference amplifier to extract the receive information from the transmission line for amplification by A4. A3 also prevents the transmit signal from interfering with the receive signal. The gain of A4 can be adjusted in the same manner as A1 to meet the modem input signal requirements. Standard resistor values permit the use of single in-line package (SIP) format resistor arrays. Couple this with the AD8644 14-lead SOIC or TSSOP package and this circuit can offer a compact solution. Rev. B | Page 11 of 16
AD8614/AD8644 If gain is required from the output amplifier, four additional current from the headphones and create a high-pass filter with a resistors should be added as shown in Figure 31. corner frequency of 5V 1 20Rk6Ω f−3dB =2πC1(R4+R ) AVDD1 25 L AVDD2 38 5V where RL is the resistance of the headphones. LINE_OUT_L 35 R5 2 10 1+0C01µF 2R03Ω The remaining two amplifiers can be used as low voltage 10kΩ U1-A 1 microphone preamplifiers. A single AD8614 can be used as a 4 R1 3 2kΩ standalone microphone preamplifier. Figure 32 shows this 5 implementation. VREF 27 10kΩ 5V A(DA1C8'9871)A 6 10C02µF R4 AV = 20dB 1kΩ +1µF 2.2kΩ R5 7 U1-B + 20Ω MIC1 21 10kΩ 9 MIC 1 LINE_OUT_R 36 R2 8 2kΩ AVSS1 26 AD1881A 10kΩ 5V R6 (AC'97) 20kΩ U1 = AD8644 AV = 20dB 2.2kΩ R6 1kΩ +1µF AV= = +6dB WITH VALUES SHOWN N1.O ATDEDSITIONAL PINS OMITTED FOR CRL5ARITY. 06485-031 MIC2 22 MIC 2 Figure 31. A PC-99-Compliant Headphone/Speaker Amplifier with Gain The gain of the AD8644 can be set as VREF 27 06485-032 Figure 32. Microphone Preamplifier R6 A = V R5 Input coupling capacitors are not required for either circuit as the reference voltage is supplied from the AD1881A. The resistors R4 and R5 help protect the AD8644 output in case the output jack or headphone wires are accidentally shorted to ground. The output coupling capacitors C1 and C2 block dc Rev. B | Page 12 of 16
AD8614/AD8644 OUTLINE DIMENSIONS 2.90 BSC 5.10 5.00 4.90 5 4 1.60 BSC 2.80 BSC 14 8 1 2 3 4.50 4.40 6.40 BSC PIN 1 4.30 0.95 BSC 1 7 1.90 11..3105 BSC PIN 1 0.90 1.05 0.65 1.00 BSC 0.20 0.15 MAX 0.50 1S.4E5A MTAINXG 00..2028 150°° 0.60 0.80 00..1055 00..3109 SPELAANTIE1MN.GA20XCO0P.0L9ANARITY80°° 000...764505 0.30 PLANE 0° 0.45 0.10 0.30 COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 COMPLIANT TO JEDEC STANDARDS MO-178-AA Figure 33. 5-Lead Small Outline Transistor Package [SOT-23] Figure 34. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RJ-5) (RU-14) Dimensions shown in millimeters Dimensions shown in millimeters 8.75 (0.3445) 8.55 (0.3366) 4.00 (0.1575) 14 8 6.20 (0.2441) 3.80 (0.1496) 1 7 5.80 (0.2283) 1.27 (0.0500) 0.50 (0.0197) BSC 45° 1.75 (0.0689) 0.25 (0.0098) 0.25 (0.0098) 1.35 (0.0531) 8° 0.10 (0.0039) 0° COPLANARITY SEATING 0.10 0.51 (0.0201) PLANE 0.25 (0.0098) 1.27 (0.0500) 0.31 (0.0122) 0.17 (0.0067) 0.40 (0.0157) COMPLIANTTO JEDEC STANDARDS MS-012-AB C(RINOEFNPETARRREOENNLCLTEIHN EOGSN EDLSIYM)AEANNRDSEI AORRNOESU NANORDEET DAIN-PO MPFRIFLO LMPIIMRLELIATIMTEEER TFSEO; RIRN ECUQHSU EDI VIINMA LEDENENSSTIIOGSN NFS.OR 060606-A Figure 35. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches) Rev. B | Page 13 of 16
AD8614/AD8644 ORDERING GUIDE Model Temperature Range Package Description Package Option Branding AD8614ART-R2 –20°C to +85°C 5-Lead SOT-23 RJ-5 A6A AD8614ART-REEL –20°C to +85°C 5-Lead SOT-23 RJ-5 A6A AD8614ART-REEL7 –20°C to +85°C 5-Lead SOT-23 RJ-5 A6A AD8614ARTZ-REEL1 –20°C to +85°C 5-Lead SOT-23 RJ-5 A0Z AD8614ARTZ-REEL71 –20°C to +85°C 5-Lead SOT-23 RJ-5 A0Z AD8644AR –20°C to +85°C 14-Lead SOIC_N R-14 AD8644AR-REEL –20°C to +85°C 14-Lead SOIC_N R-14 AD8644AR-REEL7 –20°C to +85°C 14-Lead SOIC_N R-14 AD8644ARZ1 –20°C to +85°C 14-Lead SOIC_N R-14 AD8644ARZ-REEL1 –20°C to +85°C 14-Lead SOIC_N R-14 AD8644ARZ-REEL71 –20°C to +85°C 14-Lead SOIC_N R-14 AD8644ARU –20°C to +85°C 14-Lead TSSOP RU-14 AD8644ARU-REEL –20°C to +85°C 14-Lead TSSOP RU-14 AD8644ARUZ1 –20°C to +85°C 14-Lead TSSOP RU-14 AD8644ARUZ-REEL1 –20°C to +85°C 14-Lead TSSOP RU-14 1 Z = RoHS Compliant Part. Rev. B | Page 14 of 16
AD8614/AD8644 NOTES Rev. B | Page 15 of 16
AD8614/AD8644 NOTES ©1999–2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06485-0-9/07(B) Rev. B | Page 16 of 16
Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: A nalog Devices Inc.: AD8614ARTZ-REEL7 AD8644ARUZ AD8644ARZ AD8614ART-R2 AD8614ART-REEL7 AD8614ARTZ-REEL AD8644ARUZ-REEL AD8644ARZ-REEL7