ICGOO在线商城 > 集成电路(IC) > 线性 - 放大器 - 仪表,运算放大器,缓冲器放大器 > AD8529ARMZ-REEL
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
AD8529ARMZ-REEL产品简介:
ICGOO电子元器件商城为您提供AD8529ARMZ-REEL由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 AD8529ARMZ-REEL价格参考¥9.77-¥9.77。AnalogAD8529ARMZ-REEL封装/规格:线性 - 放大器 - 仪表,运算放大器,缓冲器放大器, 通用 放大器 2 电路 满摆幅 8-MSOP。您可以下载AD8529ARMZ-REEL参考资料、Datasheet数据手册功能说明书,资料中有AD8529ARMZ-REEL 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
-3db带宽 | - |
产品目录 | 集成电路 (IC)半导体 |
描述 | IC OPAMP GP 8MHZ RRO 8MSOP精密放大器 8MHz RR Dual |
产品分类 | Linear - Amplifiers - Instrumentation, OP Amps, Buffer Amps集成电路 - IC |
品牌 | Analog Devices Inc |
产品手册 | |
产品图片 | |
rohs | 符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | 放大器 IC,精密放大器,Analog Devices AD8529ARMZ-REEL- |
数据手册 | |
产品型号 | AD8529ARMZ-REEL |
PCN组件/产地 | |
产品培训模块 | http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=30008http://www.digikey.cn/PTM/IndividualPTM.page?site=cn&lang=zhs&ptm=26202 |
产品种类 | 精密放大器 |
供应商器件封装 | 8-MSOP |
共模抑制比—最小值 | 100 dB |
关闭 | No |
其它名称 | AD8529ARMZ-REELCT |
包装 | 剪切带 (CT) |
压摆率 | 2.9 V/µs |
双重电源电压 | +/- 3 V, +/- 5 V |
可用增益调整 | 100 dB |
商标 | Analog Devices |
增益带宽生成 | 8 MHz |
增益带宽积 | 8MHz |
安装类型 | 表面贴装 |
安装风格 | SMD/SMT |
封装 | Reel |
封装/外壳 | 8-TSSOP,8-MSOP(0.118",3.00mm 宽) |
封装/箱体 | MSOP-8 |
工作温度 | -40°C ~ 125°C |
工作电源电压 | 2.7 V to 12 V |
工厂包装数量 | 3000 |
放大器类型 | 通用 |
最大双重电源电压 | +/- 6 V |
最大工作温度 | + 85 C |
最小双重电源电压 | +/- 1.35 V |
最小工作温度 | - 40 C |
标准包装 | 1 |
电压-电源,单/双 (±) | 2.7 V ~ 12 V, ±1.35 V ~ 6 V |
电压-输入失调 | 600µV |
电压增益dB | 100 dB |
电流-电源 | 600µA |
电流-输入偏置 | 300nA |
电流-输出/通道 | 25mA |
电源电压-最大 | 12 V |
电源电压-最小 | 2.7 V |
电源电流 | 1.2 mA |
电源类型 | Single, Dual |
电路数 | 2 |
系列 | AD8529 |
视频文件 | http://www.digikey.cn/classic/video.aspx?PlayerID=1364138032001&width=640&height=505&videoID=2245193153001 |
转换速度 | 2.9 V/us at 5 V |
输入偏压电流—最大 | 300 nA |
输入补偿电压 | 600 uV |
输出类型 | 满摆幅 |
通道数量 | 2 Channel |
8 MHz Rail-to-Rail Operational Amplifiers AD8519/AD8529 FEATURES PIN CONFIGURATIONS Space-saving SC70 and SOT-23 packaging Wide bandwidth: 8 MHz @ 5 V NC 1 8 NC –IN A 2 7 V+ Low offset voltage: 1.2 mV maximum +IN A 3 6 OUT A Rail-to-rail output swing 2U.n9i Vty/ μgsa sinle swta rbaltee V– 4NC = ANOD 8C5O1N9NECT5 NC 01756-001 Figure 1. 8-Lead SOIC (R Suffix) Single-supply operation: 2.7 V to 12 V APPLICATIONS AD8519 OUT A 1 5 V+ Portable communications Microphone amplifiers V– 2 PSeonrtsaobrl ien ptehrofancees +IN A 3 4 –IN A 01756-002 Active filters Figure 2. 5-Lead SC70 and SOT-23 (KS and RJ Suffixes) PCMCIA cards ASIC input drivers OUT A 1 AD8529 8 V+ Wearable computers –IN A 2 7 OUT B Battery-powered devices +IN A 3 6 –IN B Voltage reference buffers V– 4 5 +IN B 01756-003 Personal digital assistants Figure 3. 8-Lead SOIC and MSOP (R and RM Suffixes) GENERAL DESCRIPTION The AD8519 and AD8529 are rail-to-rail output bipolar The small SC70 package makes it possible to place the AD8519 amplifiers with a unity gain bandwidth of 8 MHz and a typical next to sensors, reducing external noise pickup. voltage offset of less than 1 mV. The AD8519 brings precision The AD8519/AD8529 is specified over the extended industrial and bandwidth to the SC70 and SOT-23 packages. The low (−40°C to +125°C) temperature range. The AD8519 is available supply current makes the AD8519/AD8529 ideal for battery- in 5-lead SC70 and 5-lead SOT-23 packages, and an 8-lead powered applications. The rail-to-rail output swing of the SOIC surface-mount package. The AD8529 is available in 8-lead AD8519/AD8529 is larger than standard video op amps, making SOIC and 8-lead MSOP packages. them useful in applications that require greater dynamic range than standard video op amps. The 2.9 V/μs slew rate makes the AD8519/AD8529 a good match for driving ASIC inputs such as voice codecs. Rev. D Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 www.analog.com Trademarks and registered trademarks are the property of their respective owners. Fax: 781.461.3113 ©1998–2007 Analog Devices, Inc. All rights reserved.
AD8519/AD8529 TABLE OF CONTENTS Features..............................................................................................1 ESD Caution...................................................................................7 Applications.......................................................................................1 Typical Performance Characteristics..............................................8 Pin Configurations...........................................................................1 Applications Information..............................................................12 General Description.........................................................................1 Maximum Power Dissipation...................................................12 Revision History...............................................................................2 Precision Full-Wave Rectifier...................................................12 Specifications.....................................................................................3 10× Microphone Preamp Meets PC99 Specifications...........13 Electrical Characteristics.............................................................3 Two-Element Varying Bridge Amplifier.................................13 Absolute Maximum Ratings............................................................7 Outline Dimensions.......................................................................14 Thermal Resistance......................................................................7 Ordering Guide..........................................................................15 REVISION HISTORY 5/07—Rev. C to Rev. D Changes to Features..........................................................................1 Changes to General Description....................................................1 Changes to Two-Element Bridge Amplifier Section..................13 Updated Outline Dimensions.......................................................14 2/03—Rev. B to Rev. C Changed μSOIC to MSOP.................................................Universal Changed SO-8 to R-8.........................................................Universal Changes to Precision Full-Wave Rectifier section.......................9 Changes to 10× Microphone Preamp Meets PC99 Specifications section...................................................................9 Updated Outline Dimensions.......................................................12 Rev. D | Page 2 of 16
AD8519/AD8529 SPECIFICATIONS ELECTRICAL CHARACTERISTICS V = 5.0 V, V− = 0 V, V = 2.5 V, T = 25°C, unless otherwise noted. S CM A Table 1. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage V AD8519AKS, AD8519ART 600 1100 μV OS −40°C ≤ T ≤ +125°C 800 1300 μV A AD8519AR (R-8), AD8529 600 1000 μV −40°C ≤ T ≤ +125°C 1100 μV A Input Bias Current I 300 nA B −40°C ≤ T ≤ +125°C 400 nA A Input Offset Current I ±50 nA OS −40°C ≤ T ≤ +125°C ±100 nA A Input Voltage Range V 0 4 V CM Common-Mode Rejection Ratio CMRR 0 V ≤ V ≤ 4.0 V, −40°C ≤ T ≤ +125°C 63 100 dB CM A Large Signal Voltage Gain A R = 2 kΩ, 0.5 V < V < 4.5 V 30 V/mV VO L OUT R = 10 kΩ, 0.5 V < V < 4.5 V 50 100 V/mV L OUT R = 10 kΩ, −40°C ≤ T ≤ +125°C 30 V/mV L A Offset Voltage Drift ∆V /∆T 2 μV/°C OS Bias Current Drift ∆I/∆T 500 pA/°C B OUTPUT CHARACTERISTICS Output Voltage Swing High V I = 250 μA OH L −40°C ≤ T ≤ +125°C 4.90 V A I = 5 mA 4.80 V L Output Voltage Swing Low V I = 250 μA OL L −40°C ≤ T ≤ +125°C 80 mV A I = 5 mA 200 mV L Short-Circuit Current I Short to ground, instantaneous ±70 mA SC Maximum Output Current I ±25 mA OUT POWER SUPPLY Power Supply Rejection Ratio PSRR V = 2.7 V to 7 V 110 dB S −40°C ≤ T ≤ +125°C 80 dB A Supply Current/Amplifier I V = 2.5 V 600 1200 μA SY OUT −40°C ≤ T ≤ +125°C 1400 μA A DYNAMIC PERFORMANCE Slew Rate SR 1 V < V < 4 V, R = 10 kΩ 2.9 V/μs OUT L Settling Time t To 0.01% 1200 ns S Gain Bandwidth Product GBP 8 MHz Phase Margin Φ 60 Degrees m NOISE PERFORMANCE Voltage Noise e p-p 0.1 Hz to 10 Hz 0.5 μV p-p n Voltage Noise Density e f = 1 kHz 10 nV/√Hz n Current Noise Density i f = 1 kHz 0.4 pA/√Hz n Rev. D | Page 3 of 16
AD8519/AD8529 V = 3.0 V, V− = 0 V, V = 1.5 V, T = 25°C, unless otherwise noted. S CM A Table 2. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage V AD8519AKS, AD8519ART 700 1200 μV OS −40°C ≤ T ≤ +125°C 900 1400 μV A AD8519AR (R-8), AD8529 700 1100 μV −40°C ≤ T ≤ +125°C 1200 μV A Input Bias Current I 300 nA B Input Offset Current I ±50 nA OS Input Voltage Range V 0 2 V CM Common-Mode Rejection Ratio CMRR 0 V ≤ V ≤ 2.0 V, CM −40°C ≤ T ≤ +125°C 55 75 dB A Large Signal Voltage Gain A R = 2 kΩ, 0.5 V < V < 2.5 V 20 V/mV VO L OUT R = 10 kΩ 20 30 V/mV L OUTPUT CHARACTERISTICS Output Voltage Swing High V I = 250 μA 2.90 V OH L I = 5 mA 2.80 V L Output Voltage Swing Low V I = 250 μA 100 mV OL L I = 5 mA 200 mV L POWER SUPPLY Power Supply Rejection Ratio PSRR V = 2.5 V to 7 V, −40°C ≤ T ≤ +125°C 60 80 dB S A Supply Current/Amplifier I V = 1.5 V 600 1100 μA SY OUT −40°C ≤ T ≤ +125°C 1300 μA A DYNAMIC PERFORMANCE Slew Rate SR R = 10 kΩ 1.5 V/μs L Settling Time t To 0.01% 2000 ns S Gain Bandwidth Product GBP 6 MHz Phase Margin Φ 55 Degrees m NOISE PERFORMANCE Voltage Noise Density e f = 1 kHz 10 nV/√Hz n Current Noise Density i f = 1 kHz 0.4 pA/√Hz n Rev. D | Page 4 of 16
AD8519/AD8529 V = 2.7 V, V− = 0 V, V = 1.35 V, T = 25°C, unless otherwise noted. S CM A Table 3. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage V AD8519AKS, AD8519ART 700 1400 μV OS −40°C ≤ T ≤ +125°C 900 1600 μV A AD8519AR (R-8), AD8529 700 1200 μV −40°C ≤ T ≤ +125°C 1300 μV A Input Bias Current I 300 nA B Input Offset Current I ±50 nA OS Input Voltage Range V 0 2 V CM Common-Mode Rejection Ratio CMRR 0 V ≤ V ≤ 1.7 V, −40°C ≤ T ≤ +125°C 55 75 dB CM A Large Signal Voltage Gain A R = 2 kΩ, 0.5 V < V < 2.2 V 20 V/mV VO L OUT R = 10 kΩ 20 30 V/mV L OUTPUT CHARACTERISTICS Output Voltage Swing High V I = 250 μA 2.60 V OH L I = 5 mA 2.50 V L Output Voltage Swing Low V I = 250 μA 100 mV OL L I = 5 mA 200 mV L POWER SUPPLY Power Supply Rejection Ratio PSRR V = 2.5 V to 7 V S −40°C ≤ T ≤ +125°C 60 80 dB A Supply Current/Amplifier I V = 1.35 V 600 1100 μA SY OUT −40°C ≤ T ≤ +125°C 1300 μA A DYNAMIC PERFORMANCE Slew Rate SR R = 10 kΩ 1.5 V/μs L Settling Time t To 0.01% 2000 ns S Gain Bandwidth Product GBP 6 MHz Phase Margin Φ 55 Degrees m NOISE PERFORMANCE Voltage Noise Density e f = 1 kHz 10 nV/√Hz n Current Noise Density i f = 1 kHz 0.4 pA/√Hz n Rev. D | Page 5 of 16
AD8519/AD8529 V = 5.0 V, V− = −5 V, V = 0 V, T = 25°C, unless otherwise noted. S CM A Table 4. Parameter Symbol Conditions Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage V AD8519AKS, AD8519ART 600 1100 μV OS −40°C ≤ T ≤ +125°C 800 1300 μV A AD8519AR (R-8), AD8529 600 1000 μV −40°C ≤ T ≤ +125°C 1100 μV A Input Bias Current I V = 0 V 300 nA B CM V = 0 V, −40°C ≤ T ≤ +125°C 400 nA CM A Input Offset Current I V = 0 V ±50 nA OS CM V = 0 V, −40°C ≤ T ≤ +125°C ±100 nA CM A Input Voltage Range V −5 +4 V CM Common-Mode Rejection Ratio CMRR −4.9 V ≤ V ≤ +4.0 V, CM −40°C ≤ T ≤ +125°C 70 100 dB A Large Signal Voltage Gain A R = 2 kΩ 30 V/mV VO L R = 10 kΩ 50 200 V/mV L −40°C ≤ T ≤ +125°C 25 V/mV A Offset Voltage Drift ∆V /∆T 2 μV/°C OS Bias Current Drift ∆I/∆T 500 pA/°C B OUTPUT CHARACTERISTICS Output Voltage Swing High V I = 250 μA OH L −40°C ≤ T ≤ +125°C 4.90 V A I = 5 mA 4.80 V L Output Voltage Swing Low V I = 250 μA OL L −40°C ≤ T ≤ +125°C −4.90 V A I = 5 mA −4.80 V L Short-Circuit Current I Short to ground, instantaneous ±70 mA SC Maximum Output Current I ±25 mA OUT POWER SUPPLY Power Supply Rejection Ratio PSRR V = ±1.5 V to ±6 V, −40°C ≤ T ≤ +125°C 60 100 dB S A Supply Current/Amplifier I V = 0 V 600 1200 μA SY OUT −40°C ≤ T ≤ +125°C 1400 μA A DYNAMIC PERFORMANCE Slew Rate SR −4 V < V < +4 V, R = 10 kΩ 2.9 V/μs OUT L Settling Time t To 0.01% 1000 ns S Gain Bandwidth Product GBP 8 MHz Phase Margin Φ 60 Degrees m NOISE PERFORMANCE Voltage Noise Density e f = 1 kHz 10 nV/√Hz n Current Noise Density i f = 1 kHz 0.4 pA/√Hz n Rev. D | Page 6 of 16
AD8519/AD8529 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 5. Parameter Rating Table 6. Supply Voltage ±6 V Package Type θ 1 θ Unit JA JC Input Voltage1 ±6 V 5-Lead SC70 (KS) 376 126 °C/W Differential Input Voltage2 ±0.6 V 5-Lead SOT-23 (RJ) 230 146 °C/W Storage Temperature Range −65°C to +150°C 8-Lead SOIC (R) 158 43 °C/W Operating Temperature Range −40°C to +125°C 8-Lead MSOP (RM) 210 45 °C/W Junction Temperature Range −65°C to +150°C Lead Temperature Range 300°C 1 θJA is specified for worst-case conditions, that is, θJA is specified for device (Soldering, 60 sec) soldered in circuit board for SOT-23 and SOIC packages. 1 For supply voltages less than ±6 V, the input voltage is limited to less than or ESD CAUTION equal to the supply voltage. 2 For differential input voltages greater than ±0.6 V, the input current should be limited to less than 5 mA to prevent degradation or destruction of the input devices. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. D | Page 7 of 16
AD8519/AD8529 TYPICAL PERFORMANCE CHARACTERISTICS 60 40 VS = 5V COUNT = 395 OP AMPS VS = 5V TA = 25°C TA = 25°C 0 50 FIERS 40 T (nA) –40 MPLI REN –80 F A 30 CUR Y O AS –120 QUANTIT 20 INPUT BI –160 10 –200 0 01756-004 –240 –1.0 –0.6 INPUT –O0F.2FSET VOL0T.A2GE (mV) 0.6 1.0 0 1 COMMON2-MODE VOL3TAGE (V) 4 5 01756-007 Figure 4. Input Offset Voltage Distribution Figure 7. Input Bias Current vs. Common-Mode Voltage 600 120 VS = 5V B) 100 d T (µA) 550 CTION ( N E 80 E J R E R R U E C D LY MO 60 PP 500 N- U O S M M O 40 C 450 01756-005 20 01756-008 0 2 4 6 8 10 12 0 1 2 3 4 5 SUPPLY VOLTAGE (V) COMMON-MODE VOLTAGE (V) Figure 5. Supply Current per Amplifier vs. Supply Voltage Figure 8. Common-Mode Rejection vs. Common-Mode Voltage 800 50 VS = 5V TA = 25°C VS = 5V 40 700 GAIN 30 45 T (µA) N (dB) 20 90 grees) SUPPLY CURREN 650000 VS = 10V VS = 2.7V, 3.0V OPEN-LOOP GAI 100 PHASE 113850 PHASE SHIFT (De –10 225 400 300 01756-006 ––2300 270 –50 –25 0 TE25MPERA5T0URE (7°C5) 100 125 150 100k 1MFREQUENCY (Hz)10M 100M 01756-009 Figure 6. Supply Current per Amplifier vs. Temperature Figure 9. Open-Loop Gain, Phase vs. Frequency Rev. D | Page 8 of 16
AD8519/AD8529 60 60 VS = 5V VS = 5V RL = 830Ω VCM = 2.5V TA = 25°C 50 RL = 10kΩ 40 CL ≤ 5pF TA = 25°C B) VIN = ±50mV d N ( %) 40 GAI 20 T ( ED-LOOP 0 VERSHOO 30 –OS OS O 20 L C +OS –20 10 –40 01756-010 0 01756-013 10k 100k 1M 10M 100M 10 100 1k FREQUENCY (Hz) CAPACITANCE (pF) Figure 10. Closed-Loop Gain vs. Frequency Figure 13. Overshoot vs. Capacitance Load 110 4 100 VTAS == 255V°C 3 VTAS == 255V°C 1% 90 2 0.1% 80 V) 1 R (dB) 70 SIZE ( 0 MR 60 EP C ST –1 50 0.1% –2 40 1% 2300 01756-011 ––43 01756-014 1k 10k 100k 1M 10M 0 1 2 FREQUENCY (Hz) SETTLING TIME (µs) Figure 11. CMRR vs. Frequency Figure 14. Step Size vs. Settling Time 90 5 VS = 5V VS = 5V 80 TA = 25°C AVCC = 1 6700 –PSRR NG (V p-p) 4 DISTORTION < 1% RTCALL === 211505°kpCΩF R (dB) 50 +PSRR UT SWI 3 PSR 40 OUTP 2 30 M U M 20 AXI 1 M 100 01756-012 0 01756-015 1k 10k 100k 1M 10M 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) Figure 12. PSRR vs. Frequency Figure 15. Output Swing vs. Frequency Rev. D | Page 9 of 16
AD8519/AD8529 300 VTAS == 255V°C AVSV == ±120.05kVΩ 250 en = 0.4µV p-p Ω) E ( 200 C N A AVCC = 10 D PE 150 M T I U TP 100 U O AVCC = 1 50 0 01756-016 20mV 1s 01756-019 100k 1M 10M FREQUENCY (Hz) Figure 16. Output Impedance vs. Frequency Figure 19. 0.1 Hz to 10 Hz Noise 80 VS = 5V 70 TA = 25°C Hz) VS = ±2.5V V/ 60 VIN = 6V p-p Y (n AV = 1 SIT 50 N E E D 40 S OI N 30 E G TA 20 L O V 100 01756-017 10 100FREQUENCY (Hz)1k 10k 1V 20µs 01756-020 Figure 17. Voltage Noise Density Figure 20. No Phase Reversal 8 VS = 5V 7 TA = 25°C Hz) VS = ±2.5V A/ 6 AVCC = 1 SITY (p 5 TCRALL === 211500°0kCpΩF N E D 4 E S OI N 3 T N RE 2 R U C 01 01756-018 10 100FREQUENCY (Hz)1k 10k 20mV 500ns 01756-021 Figure 18. Current Noise Density Figure 21. Small Signal Transient Response Rev. D | Page 10 of 16
AD8519/AD8529 VS = ±2.5V AVCC = 1 TA = 25°C CL = 100pF 500mV 50µs 01756-022 Figure 22. Large Signal Transient Response Rev. D | Page 11 of 16
AD8519/AD8529 APPLICATIONS INFORMATION MAXIMUM POWER DISSIPATION R4 10kΩ The maximum power that can be safely dissipated by the R1 R2 NODE A R3 R5 AD8519/AD8529 is limited by the associated rise in junction 10kΩ 10kΩ 4.99kΩ 10kΩ VIN temperature. The maximum safe junction temperature is 150°C for these plastic packages. If this maximum is momentarily D1 D2 exceeded, proper circuit operation is restored as soon as the 1N914 1N914 U2 VOUT die temperature is reduced. Operating the product in an U1 AD8519 overheated condition for an extended period can result in AD8519 permanent damage to the device. R6 R7 5kΩ 3.32kΩ PRECISION FULL-WAVE RECTIFIER VIRTUAL GROUND = V2CC 01756-023 Slew rate is probably the most underestimated parameter when Figure 23. Precision Full-Wave Rectifier designing a precision rectifier. Yet without a good slew rate, large glitches are generated during the period when both diodes Switching glitches are caused when D1 and D2 are both are off. momentarily off. This condition occurs every time the input signal is equal to the virtual ground potential. When this The operation of the basic circuit (shown in Figure 23) should condition occurs, the U1 stage is taken out of the V equation OUT be examined before considering the slew rate further. U1 is set and V is equal to V × R5 × (R4 || R1 + R2 + R3). Note that OUT IN up to have two states of operation. D1 and D2 diodes switch the Node A should be V inverted or virtual ground, but in this IN output between the two states. State one is an inverter with a condition, Node A is simply tracking V . Given a sine wave IN gain of +1, and state two is a simple unity gain buffer where the input centered around virtual ground, glitches are generated output is equal to the value of the virtual ground. The virtual at the sharp negative peaks of the rectified sine wave. If the ground is the potential present at the noninverting node of the glitches are hard to notice on an oscilloscope, raise the fre- U1. State one is active when VIN is larger than the virtual quency of the sine wave until they become apparent. The size ground. D2 is on in this condition. If VIN drops below virtual of the glitches is proportional to the input frequency, the diode ground, D2 turns off and D1 turns on. This causes the output of turn-on potential (0.2 V or 0.65 V), and the slew rate of the op amp. U1 to simply buffer the virtual ground and this configuration is state two. Therefore, the function of U1, which results from R6 and R7 are both necessary to limit the amount of bias these two states of operation, is a half-wave inverter. The U2 current related voltage offset. Unfortunately, there is no perfect function takes the inverted half wave at a gain of two and sums value for R6 because the impedance at the inverting node is it into the original V wave, which outputs a rectified full wave. altered as D1 and D2 switch. Therefore, there is also some IN unresolved bias current related offset. To minimize this offset, V =V −2V −1<0 OUT IN IN use lower value resistors or choose an FET amplifier if the optimized offset is still intolerable. This type of rectifier can be very precise if the following electrical parameters are adhered to: The AD8519 offers a unique combination of speed vs. power ratio at 2.7 V single supply, small size (SC70 and SOT-23), and low • All passive components should be of tight tolerance, 1% for noise that makes it an ideal choice for most high volume and resistors and 5% for capacitors. high precision rectifier circuits. • If the application circuit requires high impedance (that is, direct sensor interface), then an FET amplifier is a better choice than the AD8519. • An amp such as the AD8519, which has a great slew rate specification, yields the best result because the circuit involves switching. Rev. D | Page 12 of 16
AD8519/AD8529 10× MICROPHONE PREAMP MEETS PC99 TWO-ELEMENT VARYING BRIDGE AMPLIFIER SPECIFICATIONS There are a host of bridge configurations available to designers. For a complete analysis, look at the ubiquitous bridge and its This circuit, while lacking a unique topology, is anything but different forms. Refer to the 1992 Amplifier Applications Guide1. featureless when an AD8519 is used as the op amp. This preamp gives 20 dB gain over a frequency range of 20 Hz to 20 kHz and Figure 25 is a schematic of a two-element varying bridge. This is fully PC99 compliant in all parameters including THD + N, configuration is commonly found in pressure and flow transduc- dynamic range, frequency range, amplitude range, and crosstalk. ers. With a two-element varying bridge, the signal is 2× as Not only does this preamp comply with the PC99 specifications, compared to a single-element varying bridge. The advantages it far surpasses them. In fact, when the input noise is 120 dB, of this type of bridge are gain setting range and single-supply this preamp has a V noise of around 100 dB, which is suit- OUT application. Negative characteristics are nonlinear operation able for most professional 20-bit audio systems. At 120 dB THD and required R matching. Given these sets of conditions, + N in unity gain, the AD8519 is suitable for 24-bit professional requirements, and characteristics, the AD8519 can be successfully audio systems. In other words, the AD8519 will not be the used in this configuration because of its rail-to-rail output and limiting performance factor in audio systems despite its small low offset. Perhaps the greatest benefits of the AD8519, when size and low cost. used in the bridge configuration, are the advantages it can bring when placed in a remote bridge sensor. For example, the tiny Slew rate related distortion is not present at the lower voltages SC70 and SOT-23 packages reduce the overall sensor size; low because the AD8519 is so fast at 2.1 V/μs. A general rule of power allows for remote powering via batteries or solar cells, thumb for determining the necessary slew rate for an audio high output current drive to drive a long cable; and 2.7 V system is to take the maximum output voltage range of the operation for two-cell operation. device, given the design’s power rails, and divide by two. In Figure 24, the power rails are 2.7 V and the output is rail-to-rail. 2.7V Enter these numbers into the equation: 2.7/2 = 1.35 V, and the RF minimum ideal slew rate is 1.35 V/μs. R R While this data sheet gives only one audio example, many audio circuits are enhanced with the use of the AD8519. Examples AD8519 include: active audio filters such as bass, treble, and equalizers; R R PfoWr mMi xfiinltger sst aatti tohnes ;o auntpdu gta oinf asutadgieos D foArC vso;l ubumfefe cros natnrdo ls. u mmers RF 01756-025 Figure 25. Two-Element Varying Bridge Amplifier 240pF 2.7V 30.9kΩ 1 Adolfo Garcia and James Wong, Chapter 2, 1992, Amplifier Applications Guide. 1kΩ C1 2.7V 1µF 3.09kΩ CODEC LINE IN MIC OR MIC IN IN 1nF AD8519 NPO 48kΩ 46.4kΩ 93.1kΩ 2.7V 10µF ELECT 01756-024 Figure 24. 10× Microphone Preamplifier Rev. D | Page 13 of 16
AD8519/AD8529 OUTLINE DIMENSIONS 5.00(0.1968) 3.20 4.80(0.1890) 3.00 2.80 8 5 4.00 (0.1574) 6.20 (0.2441) 3.80 (0.1497) 1 4 5.80 (0.2284) 3.20 8 5 54..1950 3.00 4.65 2.80 1 4 1.27 (0.0500) 0.50 (0.0196) BSC 1.75 (0.0688) 0.25 (0.0099) 45° PIN 1 0.25 (0.0098) 1.35 (0.0532) 8° 0.65 BSC 0.10 (0.0040) 0° 0.95 COPL0A.1N0ARITSYEATING 00..5311 ((00..00210212)) 0.25 (0.0098) 10..2470 ((00..00510507)) 00..8755 1.10 MAX PLANE 0.17 (0.0067) 0.80 0.15 0.38 0.23 8° 0.60 COMPLIANTTO JEDEC STANDARDS MS-012-AA 0.00 0.22 0.08 0° 0.40 C(RINOEFNPEATRRREOENNLCLTEIHN EOGSN DELSIYM)AEANNRDSEI AORRNOESU NANORDEET DAIN-PO MPFRIFLO LMPIIMRLELIATIMTEEER TFSEO; RIRN ECUQHSU EDI VIINMA LEDENENSSTIIOGSN NFS.OR 012407-A COPL0A.1N0ARITY SPELAANTIENG COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 26. 8-Lead Standard Small Outline Package [SOIC_N] Figure 27. 8-Lead Mini Small Outline Package [MSOP] Narrow Body (RM-8) (R-8) Dimensions shown in millimeters Dimensions shown in millimeters and (inches) 2.20 2.90 BSC 2.00 1.80 5 4 1.35 5 4 2.40 1.25 2.10 1.60 BSC 2.80 BSC 1.15 1 2 3 1.80 1 2 3 PIN1 PIN 1 0.65 BSC 1.00 0.40 0.95 BSC 1.10 00..9700 0.80 0.10 11..3105 B1.S9C0 0.46 0.90 0.10 MAX 00..3105 SEATING 00..2028 00..3266 1.45 MAX 0.22 PLANE 0.08 0.10 COPLANARITY 10° 0.15 MAX 0.50 SEATING 5° 0.60 COMPLIANT TO JEDEC STANDARDS MO-203-AA 0.30 PLANE 0° 0.45 0.30 COMPLIANTTO JEDEC STANDARDS MO-178-AA Figure 28. 5-Lead Thin Shrink Small Outline Transistor Package [SC70] Figure 29. 5-Lead Small Outline Transistor Package [SOT-23] (KS-5) (RJ-5) Dimensions shown in millimeters Dimensions shown in millimeters Rev. D | Page 14 of 16
AD8519/AD8529 ORDERING GUIDE Temperature Model Range Package Description Package Option Branding Information AD8519AKS-REEL7 −40°C to +125°C 5-Lead SC70 KS-5 A3B AD8519AKSZ-REEL71 −40°C to +125°C 5-Lead SC70 KS-5 A11 AD8519ART-REEL −40°C to +125°C 5-Lead SOT-23 RJ-5 A3A AD8519ART-REEL7 −40°C to +125°C 5-Lead SOT-23 RJ-5 A3A AD8519ARTZ-REEL1 −40°C to +125°C 5-Lead SOT-23 RJ-5 A3A# AD8519ARTZ-REEL71 −40°C to +125°C 5-Lead SOT-23 RJ-5 A3A# AD8519AR −40°C to +125°C 8-Lead SOIC_N R-8 AD8519AR-REEL −40°C to +125°C 8-Lead SOIC_N R-8 AD8519AR-REEL7 −40°C to +125°C 8-Lead SOIC_N R-8 AD8519ARZ1 −40°C to +125°C 8-Lead SOIC_N R-8 AD8519ARZ-REEL −40°C to +125°C 8-Lead SOIC_N R-8 AD8519ARZ-REEL71 −40°C to +125°C 8-Lead SOIC_N R-8 AD8529AR −40°C to +125°C 8-Lead SOIC_N R-8 AD8529AR-REEL −40°C to +125°C 8-Lead SOIC_N R-8 AD8529ARZ1 −40°C to +125°C 8-Lead SOIC_N R-8 AD8529ARZ-REEL1 −40°C to +125°C 8-Lead SOIC_N R-8 AD8529ARM-REEL −40°C to +125°C 8-Lead MSOP RM-8 A5A AD8529ARMZ-REEL1 −40°C to +125°C 8-Lead MSOP RM-8 A5A# 1 Z = RoHS compliant part, # denotes RoHS compliant part may be top or bottom marked. Rev. D | Page 15 of 16
AD8519/AD8529 NOTES ©1998–2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C01756–0–5/07(D) Rev. D | Page 16 of 16