图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: AD8607ARMZ-REEL
  • 制造商: Analog
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

AD8607ARMZ-REEL产品简介:

ICGOO电子元器件商城为您提供AD8607ARMZ-REEL由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 AD8607ARMZ-REEL价格参考。AnalogAD8607ARMZ-REEL封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 2 电路 满摆幅 8-MSOP。您可以下载AD8607ARMZ-REEL参考资料、Datasheet数据手册功能说明书,资料中有AD8607ARMZ-REEL 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
-3db带宽

-

产品目录

集成电路 (IC)半导体

描述

IC OPAMP GP 400KHZ RRO 8MSOP精密放大器 Prec Dual MicroPwr RRIO

产品分类

Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC

品牌

Analog Devices

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

放大器 IC,精密放大器,Analog Devices AD8607ARMZ-REEL-

数据手册

点击此处下载产品Datasheet点击此处下载产品Datasheet

产品型号

AD8607ARMZ-REEL

产品培训模块

http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=19143http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30008http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26202

产品目录页面

点击此处下载产品Datasheet

产品种类

精密放大器

供应商器件封装

8-MSOP

共模抑制比—最小值

100 dB

关闭

No

其它名称

AD8607ARMZ-REELDKR

包装

Digi-Reel®

压摆率

0.1 V/µs

双重电源电压

0.9 V to 2.5 V

可用增益调整

113 dB

商标

Analog Devices

增益带宽生成

400 kHz

增益带宽积

400kHz

安装类型

表面贴装

安装风格

SMD/SMT

封装

Reel

封装/外壳

8-TSSOP,8-MSOP(0.118",3.00mm 宽)

封装/箱体

MSOP-8

工作温度

-40°C ~ 125°C

工作电源电压

1.8 V to 5 V

工厂包装数量

3000

放大器类型

通用

最大双重电源电压

2.5 V

最大工作温度

+ 125 C

最小双重电源电压

0.9 V

最小工作温度

- 40 C

标准包装

1

电压-电源,单/双 (±)

1.8 V ~ 5 V, ±0.9 V ~ 2.5 V

电压-输入失调

12µV

电压增益dB

113.06 dB

电流-电源

40µA

电流-输入偏置

0.2pA

电流-输出/通道

70mA

电源电压-最大

5 V

电源电压-最小

1.8 V

电源电流

40 uA

电源类型

Single, Dual

电路数

2

系列

AD8607

视频文件

http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193153001http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193159001

转换速度

0.1 V/us

输入偏压电流—最大

500 pA

输入电压范围—最大

5.2 V

输入补偿电压

12 uV

输出类型

Rail to Rail Input/Output

通道数量

2 Channel

推荐商品

型号:THS4130CDR

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:ACPL-782T-500E

品牌:Broadcom Limited

产品名称:集成电路(IC)

获取报价

型号:LM2904PWR

品牌:Rohm Semiconductor

产品名称:集成电路(IC)

获取报价

型号:LMH6645MF

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:TLE2141AID

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:AD8599ARZ

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:LT1397CS#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:TLV2772AQPW

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
AD8607ARMZ-REEL 相关产品

INA213AIDCKTG4

品牌:Texas Instruments

价格:

AD783JRZ

品牌:Analog Devices Inc.

价格:

TLE2074AIDW

品牌:Texas Instruments

价格:¥24.97-¥46.40

TLE2064AMDRG4

品牌:Texas Instruments

价格:¥24.61-¥45.72

THS4304DG4

品牌:Texas Instruments

价格:¥29.95-¥49.22

ADA4841-2YRMZ

品牌:Analog Devices Inc.

价格:

TL082CDRE4

品牌:Texas Instruments

价格:

OPA211IDGKT

品牌:Texas Instruments

价格:¥42.68-¥71.18

PDF Datasheet 数据手册内容提取

Precision Micropower, Low Noise CMOS, Rail-to-Rail Input/Output Operational Amplifiers AD8603/AD8607/AD8609 FEATURES PIN CONFIGURATIONS Low offset voltage: 50 μV maximum OUT 1 5 V+ Low input bias current: 1 pA maximum AD8603 Single-supply operation: 1.8 V to 5 V V– 2 TOP VIEW (Not to Scale) LMoiwcr onpooiswe:e 2r:2 5 n0V μ/A√H mza ximum +IN 3 4 –IN 04356-001 Figure 1. 5-Lead TSOT (UJ Suffix) Low distortion No phase reversal Unity gain stable OUT A 1 8 V+ AD8607 –IN A 2 7 OUT B TOP VIEW APPLICATIONS +INV A– 34 (Not to Scale) 65 –+IINN BB 04356-002 Battery-powered instrumentation Figure 2. 8-Lead MSOP (RM Suffix) Multipole filters Sensors OUT A 1 8 V+ Low power ASIC input or output amplifiers –IN A 2 AD8607 7 OUT B GENERAL DESCRIPTION +INV A– 34 (NToOt Pto V SIEcWale) 65 –+IINN BB 04356-003 Figure 3. 8-Lead SOIC (R Suffix) The AD8603/AD8607/AD8609 are single/dual/quad micro- power rail-to-rail input and output amplifiers, respectively, that feature very low offset voltage as well as low input voltage and OUT A 1 14 OUT D current noise. –IN A 2 13 –IN D These amplifiers use a patented trimming technique that achieves +IN A 3 AD8609 12 +IN D TOP VIEW superior precision without laser trimming. The parts are fully V+ 4 (Not to Scale) 11 V– specified to operate from 1.8 V to 5.0 V single supply or from +IN B 5 10 +IN C ±0.9 V to ±2.5 V dual supply. The combination of low offsets, low –IN B 6 9 –IN C nmoaiksee,s v tehrey A loDw8 i6n0p3u/At bDia8s6 c0u7r/rAeDnt8s,6 a0n9d e slopwec piaollwy eurs ceofunls iunm ppotritoanb le OUT B 7 8 OUT C 04356-004 Figure 4. 14-Lead TSSOP (RU Suffix) and loop-powered instrumentation. The ability to swing rail to rail at both the input and output OUT A 1 14 OUT D enables designers to buffer CMOS ADCs, DACs, ASICs, and –IN A 2 13 –IN D other wide output swing devices in low power, single-supply +IN A 3 AD8609 12 +IN D systems. V+ 4 TOP VIEW 11 V– (Not to Scale) The AD8603 is available in a tiny 5-lead TSOT package. The +IN B 5 10 +IN C –IN B 6 9 –IN C AThDe8 A60D78 i6s0 a9v aisi laavbaleil ainb l8e- ilnea 1d4 M-leSaOd PT aSnSOd P8- alenadd 1S4O-lIeCa dp aScOkIaCg es. OUT B 7 8 OUT C 04356-005 packages. Figure 5. 14-Lead SOIC (R Suffix) Rev. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 www.analog.com Trademarks and registered trademarks are the property of their respective owners. Fax: 781.461.3113 ©2003–2008 Analog Devices, Inc. All rights reserved.

AD8603/AD8607/AD8609 TABLE OF CONTENTS Features .............................................................................................. 1  Applications ..................................................................................... 12  Applications ....................................................................................... 1  No Phase Reversal ...................................................................... 12  General Description ......................................................................... 1  Input Overvoltage Protection ................................................... 12  Pin Configurations ........................................................................... 1  Driving Capacitive Loads .......................................................... 12  Revision History ............................................................................... 2  Proximity Sensors ....................................................................... 13  Specifications ..................................................................................... 3  Composite Amplifiers ................................................................ 13  Electrical Characteristics ............................................................. 3  Battery-Powered Applications .................................................. 13  Absolute Maximum Ratings ............................................................ 5  Photodiodes ................................................................................ 13  ESD Caution .................................................................................. 5  Outline Dimensions ....................................................................... 14  Typical Performance Characteristics ............................................. 6  Ordering Guide .......................................................................... 16  REVISION HISTORY 6/08—Rev. B to Rev. C Changes to Table 1 ............................................................................ 3 Changes to Table 2 ............................................................................ 4 Changes to Figure 15 ........................................................................ 7 Changes to Figure 33 ...................................................................... 10 Changes to Figure 45 and Figure 47 ............................................. 13 Updated Outline Dimensions ....................................................... 14 Changes to Ordering Guide .......................................................... 16 6/05—Rev. A to Rev. B Updated Figure 49 .......................................................................... 15 Changes to Ordering Guide .......................................................... 17 10/03—Rev. 0 to Rev. A Added AD8607 and AD8609 Parts .................................. Universal Changes to Specifications ................................................................ 3 Changes to Figure 35 ...................................................................... 10 Added Figure 41 .............................................................................. 11 8/03—Revision 0: Initial Version Rev. C | Page 2 of 16

AD8603/AD8607/AD8609 SPECIFICATIONS ELECTRICAL CHARACTERISTICS V = 5 V, V = V/2, T = 25°C, unless otherwise noted. S CM S A Table 1. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage V V = 3.3 V @ V = 0.5 V and 2.8 V 12 50 μV OS S CM −0.3 V < V < +5.2 V 40 300 μV CM −40°C < T < +125°C, −0.3 V < V < +5.2 V 700 μV A CM Offset Voltage Drift ∆V /∆T −40°C < T < +125°C 1 4.5 μV/°C OS A Input Bias Current I 0.2 1 pA B −40°C < T < +85°C 50 pA A −40°C < T < +125°C 500 pA A Input Offset Current I 0.1 0.5 pA OS −40°C < T < +85°C 50 pA A −40°C < T < +125°C 250 pA A Input Voltage Range IVR −0.3 +5.2 V Common-Mode Rejection Ratio CMRR 0 V < V < 5 V 85 100 dB CM −40°C < T < +125°C 80 dB A Large Signal Voltage Gain A R = 10 kΩ, 0.5 V < V < 4.5 V VO L O AD8603 400 1000 V/mV AD8607/AD8609 250 450 V/mV Input Capacitance C 1.9 pF DIFF C 2.5 pF CM OUTPUT CHARACTERISTICS Output Voltage High V I = 1 mA 4.95 4.97 V OH L −40°C to +125°C 4.9 V I = 10 mA 4.65 4.97 V L −40°C to +125°C 4.50 V Output Voltage Low V I = 1 mA 16 30 mV OL L −40°C to +125°C 50 mV I = 10 mA 160 250 mV L −40°C to +125°C 330 mV Short-Circuit Current I ±70 mA SC Closed-Loop Output Impedance Z f = 10 kHz, A = 1 36 Ω OUT V POWER SUPPLY Power Supply Rejection Ratio PSRR 1.8 V < V < 5 V 80 100 dB S Supply Current per Amplifier I V = 0 V 40 50 μA SY O −40°C <T < +125°C 60 μA A DYNAMIC PERFORMANCE Slew Rate SR R = 10 kΩ 0.1 V/μs L Settling Time 0.1% t G = ±1, 2 V step 23 μs S Gain Bandwidth Product GBP R = 100 kΩ 400 kHz L R = 10 kΩ 316 kHz L Phase Margin Ø R = 10 kΩ, R = 100 kΩ 70 Degrees O L L NOISE PERFORMANCE Peak-to-Peak Noise e 0.1 Hz to 10 Hz 2.3 3.5 μV n p-p Voltage Noise Density e f = 1 kHz 25 nV/√Hz n f = 10 kHz 22 nV/√Hz Current Noise Density i f = 1 kHz 0.05 pA/√Hz n Channel Separation C f = 10 kHz −115 dB S f = 100 kHz −110 dB Rev. C | Page 3 of 16

AD8603/AD8607/AD8609 V = 1.8 V, V = V/2, T = 25°C, unless otherwise noted. S CM S A Table 2. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage V V = 3.3 V @ V = 0.5 V and 2.8 V 12 50 μV OS S CM −0.3 V < V < +1.8 V 40 300 μV CM −40°C < T < +85°C, −0.3 V < V < +1.8 V 500 μV A CM −40°C < T < +125°C, −0.3 V < V < +1.7 V 700 μV A CM Offset Voltage Drift ∆V /∆T −40°C < T < +125°C 1 4.5 μV/°C OS A Input Bias Current I 0.2 1 pA B −40°C < T < +85°C 50 pA A −40°C < T < +125°C 500 pA A Input Offset Current I 0.1 0.5 pA OS −40°C < T < +85°C 50 pA A −40°C < T < +125°C 250 pA A Input Voltage Range IVR −0.3 +1.8 V Common-Mode Rejection Ratio CMRR 0 V < V < 1.8 V 80 98 dB CM −40°C < T < +85°C 70 dB A Large Signal Voltage Gain A R = 10 kΩ, 0.5 V < V < 4.5 V VO L O AD8603 150 3000 V/mV AD8607/AD8609 100 2000 V/mV Input Capacitance C 2.1 pF DIFF C 3.8 pF CM OUTPUT CHARACTERISTICS Output Voltage High V I = 1 mA 1.65 1.72 V OH L −40°C to +125°C 1.6 V Output Voltage Low V I = 1 mA 38 60 mV OL L −40°C to +125°C 80 mV Short-Circuit Current I ±10 mA SC Closed-Loop Output Impedance Z f = 10 kHz, A = 1 36 Ω OUT V POWER SUPPLY Power Supply Rejection Ratio PSRR 1.8 V < V < 5 V 80 100 dB S Supply Current per Amplifier I V = 0 V 40 50 μA SY O −40°C < T < +85°C 60 μA A DYNAMIC PERFORMANCE Slew Rate SR R = 10 kΩ 0.1 V/μs L Settling Time 0.1% t G = ±1, 1 V step 9.2 μs S Gain Bandwidth Product GBP R = 100 kΩ 385 kHz L R = 10 kΩ 316 kHz L Phase Margin Ø R = 10 kΩ, R = 100 kΩ 70 Degrees O L L NOISE PERFORMANCE Peak-to-Peak Noise e 0.1 Hz to 10 Hz 2.3 3.5 μV n p-p Voltage Noise Density e f = 1 kHz 25 nV/√Hz n f = 10 kHz 22 nV/√Hz Current Noise Density i f = 1 kHz 0.05 pA/√Hz n Channel Separation C f = 10 kHz −115 dB S f = 100 kHz −110 dB Rev. C | Page 4 of 16

AD8603/AD8607/AD8609 ABSOLUTE MAXIMUM RATINGS Absolute maximum ratings apply at 25°C, unless otherwise noted. Table 4. Package Characteristics Package Type θ 1 θ Unit JA JC Table 3. 5-Lead TSOT (UJ) 207 61 °C/W Parameter Rating 8-Lead MSOP (RM) 210 45 °C/W Supply Voltage 6 V 8-Lead SOIC_N (R) 158 43 °C/W Input Voltage GND to V S 14-Lead SOIC_N (R) 120 36 °C/W Differential Input Voltage ±6 V 14-Lead TSSOP (RU) 180 35 °C/W Output Short-Circuit Duration to GND Indefinite Storage Temperature Range −65°C to +150°C 1 θJA is specified for the worst-case conditions, that is, θJA is specified for a device soldered in a circuit board for surface-mount packages. Lead Temperature (Soldering, 60 sec) 300°C Operating Temperature Range −40°C to +125°C Junction Temperature Range −65°C to +150°C ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. C | Page 5 of 16

AD8603/AD8607/AD8609 TYPICAL PERFORMANCE CHARACTERISTICS 2600 300 2400 VTAS == 255V°C 250 TVAS == 235.3°VC 2200 VCM = 0VTO 5V 200 2000 150 S ER 1800 100 FI 1600 LI 50 MP 1400 V) R OFA 11020000 V (µOS –500 MBE 800 –100 U –150 N 600 400 –200 200 –250 0 –270 –210 –150 –90 –3V0OS0 (µV3)0 90 150 210 270 04356-006 –3000 0.3 0.6 0.9 1.2 1VV.5CCMM ((V1V.))8 2.1 2.4 2.7 3.0 3.304356-009 Figure 6. Input Offset Voltage Distribution Figure 9. Input Offset Voltage vs. Common-Mode Voltage 30 400 VS = ±2.5V TA = –40°CTO +125°C 350 25 VCM = 0V VS =±2.5V 300 AMPLIFIERS 2105 URRENT (pA) 225000 F C RS O BIAS 150 NUMBE 10 INPUT 100 5 50 00 0.4 0.8 1.2 1.6 2.T0CV2O.4S (2µ.V8/°C3).2 3.6 4.0 4.4 4.8 5.204356-007 00 25 TE5M0PERATURE7 5(°C) 100 12504356-010 Figure 7. Input Offset Voltage Drift Distribution Figure 10. Input Bias Current vs. Temperature 300 1000 250 VS = 5V VS = 5V TA = 25°C V) TA = 25°C 200 m 150 AIL ( 100 R 100 Y L 50 PP 10 V) SU V (µOS –500 GETO 1 SOURCE SINK A –100 T L O –150 V –200 PUT 0.1 T –250 OU –3000 0.5 1.0 1.5 2.0VC2M.5 (V) 3.0 3.5 4.0 4.5 5.004356-008 0.001.001 0.01 LOAD CUR0R.1ENT (mA) 1 1004356-011 Figure 8. Input Offset Voltage vs. Common-Mode Voltage Figure 11. Output Voltage to Supply Rail vs. Load Current Rev. C | Page 6 of 16

AD8603/AD8607/AD8609 350 1750 VS = 5V VS= ±2.5V, ±0.9V TA = 25°C 1575 300 GE SWING (mV) 225000 VDD – VVOOLH@@ 1100mmAA LLOOAADD EDANCE (Ω) 111420802570505 AV = 100 AV = 10 TA 150 MP AV = 1 VOL UT I 700 UT 100 TP 525 P U T O U 350 O 50 VDD – VOH@ 1mA LOAD 175 0–40 –25 –10 5 T2E0MPE3R5ATU5R0E (°6C5) V8O0L@ 915mA 1L1O0AD12504356-012 0100 1k FREQUENC10Yk (Hz) 100k 04356-015 Figure 12. Output Voltage Swing vs. Temperature Figure 15. Output Impedance vs. Frequency 100 225 140 VS = ±2.5V VS = ±2.5V 80 RL = 100kΩ 180 120 CL = 20pF 60 Φ = 70.9° 135 100 B) 40 90 80 N-LOOP GAIN (d –22000 4–0545 PHASE (Degree) CMRR (dB) 624000 PE –40 –90 0 O –60 –135 –20 –80 –180 –40 –1001k 10k FRE1Q0U0EkNCY (Hz) 1M 10M–22504356-013 –60100 1kFREQUENCY (Hz)10k 100k04356-016 Figure 13. Open-Loop Gain and Phase vs. Frequency Figure 16. CMRR vs. Frequency 5.0 140 4.5 VVSIN == 54V.9V p-p 120 VS = ±2.5V p-p) 4.0 ATAV == 215°C 100 G (V 3.5 80 SWIN 3.0 B) 60 GE 2.5 R (d 40 A R OLT 2.0 PS 20 V T 1.5 0 U P UT 1.0 –20 O 0.5 –40 00.01 0.1 FREQUEN1CY (kHz) 10 10004356-014 –6010 100 FREQUE1NkCY (Hz) 10k 100k04356-017 Figure 14. Closed-Loop Output Voltage Swing vs. Frequency Figure 17. PSRR vs. Frequency Rev. C | Page 7 of 16

AD8603/AD8607/AD8609 60 VS = 5V VS = 5V, 1.8V 50 %) T ( V) SHOO 40 1µV/DI ER OS– E ( OV 30 OIS L N ALL SIGNA 20 OS+ VOLTAGE SM 10 010 LOAD CAPA1C00ITANCE (pF) 100004356-018 TIME (1s/DIV) 04356-021 Figure 18. Small Signal Overshoot vs. Load Capacitance Figure 21. 0.1 Hz to 10 Hz Input Voltage Noise 60 55 VS = ±2.5V VRSL == 51V0kΩ 50 CL = 200pF AV = 1 45 NT (µA) 4305 mV/DIV) URRE 30 E (50 UPPLY C 2250 VOLTAG S 15 10 5 0–40 –25 –10 5 T2E0MPE3R5ATU5R0E (°6C5) 80 95 110 12504356-019 TIME (4µs/DIV) 04356-022 Figure 19. Supply Current vs. Temperature Figure 22. Small Signal Transient 100 TA = 25°C VS = 5V 90 RL = 10kΩ CL = 200pF 80 AV = 1 µA) 70 V) NT ( 60 V/DI E 1 RR 50 E ( U G PPLY C 3400 VOLTA U S 20 10 00 1 SUPP2LY VOLTAG3E (V) 4 504356-020 TIME (20µs/DIV) 04356-023 Figure 20. Supply Current vs. Supply Voltage Figure 23. Large Signal Transient Rev. C | Page 8 of 16

AD8603/AD8607/AD8609 176 VS= ±2.5V VS = ±2.5V (V)UT +2.5V RAVILVN=== 115000k0mΩV √Hz) 154 VO nV/ 132 Y ( 0V SIT 110 N E V) 0V SE D 88 m OI V (IN GE N 66 TA 44 L –50mV O V 22 TTIIMMEE ((44μ0µs/sD/DIVIV))) 04356-024 00 1 2 3 FR4EQUEN5CY (k6Hz) 7 8 9 1004356-027 Figure 24. Negative Overload Recovery Figure 27. Voltage Noise Density vs. Frequency 800 VS = ±2.5V 750 VS = 1.8V RL = 10kΩ 700 TA = 25°C (V)UT AVIVN == 15000mV +2.5V RS 660500 VCM = 0V TO 1.8V VO 0V LIFIE 550500 MP 450 0V F A 400 O 350 ER 300 B V) M 250 m U (N N 200 VI –50mV 150 100 50 TIME (4µs/DIV) 04356-025 –0300 –240 –180 –120 –60VOS0 (µV)60 120 180 240 30004356-028 Figure 25. Positive Overload Recovery Figure 28. VOS Distribution 168 300 VS = ±2.5V 250 VS = 1.8V Hz) 144 200 TA = 25°C √ V/ 150 n 120 Y ( 100 T NSI 96 50 DE µV) 0 OISE 72 V (OS –50 N E –100 AG 48 –150 T L O –200 V 24 –250 00 0.1 0.2 0.3 FR0E.4QUE0N.5CY (0k.H6z) 0.7 0.8 0.9 1.004356-026 –3000 0.3 0.6 VVCC0MM. 9((VV)) 1.2 1.5 1.8290-65340 Figure 26. Voltage Noise Density vs. Frequency Figure 29. Input Offset Voltage vs. Common-Mode Voltage Rev. C | Page 9 of 16

AD8603/AD8607/AD8609 1000 100 225 V) VTAS == 215.8°VC 80 VRSL == ±1000.9kVΩ 180 m CL = 20pF L ( 100 60 Φ = 70° 135 AI Y R B) 40 90 OLTAGETO SUPPL 110 SOURCE SINK PEN-LOOP GAIN (d ––2420000 4–0–54950 PHASE (Degrees) V O UT 0.1 –60 –135 P T U –80 –180 O 0.001.001 0.01 LOAD CUR0R.1ENT (mA) 1 1004356-030 –1001k 10k FRE1Q0U0EkNCY (Hz) 1M 10M–225 04356-033 Figure 30. Output Voltage to Supply Rail vs. Load Current Figure 33. Open-Loop Gain and Phase vs. Frequency 100 140 VS= 1.8V 90 120 VS = 1.8V 80 100 V) m NG ( 70 VDD – VOH@ 1mA LOAD 80 WI 60 60 S B) OLTAGE 5400 VOL@ 1mA LOAD CMRR (d 2400 V UT 30 0 P UT 20 –20 O 10 –40 0–40 –25 –10 5 T2E0MPE3R5ATU5R0E (°C65) 80 95 110 12504356-031 –60100 1kFREQUENCY (Hz)10k 100k04356-034 Figure 31. Output Voltage Swing vs. Temperature Figure 34. CMRR vs. Frequency 60 1.8 VS = 1.8V %) 50 TAAV == 215°C p-p) 1.5 VVSIN== 11..87VV p-p OOT ( 40 NG (V 1.2 TAAV == 215°C SH WI R S NAL OVE 30 OLTAGE 0.9 ALL SIG 20 OS– UTPUT V 0.6 SM 10 O 0.3 OS+ 010 LOAD CAPA1C00ITANCE (pF) 100004356-032 00.01 0.1 FREQUEN1CY (kHz) 10 10004356-035 Figure 32. Small Signal Overshoot vs. Load Capacitance Figure 35. Closed-Loop Output Voltage Swing vs. Frequency Rev. C | Page 10 of 16

AD8603/AD8607/AD8609 176 VS = 1.8V VS = ±0.9V RL = 10kΩ 154 CALV == 2100pF Hz) V/√ 132 DIV) TY (n 110 V/ SI m N 50 DE 88 OLTAGE ( E NOISE 66 V G A 44 T L O V 22 TIME (4µs/DIV) 04356-036 00 1 2 3 FR4EQUE5NCY (k6Hz) 7 8 9 1004356-039 Figure 36. Small Signal Transient Figure 39. Voltage Noise Density vs. Frequency 0 VS = ±2.5V, ±0.9V VRSL == 11.08kVΩ –20 CL = 200pF 500mV/DIV) AV = 1 ARATION (dB) ––6400 GE ( SEP –80 VOLTA ANNEL –100 H C –120 TIME (20µs/DIV) 04356-037 –140100 1k FREQUE10NkCY (Hz) 100k 1M04356-040 Figure 37. Large Signal Transient Figure 40. Channel Separation vs. Frequency 168 VS = ±0.9V Hz) 140 √ V/ n Y ( 112 T SI N E D 84 E S OI N E 56 G A T L O V 28 00 0.1 0.2 0.3 FR0.E4QUE0N.5CY (0k.H6z) 0.7 0.8 0.9 1.004356-038 Figure 38. Voltage Noise Density vs. Frequency Rev. C | Page 11 of 16

AD8603/AD8607/AD8609 APPLICATIONS NO PHASE REVERSAL The use of the snubber circuit is usually recommended for unity gain configurations. Higher gain configurations help improve The AD8603/AD8607/AD8609 do not exhibit phase inversion the stability of the circuit. Figure 44 shows the same output even when the input voltage exceeds the maximum input response with the snubber in place. common-mode voltage. Phase reversal can cause permanent damage to the amplifier, resulting in system lockups. The AD8603/AD8607/AD8609 can handle voltages of up to 1 V VVSIN == ±100.09mVV over the supply. CL = 2nF RL = 10kΩ VS = ±2.5V VIN VAIVN == 16V p-p RL = 10kΩ DIV) VOUT V/ 1 E ( VOLTAG 04356-042 Figure 42. Output Response to a 2 nF Capacitive Load, Without Snubber VEE TIME (4µs/DIV) 04356-041 VV–+ RS 150Ω Figure 41. No Phase Response + CL INPUT OVERVOLTAGE PROTECTION 200mV – VCC 47CpFS 04356-043 If a voltage 1 V higher than the supplies is applied at either Figure 43. Snubber Network input, the use of a limiting series resistor is recommended. If both inputs are used, each one should be protected with a VSY = ±0.9V series resistor. VIN = 100mV CL = 2nF To ensure good protection, the current should be limited to a RL = 10kΩ RS = 150Ω maximum of 5 mA. The value of the limiting resistor can be CS = 470pF determined from the following equation: (V − V)/(R + 200 Ω) ≤ 5 mA IN S S DRIVING CAPACITIVE LOADS The AD8603/AD8607/AD8609 are capable of driving large capacitive loads without oscillating. Figure 42 shows the output osifg tnhael ,A wDit8h6 a0 32/ AnFD c8a6p0a7c/iAtivDe8 l6o0a9d .i n response to a 100 mV input 04356-044 Figure 44. Output Response to a 2 nF Capacitive Load with Snubber Although it is configured in positive unity gain (the worst case), Optimum values for R and C are determined empirically; the AD8603 shows less than 20% overshoot. Simple additional S S Table 5 lists a few starting values. circuitry can eliminate ringing and overshoot. One technique is the snubber network, which consists of a Table 5. Optimum Values for the Snubber Network series RC and a resistive load (see Figure 43). With the snubber C (pF) R (Ω) C (pF) L S S in place, the AD8603/AD8607/AD8609 are capable of driving 100 to ~500 500 680 capacitive loads of 2 nF with no ringing and less than 3% 1500 100 330 overshoot. 1600 to ~2000 400 100 Rev. C | Page 12 of 16

AD8603/AD8607/AD8609 PROXIMITY SENSORS BATTERY-POWERED APPLICATIONS Proximity sensors can be capacitive or inductive and are used in The AD8603/AD8607/AD8609 are ideal for battery-powered a variety of applications. One of the most common applications applications. The parts are tested at 5 V, 3.3 V, 2.7 V, and 1.8 V is liquid level sensing in tanks. This is particularly popular in and are suitable for various applications whether in single or pharmaceutical environments where a tank must know when to dual supply. stop filling or mixing a given liquid. In aerospace applications, In addition to their low offset voltage and low input bias, the these sensors detect the level of oxygen used to propel engines. AD8603/AD8607/AD8609 have a very low supply current of Whether in a combustible environment or not, capacitive 40 μA, making the parts an excellent choice for portable electronics. sensors generally use low voltage. The precision and low voltage The TSOT package allows the AD8603 to be used on smaller of the AD8603/AD8607/AD8609 make the parts an excellent board spaces. choice for such applications. PHOTODIODES COMPOSITE AMPLIFIERS Photodiodes have a wide range of applications from barcode A composite amplifier can provide a very high gain in applications scanners to precision light meters and CAT scanners. The very where high closed-loop dc gains are needed. The high gain low noise and low input bias current of the AD8603/AD8607/ achieved by the composite amplifier comes at the expense of a AD8609 make the parts very attractive amplifiers for I-V loss in phase margin. Placing a small capacitor, C, in the feedback F conversion applications. in parallel with R2 (see Figure 45) improves the phase margin. Figure 47 shows a simple photodiode circuit. The feedback Picking C = 50 pF yields a phase margin of about 45° for the F capacitor helps the circuit maintain stability. The signal band- values shown in Figure 45. width can be increased at the expense of an increase in the total CF noise; a low-pass filter can be implemented by a simple RC network R1 R2 at the output to reduce the noise. The signal bandwidth can be 1kΩ VEE 99kΩ calculated by ½πR2C2, and the closed-loop bandwidth is the intersection point of the open-loop gain and the noise gain. VCC V– AD8603 U5 The circuit shown in Figure 47 has a closed-loop bandwidth of V+ V+ AD8541 V– 58 kHz and a signal bandwidth of 16 Hz. Increasing C2 to 50 pF VIN VCC yields a closed-loop bandwidth of 65 kHz, but only 3.2 Hz of 1Rk3Ω VE9E9Rk4Ω 04356-045 signal bandwidth can be achieved. C2 Figure 45. High Gain Composite Amplifier 10pF A composite amplifier can be used to optimize dc and ac R2 characteristics. Figure 46 shows an example using the AD8603 1000MΩ and the AD8541. This circuit offers many advantages. The band- width is increased substantially, and the input offset voltage and VEE noise of the AD8541 become insignificant because they are divided V– by the high gain of the AD8603. AD8603 The circuit in Figure 46 offers high bandwidth (nearly double R1 C1 that of the AD8603), high output current, and very low power 1000MΩ 10pF V+ consumption of less than 100 μA. R2 VCC 04356-047 Figure 47. Photodiode Circuit VEE 100kΩ R1 V– VCC 1kΩ R3 AD8603 VIN 1kΩ VV+– 10R04Ω V+ C2 AD8541 VEE C3 VCC 04356-046 Figure 46. Low Power Composite Amplifier Rev. C | Page 13 of 16

AD8603/AD8607/AD8609 OUTLINE DIMENSIONS 2.90 BSC 5 4 1.60 BSC 2.80 BSC 1 2 3 PIN 1 0.95 BSC *0.90 B1.S9C0 0.87 0.84 *1.00 MAX 0.20 0.08 8° 0.10 MAX 0.50 SEATING 4° 0.60 0.30 PLANE 0° 0.45 0.30 *COMPLIANT TO JEDEC STANDARDS MO-193-ABWITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS. Figure 48. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters 3.20 3.00 2.80 8 5 5.15 3.20 4.90 3.00 4.65 2.80 1 4 PIN 1 0.65 BSC 0.95 0.85 1.10 MAX 0.75 0.80 0.15 0.38 0.23 8° 0.60 0.00 0.22 0.08 0° 0.40 COPLANARITY SEATING 0.10 PLANE COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 49. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Rev. C | Page 14 of 16

AD8603/AD8607/AD8609 5.00(0.1968) 4.80(0.1890) 8 5 4.00 (0.1574) 6.20 (0.2441) 3.80 (0.1497) 1 4 5.80 (0.2284) 1.27 (0.0500) 0.50 (0.0196) BSC 1.75 (0.0688) 0.25 (0.0099) 45° 0.25 (0.0098) 1.35 (0.0532) 8° 0.10 (0.0040) 0° COPLANARITY 0.51 (0.0201) 0.10 SEATING 0.31 (0.0122) 0.25 (0.0098) 10..2470 ((00..00510507)) PLANE 0.17 (0.0067) COMPLIANTTO JEDEC STANDARDS MS-012-AA C(RINOEFNPETARRREOENNLCLTEIHN EOGSN DELSIYM)AEANNRDSEI AORRNOESU NANORDEET DAIN-PO MPFRIFLO LMPIIMRLELIATIMTEEER TFSEO; RIRN ECUQHSU EDI VIINMA LEDENENSSTIIOGSN NFS.OR 012407-A Figure 50. 8-Lead Standard Small Outline Package [SOIC_N] (R-8) Dimensions shown in millimeters and (inches) 8.75 (0.3445) 8.55 (0.3366) 4.00 (0.1575) 14 8 6.20 (0.2441) 3.80 (0.1496) 1 7 5.80 (0.2283) 1.27 (0.0500) 0.50 (0.0197) BSC 45° 1.75 (0.0689) 0.25 (0.0098) 0.25 (0.0098) 1.35 (0.0531) 8° 0.10 (0.0039) 0° COPLANARITY SEATING 0.10 0.51 (0.0201) PLANE 0.25 (0.0098) 1.27 (0.0500) 0.31 (0.0122) 0.17 (0.0067) 0.40 (0.0157) COMPLIANTTO JEDEC STANDARDS MS-012-AB C(RINOEFNPETARRREOENNLCLTEIHN EOGSN EDLSIYM)AEANNRDSEI AORRNOESU NANORDEET DAIN-PO MPFRIFLO LMPIIMRLELIATIMTEEER TFSEO; RIRN ECUQHSU EDI VIINMA LEDENENSSTIIOGSN NFS.OR 060606-A Figure 51. 14-Lead Standard Small Outline Package [SOIC_N] (R-14) Dimensions shown in millimeters and (inches) 5.10 5.00 4.90 14 8 4.50 4.40 6.40 BSC 4.30 1 7 PIN 1 1.05 0.65 1.00 BSC 0.20 0.80 1M.A20X 0.09 0.75 00..1055 00..3109 SPELAANTIENG COPLANARITY80°° 00..6405 0.10 COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 Figure 52. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters Rev. C | Page 15 of 16

AD8603/AD8607/AD8609 ORDERING GUIDE Model Temperature Range Package Description Package Option Branding AD8603AUJ-R2 −40°C to +125°C 5-Lead TSOT UJ-5 BFA AD8603AUJ-REEL −40°C to +125°C 5-Lead TSOT UJ-5 BFA AD8603AUJ-REEL7 −40°C to +125°C 5-Lead TSOT UJ-5 BFA AD8603AUJZ-R21 −40°C to +125°C 5-Lead TSOT UJ-5 A0X AD8603AUJZ-REEL1 −40°C to +125°C 5-Lead TSOT UJ-5 A0X AD8603AUJZ-REEL71 −40°C to +125°C 5-Lead TSOT UJ-5 A0X AD8607ARM-R2 −40°C to +125°C 8-Lead MSOP RM-8 A00 AD8607ARM-REEL −40°C to +125°C 8-Lead MSOP RM-8 A00 AD8607ARMZ-R21 −40°C to +125°C 8-Lead MSOP RM-8 A0G AD8607ARMZ-REEL1 −40°C to +125°C 8-Lead MSOP RM-8 A0G AD8607AR −40°C to +125°C 8-Lead SOIC_N R-8 AD8607AR-REEL −40°C to +125°C 8-Lead SOIC_N R-8 AD8607AR-REEL7 −40°C to +125°C 8-Lead SOIC_N R-8 AD8607ARZ1 −40°C to +125°C 8-Lead SOIC_N R-8 AD8607ARZ-REEL1 −40°C to +125°C 8-Lead SOIC_N R-8 AD8607ARZ-REEL71 −40°C to +125°C 8-Lead SOIC_N R-8 AD8609AR −40°C to +125°C 14-Lead SOIC_N R-14 AD8609AR-REEL −40°C to +125°C 14-Lead SOIC_N R-14 AD8609AR-REEL7 −40°C to +125°C 14-Lead SOIC_N R-14 AD8609ARZ1 −40°C to +125°C 14-Lead SOIC_N R-14 AD8609ARZ-REEL1 −40°C to +125°C 14-Lead SOIC_N R-14 AD8609ARZ-REEL71 −40°C to +125°C 14-Lead SOIC_N R-14 AD8609ARU −40°C to +125°C 14-Lead TSSOP RU-14 AD8609ARU-REEL −40°C to +125°C 14-Lead TSSOP RU-14 AD8609ARUZ1 −40°C to +125°C 14-Lead TSSOP RU-14 AD8609ARUZ-REEL1 −40°C to +125°C 14-Lead TSSOP RU-14 1 Z = RoHS Compliant Part. ©2003–2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04356-0-6/08(C) Rev. C | Page 16 of 16

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: A nalog Devices Inc.: AD8609ARUZ AD8609ARZ-REEL AD8603AUJZ-R2 AD8609ARUZ-REEL AD8603AUJZ-REEL AD8607ARZ AD8609ARZ-REEL7 AD8603AUJZ-REEL7 AD8607ARMZ AD8609ARZ AD8607ARZ-REEL AD8607ARMZ-REEL AD8607ARZ-REEL7