图片仅供参考

详细数据请看参考数据手册

Datasheet下载
  • 型号: AD780CRZ
  • 制造商: Analog
  • 库位|库存: xxxx|xxxx
  • 要求:
数量阶梯 香港交货 国内含税
+xxxx $xxxx ¥xxxx

查看当月历史价格

查看今年历史价格

AD780CRZ产品简介:

ICGOO电子元器件商城为您提供AD780CRZ由Analog设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 AD780CRZ价格参考¥-¥217.75。AnalogAD780CRZ封装/规格:PMIC - 电压基准, 系列,分流器 电压基准 IC ±0.06%,±0.17% 10mA 8-SOIC。您可以下载AD780CRZ参考资料、Datasheet数据手册功能说明书,资料中有AD780CRZ 详细功能的应用电路图电压和使用方法及教程。

产品参数 图文手册 常见问题
参数 数值
产品目录

集成电路 (IC)半导体

描述

IC VREF SERIES SHUNT PREC 8-SOIC参考电压 2.5V/3V Ultrahigh Prec Bandgap

产品分类

PMIC - 电压基准

品牌

Analog Devices

产品手册

点击此处下载产品Datasheet

产品图片

rohs

符合RoHS无铅 / 符合限制有害物质指令(RoHS)规范要求

产品系列

电源管理 IC,参考电压,Analog Devices AD780CRZ-

数据手册

点击此处下载产品Datasheet

产品型号

AD780CRZ

产品种类

参考电压

供应商器件封装

8-SOIC N

分流电流—最大值

10 mA

初始准确度

1.5 mV

包装

管件

参考类型

Series Precision References

商标

Analog Devices

安装类型

表面贴装

容差

±0.06%, ±0.17%

封装

Tube

封装/外壳

8-SOIC(0.154",3.90mm 宽)

封装/箱体

SOIC-8

工作温度

-40°C ~ 85°C

工厂包装数量

98

平均温度系数—典型值

7 PPM/C

最大工作温度

+ 85 C

最小工作温度

- 40 C

标准包装

98

温度系数

7ppm/°C

电压-输入

4 V ~ 36 V

电压-输出

±2.5V, ±3V

电流-输出

10mA

电流-阴极

1mA

电流-静态

1mA

系列

AD780

设计资源

点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet点击此处下载产品Datasheet

输入电压

36 V

输出电压

2.5 V, 3 V

通道数

1

推荐商品

型号:MAX6241ACPA

品牌:Maxim Integrated

产品名称:集成电路(IC)

获取报价

型号:ADR121AUJZ-REEL7

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:5962-8688203XA

品牌:Analog Devices Inc.

产品名称:集成电路(IC)

获取报价

型号:REF5040AID

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LT1460GIZ-2.5#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:LM385BDG4-1-2

品牌:Texas Instruments

产品名称:集成电路(IC)

获取报价

型号:LTC6655BHMS8-5#TRPBF

品牌:Linear Technology/Analog Devices

产品名称:集成电路(IC)

获取报价

型号:ISL21007CFB812Z

品牌:Renesas Electronics America Inc.

产品名称:集成电路(IC)

获取报价

样品试用

万种样品免费试用

去申请
AD780CRZ 相关产品

TL431AQDBVTG4

品牌:Texas Instruments

价格:

REF3140AIDBZRG4

品牌:Texas Instruments

价格:

MAX6043BAUT25#TG16

品牌:Maxim Integrated

价格:

AD584SH/883B

品牌:Analog Devices Inc.

价格:¥231.32-¥272.79

TL4050B41IDCKT

品牌:Texas Instruments

价格:

LM4041DEM3X-ADJ

品牌:Texas Instruments

价格:

UC39431DTRG4

品牌:Texas Instruments

价格:

REF02AU/2K5G4

品牌:Texas Instruments

价格:

PDF Datasheet 数据手册内容提取

2.5 V/3.0 V High Precision Reference Data Sheet AD780 FEATURES FUNCTIONAL BLOCK DIAGRAM Pin programmable 2.5 V or 3.0 V output +VIN DNC 2 7 Ultralow drift: 3 ppm/°C max AD780 High accuracy: 2.5 V or 3.0 V ±1 mV max Low noise: 100 nV/√Hz R10 R11 Noise reduction capability DNC 1 Low quiescent current: 1 mA max 6 VOUT R13 Output trim capability Q6 Plug-in upgrade for present references Q7 R16 Temperature output pin R5 5 TRIM R14 Series or shunt mode operation (±2.5 V, ±3.0 V) TEMP 3 R15 R4 4 8 DNC = DO NOT CONNECTGTNOD THIS PIN O23../05PVV S ––E GDLNNECCDT 00841-001 Figure 1. GENERAL DESCRIPTION The AD780 is an ultrahigh precision band gap reference voltage The AD780 is a pin compatible performance upgrade for the that provides a 2.5 V or 3.0 V output from inputs between 4.0 V LT1019(A)–2.5 and the AD680. The latter is targeted toward and 36 V. Low initial error and temperature drift combined with low power applications. low output noise and the ability to drive any value of capacitance The AD780 is available in three grades in PDIP and SOIC make the AD780 the ideal choice for enhancing the performance packages. The AD780AN, AD780AR, AD780BN, AD780BR, of high resolution analog-to-digital converters (ADCs) and and AD780CR are specified for operation from −40°C to +85°C. digital-to-analog converters (DACs), and for any general-purpose PRODUCT HIGHLIGHTS precision reference application. A unique low headroom design facilitates a 3.0 V output from a 5.0 V 10% input, providing a 1. The AD780 provides a pin programmable 2.5 V or 3.0 V 20% boost to the dynamic range of an ADC over performance output from a 4 V to 36 V input. with existing 2.5 V references. 2. Laser trimming of both initial accuracy and temperature coefficients results in low errors over temperature without The AD780 can be used to source or sink up to 10 mA, and can the use of external components. The AD780BN has a be used in series or shunt mode, thus allowing positive or negative maximum variation of 0.9 mV from −40°C to +85°C. output voltages without external components. This makes it suitable for virtually any high performance reference application. 3. For applications that require even higher accuracy, an optional fine-trim connection is provided. Unlike some competing references, the AD780 has no region of possible instability. The part is stable under all load conditions 4. The AD780 noise is extremely low, typically 4 mV p-p from 0.1 Hz to 10 Hz and a wideband spectral noise when a 1 μF bypass capacitor is used on the supply. density of typically 100 nV/√Hz. This can be further A temperature output pin on the AD780 provides an output reduced, if desired, by using two external capacitors. voltage that varies linearly with temperature, allowing the part 5. The temperature output pin enables the AD780 to be to be configured as a temperature transducer while providing a configured as a temperature transducer while providing a stable 2.5 V or 3.0 V output. stable output reference. Rev. I Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 ©2002–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. Technical Support www.analog.com

AD780 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Temperature Performance............................................................7 Functional Block Diagram .............................................................. 1 Temperature Output Pin ..............................................................7 General Description ......................................................................... 1 Temperature Transducer Circuit .................................................8 Product Highlights ........................................................................... 1 Supply Current Over Temperature .............................................8 Revision History ............................................................................... 2 Turn-On Time ...............................................................................8 Specifications ..................................................................................... 3 Dynamic Performance ..................................................................9 Absolute Maximum Ratings ............................................................ 4 Line Regulation ..............................................................................9 Thermal Resistance ...................................................................... 4 Precision Reference for High Resolution 5 V Data Notes............................................................................................... 4 Converters ................................................................................... 10 ESD Caution .................................................................................. 4 4.5 V Reference from 5 V Supply ............................................. 10 Theory of Operation ........................................................................ 5 Negative (–2.5 V) Reference ..................................................... 10 Applying the AD780 ......................................................................... 6 Outline Dimensions ....................................................................... 11 Noise Performance ....................................................................... 6 Ordering Guide .......................................................................... 12 Noise Comparison ........................................................................ 7 REVISION HISTORY 8/2017—Rev. H to Rev. I 12/2012—Rev. E to Rev. F Added Thermal Resistance Section and Table 3; Renumbered Updated Outline Dimensions ....................................................... 11 Sequentially ....................................................................................... 4 Changes to Ordering Guide .......................................................... 12 10/2015—Rev. G to Rev. H 5/2004—Rev. D to Rev. E Changes to Table 3 ............................................................................ 4 Updated Format .................................................................. Universal Changes to Notes Section ................................................................ 4 Changes to Temperature Transducer Circuit Section .................. 8 Changes to Ordering Guide .......................................................... 12 8/2015—Rev. F to Rev. G Changed NC to DNC .................................................... Throughout 1/2004—Rev. C to Rev. D Added Solder Heat Shift Parameter, Table 1 ................................. 3 Changes to Specifications ................................................................. 2 Added Table 3; Renumbered Sequentially .................................... 4 Updated Ordering Guide ................................................................. 3 Changes to Figure 3 .......................................................................... 4 Updated Outline Dimensions ....................................................... 10 Change to Notes Section .................................................................. 4 Changes to Ordering Guide .......................................................... 12 5/2002—Rev. B to Rev. C Updates to Packages ....................................................................... 10 Rev. I | Page 2 of 12

Data Sheet AD780 SPECIFICATIONS T = 25°C, V = 5 V, unless otherwise noted. A IN Table 1. AD780AN/AD780AR AD780CR AD780BN/AD780BR Parameter Min Typ Max Min Typ Max Min Typ Max Unit OUTPUT VOLTAGE 2.5 V Out 2.495 2.505 2.4985 2.5015 2.499 2.501 V 3.0 V Out 2.995 3.005 2.9950 3.0050 2.999 3.001 V SOLDER HEAT SHIFT Mean −1.1 −1.1 −1.1 mV Sigma 0.4 0.4 0.4 mV OUTPUT VOLTAGE DRIFT1 −40°C to +85°C 7 7 3 ppm/°C −55°C to +125°C 20 20 ppm/°C LINE REGULATION 2.5 V Output, 4 V ≤+V ≤ 36 V, T to T 10 10 10 μV/V IN MIN MAX 3.0 V Output, 4.5 V ≤+V ≤ 36 V, T to T 10 10 10 μV/V IN MIN MAX LOAD REGULATION, SERIES MODE Sourcing 0 mA < I < 10 mA 50 50 50 μV/mA OUT T to T 75 75 75 μV/mA MIN MAX Sinking −10 mA < I < 0 mA 75 75 75 μV/mA OUT −40°C to +85°C 75 75 75 μV/mA −55°C to +125°C 150 150 150 μV/mA LOAD REGULATION, SHUNT MODE I < I < 10 mA 75 75 75 μV/mA SHUNT QUIESCENT CURRENT, 2.5 V SERIES MODE2 –40°C to +85°C 0.75 1.0 0.75 1.0 0.75 1.0 mA −55°C to +125°C 0.8 1.3 0.8 1.3 0.8 1.3 mA MINIMUM SHUNT CURRENT 0.7 1.0 0.7 1.0 0.7 1.0 mA OUTPUT NOISE 0.1 Hz to 10 Hz 4 4 4 μV p-p Spectral Density, 100 Hz 100 100 100 nV/√Hz LONG-TERM STABILITY3 20 20 20 ± ppm/1000 Hr TRIM RANGE 4.0 4.0 4.0 ± % TEMPERATURE PIN Voltage Output @ 25°C 500 560 620 500 560 620 500 560 620 mV Temperature Sensitivity 1.9 1.9 1.9 mV/°C Output Resistance 3 3 3 kΩ SHORT-CIRCUIT CURRENT TO GROUND 30 30 30 mA TEMPERATURE RANGE Specified Performance (A, B, C) −40 +85 −40 +85 −40 +85 °C Operating Performance (A, B, C)4 −55 +125 −55 +125 −55 +125 °C 1 Maximum output voltage drift is guaranteed for all packages. 2 3.0 V mode typically adds 100 μA to the quiescent current. Also, Iq increases by 2 μA/V above an input voltage of 5 V. 3 The long-term stability specification is noncumulative. The drift in subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period. 4 The operating temperature range is defined as the temperature extremes at which the device will still function. Parts may deviate from their specified performance outside their specified temperature range. Rev. I | Page 3 of 12

AD780 Data Sheet ABSOLUTE MAXIMUM RATINGS 96 mils Table 2. GND TEMP +VIN Parameter Values +V to Ground 36 V IN TRIM Pin to Ground 36 V TEMP Pin to Ground 36 V Power Dissipation (25°C) 500 mW Storage Temperature −65°C to +150°C 67 mils Lead Temperature 300°C (Soldering 10 sec) Output Protection Output safe for indefinite short to GND ground and momentary short to V . IN ESD Classification Class 1 (1000 V) SRtarteisnsgess mat aoyr caabuosvee p tehromsea nliesntetd d uamndaegre A tob stohleu pter oMdauxcitm. Tuhmis is a TRIM VOUT O2/P.5 SVE/3L.0EVCT 00841-003 stress rating only; functional operation of the product at these Figure 3. Die Layout or any other conditions above those indicated in the operational NOTES section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may Both V pads must be connected to the output. OUT affect product reliability. Die Thickness: The standard thickness of Analog Devices, Inc. 2.5V/3.0V O/PSELECT bipolar dice is 10 mil ± 1 mil. DNC 1 8 (DNC OR GND) +VIN 2 AD780 7 DNC Die Dimensions: The dimensions given are the maximum possible TEMP 3 TOP VIEW 6 VOUT die size. GND 4 (Not to Scale) 5 TRIM Backing: The standard backside surface is silicon (not plated). N1.O DTNECS = DO NOT CONNECTTO THIS PIN. 00841-002 Aapnpalliocagt iDoenvsi. ces does not recommend gold-backed dice for most Figure 2. Pin Configuration, 8-Lead PDIP and SOIC Packages Edges: A diamond saw is used to separate wafers into dice, thus THERMAL RESISTANCE providing perpendicular edges halfway through the die. In Thermal performance is directly linked to PCB design and contrast to scribed dice, this technique provides a more uniform operating environment. Careful attention to PCB thermal die shape and size. The perpendicular edges facilitate handling design is required. (such as tweezer pickup), while the uniform shape and size simplify substrate design and die attach. Table 3. Thermal Resistance1 Top Surface: The standard top surface of the die is covered by a Package Type θ θ 2 Unit JA JC layer of passivation. All areas are covered except bonding pads N-8 49.8 37.4 °C/W and scribe lines. R-8 160 36.8 °C/W Surface Metallization: The metallization to Analog Devices 1 Values in Table 3 are calculated based on standard JEDEC test conditions bipolar dice is aluminum/copper. The minimum thickness is unless otherwise specified. 2 100um TIM is used for the θJC test. TIM is assumed to have 3.6 W/mK. 10,000 Å. Table 4. Die Physical Characteristics Bonding Pads: All bonding pads have a minimum size of Parameter Value Units 4.0 mil by 6.0 mil. The passivation windows have a minimum size of 3.5 mil by 5.3 mil. Die Size 67 × 96 mil Back Grind Thickness 10 mil ESD CAUTION Bond Pad Opening Size 89 × 136 µm Top Metal Composition AlCu (0.5%) % Passivation Oxynitride Polyimide None µm Die Marker 780 Substrate Bias GND V Rev. I | Page 4 of 12

Data Sheet AD780 THEORY OF OPERATION Band gap references are the high performance solution for low The output voltage of the AD780 is determined by the supply voltage and low power voltage reference applications. In configuration of Resistors R13, R14, and R15 in the amplifier’s this technique, a voltage with a positive temperature coefficient feedback loop. This sets the output to either 2.5 V or 3.0 V, is combined with the negative coefficient of a transistor’s V to depending on whether R15 (Pin 8) is grounded or not connected. be produce a constant band gap voltage. A unique feature of the AD780 is the low headroom design of In the AD780, the band gap cell contains two NPN transistors the high gain amplifier, which produces a precision 3 V output (Q6 and Q7) that differ in emitter area by 12×. The difference in from an input voltage as low as 4.5 V (or 2.5 V from a 4.0 V their V s produces a PTAT current in R5. This, in turn, produces a input). The amplifier design also allows the part to work with be PTAT voltage across R4 that, when combined with the V of +V = V when current is forced into the output terminal. be IN OUT Q7, produces a voltage (V ) that does not vary with temperature. This allows the AD780 to work as a 2-terminal shunt regulator, bg Precision laser trimming of the resistors and other patented circuit providing a −2.5 V or −3.0 V reference voltage output without techniques are used to further enhance the drift performance. external components. +VIN DNC The PTAT voltage is also used to provide the user with a 2 7 thermometer output voltage (at Pin 3) that increases at a rate of AD780 approximately 2 mV/°C. R10 R11 The DNC (Pin 7) of the AD780 is a 20 kΩ resistor to +V that IN DNC 1 is used solely for production test purposes. Users who are currently 6 VOUT R13 using the LT1019 self-heater pin (Pin 7) must take into account Q6 the different load on the heater supply. Q7 R16 R5 5 TRIM R14 TEMP 3 R15 R4 4 8 GND O/P SELECT 2.5V – NC DNC = DO NOT CONNECTTO THIS PIN3.0V – GND 00841-004 Figure 4. Schematic Diagram Rev. I | Page 5 of 12

AD780 Data Sheet APPLYING THE AD780 The AD780 can be used without any external components to 100 achieve specified performance. If power is supplied to Pin 2 and F) Pin 4 is grounded, Pin 6 provides a 2.5 V or 3.0 V output n 2 ( depending on whether Pin 8 is left unconnected or grounded. R, C O 10 A bypass capacitor of 1 µF (+VIN to GND) should be used if the CIT A load capacitance in the application is expected to be greater than P A C 1 nF. The AD780 in 2.5 V mode typically draws 700 µA of Iq at N O 5 V. This increases by ~2 µA/V up to 36 V. TI A 1 S N E P 2 7 M O 1 D+VNICN VDONUCT 6 C 0.10.1 1 10 10000841-006 AD780 RNULL LOAD CAPACITOR, C1 (µF) TRIM 5 R POT Figure 6. Compensation and Load Capacitor Combinations 3 TEMP O/P SELECT C1 and C2 also improve the settling performance of the AD780 2.5V – DNC GND 3.0V – GND when subjected to load transients. The improvement in noise 4 8 performance is shown in Figure 7, Figure 8, Figure 9, and Figure 10. DNC = DO NOT CONNECTTO THIS PIN 00841-005 AMPLIFIER GAIN = 100 Figure 5. Optional Fine-Trim Circuit 100µV 1s Initial error can be nulled using a single 25 kΩ potentiometer 100 90 connected between V , TRIM, and GND. This is a coarse trim OUT with an adjustment range of 4%, and is only included here for compatibility purposes with other references. A fine trim can be implemented by inserting a large value resistor (e.g., 1 MΩ to 5 MΩ) in series with the wiper of the potentiometer (see Figure 5). 10 The trim range, expressed as a fraction of the output, is simply 0% greater than or equal to 2.1 kΩ/R for either the 2.5 V or NULL 3.0 V mode. 00841-007 The external null resistor affects the overall temperature 0.1 TO 10Hz coefficient by a factor equal to the percentage of V nulled. OUT Figure 7. Standalone Noise Performance For example, a 1 mV (0.03%) shift in the output caused by the NO AMPLIFIER trim circuit, with a 100 ppm/°C null resistor, adds less than 0.06 ppm/°C to the output drift (0.03% × 200 ppm/°C, since the 20µV 10ms resistors internal to the AD780 also have temperature coefficients 100 of less than 100 ppm/°C). 90 NOISE PERFORMANCE The impressive noise performance of the AD780 can be further improved, if desired, by adding two capacitors: a load capacitor (C1) between the output and ground, and a compensation 10 capacitor (C2) between the TEMP pin and ground. Suitable 0% values are shown in Figure 6. 00841-008 10Hz TO 10kHz Figure 8. Standalone Noise Performance Rev. I | Page 6 of 12

Data Sheet AD780 2.0 2 7 +VIN DNC 1.6 1 DNC VOUT 6 1.2 AD780 TRIM 5 mV) 0.8 3 TEMP R ( C1 O C2 O2./5PV S –E DLNECCT ERR 0.4 GND 3.0V – GND 4 8 0 DNC = DFiOg uNrOeT 9 C. NOoNiNsEe CRTedTuOc TtiHoInS CPIiNrcuit 00841-009 ––00..84 00841-011 –60 –40 –20 0 20 40 60 80 100 120 140 NOISE COMPARISON TEMPERATURE (°C) Figure 11. Typical AD780BN Temperature Drift The wideband noise performance of the AD780 can also be expressed in ppm. The typical performance with C1 and C2 is TEMPERATURE OUTPUT PIN 0.6 ppm; without external capacitors, typical performance is The AD780 provides a TEMP output (Pin 3) that varies linearly 1.2 ppm. with temperature. This output can be used to monitor changes This performance is, respectively, 7× and 3× lower than the in system ambient temperature, and to initiate calibration of the specified performance of the LT1019. system, if desired. The voltage VTEMP is 560 mV at 25°C, and the temperature coefficient is approximately 2 mV/°C. NO AMPLIFIER Figure 12 shows the typical V characteristic curve over TEMP 20µV 10ms temperature taken at the output of the op amp with a 100 noninverting gain of 5. 90 4.25 CIRCUIT CALIBRATED AT 25°C REFER TO FIGURE 13 4.00 3.75 )T3.50 10 OU 10mV PER°C 0% E (V3.25 G 00841-010 VOLTA32..0705 10Hz TO 10kHz 2.50 Figure 10. Reduced Noise Performance with C1 = 100 µF, C2 = 100 nF TEMPERATURE PERFORMANCE 22..2050 00841-012 –75 –50 –25 0 25 50 75 100 125 150 The AD780 provides superior performance over temperature by TEMPERATURE (°C) means of a combination of patented circuit design techniques, Figure 12. Temperature Pin Transfer Characteristic precision thin-film resistors, and drift trimming. Temperature Since the TEMP voltage is acquired from the band gap core performance is specified in terms of ppm/°C; because of circuit, current pulled from this pin has a significant effect on nonlinearity in the temperature characteristic, the box test V . Care must be taken to buffer the TEMP output with a method is used to test and specify the part. The nonlinearity OUT suitable op amp, for example, an OP07, AD820, or AD711 (all takes the form of the characteristic S-shaped curve shown in of which would result in less than a 100 µV change in V ). Figure 11. The box test method forms a rectangular box around OUT The relationship between I and V is this curve, enclosing the maximum and minimum output voltages TEMP OUT over the specified temperature range. The specified drift is equal to ∆V = 5.8 mV/µA I (2.5 V Range) OUT TEMP the slope of the diagonal of this box. or ∆V = 6.9 mV/µA I (3.0 V Range) OUT TEMP Rev. I | Page 7 of 12

AD780 Data Sheet Notice how sensitive the current dependent factor on V is. A 0.85 OUT large amount of current, even in tens of microamps, drawn –55°C from the TEMP pin can cause the V and TEMP output to fail. OUT 0.80 The choice of C1 and C2 was dictated primarily by the need for mA) +25°C T ( a relatively flat response that rolled off early in the high frequency N E0.75 R noise at the output. However, there is considerable margin in R U +125°C C the choice of these capacitors. For example, the user can T actually put a huge C2 on the TEMP pin with none on the CEN0.70 S output pin. However, one must either put very little or a lot of UIE Q capacitance at the TEMP pin. Intermediate values of capacitance 0.65 cfoalnlo swo mtheet irmeceosm camuseen doasctiiollnat iino nF.i gInu raen 6y. case, the user should 0.60 00841-014 4 36 TEMPERATURE TRANSDUCER CIRCUIT INPUT VOLTAGE (V) The circuit shown in Figure 13 is a temperature transducer that Figure 14. Typical Supply Current over Temperature amplifies the TEMP output voltage by a gain of a little over +5 to TURN-ON TIME provide a wider full-scale output range. The digital potentiometer The time required for the output voltage to reach its final value can be used to adjust the output so it varies by exactly 10 mV/°C. within a specified error band is defined as the turn-on settling To minimize resistance changes with temperature, resistors with time. The two major factors that affect this are the active circuit low temperature coefficients, such as metal film resistors, settling time and the time for the thermal gradients on the chip should be used. to stabilize. Typical settling performance is shown in Figure 15. 5V The AD780 settles to within 0.1% of its final value within 10 µs. 2 +VIN VIN 5V TEMP 3 10mV/°C 1µF AD780 AD820 0V GN4D 1.27RkΩB 6.04kRΩF(1%) 2.500V VOUT (1%) 2.499V RBP 200Ω 00841-013 2.498V 00841-015 Figure 13. Differential Temperature Transducer 10µs/DIV SUPPLY CURRENT OVER TEMPERATURE Figure 15. Turn-On Settling Time Performance The quiescent current of the AD780 varies slightly over temperature and input supply range. The test limit is 1 mA over the industrial and 1.3 mA over the military temperature range. Typical performance with input voltage and temperature variation is shown in Figure 14. Rev. I | Page 8 of 12

Data Sheet AD780 DYNAMIC PERFORMANCE ILOAD The output stage of the AD780 has been designed to provide 0mA superior static and dynamic load regulation. V)10mA DI Figure 16 and Figure 17 show the performance of the AD780 V/ m while driving a 0 mA to 10 mA load. 50 VOUT E ( (CL = 1000pF) G N A H C +VIN T U P T U O 2 AD780 6 VOUT 00841-019 10µs/DIV 1µF 249Ω Figure 19. Settling under Dynamic Capacitive Load LINE REGULATION 4 VOUT VL 0V 00841-016 La isnpee creifgieudla ctihoann igse a i nm ienapsuutr ev oolft acghea.n Igt ei si nin oteuntpduetd v tool tsaimgeu dlautee to Figure 16. Transient Resistive Load Test Circuit worst-case unregulated supply conditions and is measured in µV/V. Figure 20 shows typical performance with 4.0 V < V < IN ILOAD 15.0 V. 0mA 200 DIV)10mA T = 25°C V/ m GE (50 VOUT (CL = 0pF) V) 100 T CHAN µANGE ( U H 0 UTP T C O U P T U 00841-017 O–100 Figure 17. Settling Unde1r0 Tµrsa/DnIsVient Resistive Load –200 00841-020 4 10 15 The dynamic load may be resistive and capacitive. For example, INPUT VOLTAGE (V) the load may be connected via a long capacitive cable. Figure 18 Figure 20. Output Voltage Change vs. Input Voltage and Figure 19 show the performance of the AD780 driving a 1000 pF, 0 mA to 10 mA load. +VIN 2 AD780 6 VOUT CL 1µF 1000pF 249Ω 4 VL V0VOUT 00841-018 Figure 18. Capacitive Load Transient Response Test Circuit Rev. I | Page 9 of 12

AD780 Data Sheet PRECISION REFERENCE FOR HIGH RESOLUTION VSUPPLY 5 V DATA CONVERTERS 0.1F The AD780 is ideally suited to be the reference for most 5 V 1k high resolution ADCs. The AD780 is stable under any capacitive 2 2N2907 load, has superior dynamic load performance, and its 3.0 V 6 3 + 7 orauntpgeu tw pitrhooviudte rse tqhuei rcionngv aenrt aedr dwititiohn tahle a mnda xeixmpuenms idvey nbaumffiecr AD780 2 –OP940 6 2.5k 10F 0.1FVOUT amplifier. One of the many ADCs that the AD780 is suited for is 4 the AD7884, a 16-bit, high speed sampling ADC (see Figure 21). 0.1F 3.9 This part previously needed a precision 5 V reference, resistor divider, and buffer amplif5ieVr to do this function. 0.051k% 04.0k1% 00841-023 Figure 23. 4.5 V Reference from a Single 5 V Supply AD7884 2 NEGATIVE (–2.5 V) REFERENCE +VIN The AD780 can produce a negative output voltage in shunt mode VOUT 6 VREF+ F by connecting the input and output to ground, and connecting 1F AD780 the GND pin of the AD780 to a negative supply via a bias resistor, VREF+ S as shown in Figure 25. 2.5V/3.0V GND SELECT 4 8 00841-021 +V2IN D7NC Figure 21. Precision 3 V Reference for the AD7884 16-Bit, High Speed ADC 1 DNC VOUT 6 The AD780 is also ideal for use with higher resolution converters, AD780 1µF such as the AD7710/AD7711/AD7712 (see Figure 22). While these TRIM 5 parts are specified with a 2.5 V internal reference, the AD780 in 3 TEMP 3 V mode can be used to improve the absolute accuracy, O/P SELECT 2.5V – DNC temperature stability, and dynamic range. It is shown in Figure 22 GND 3.0V – GND 4 8 with the two optional noise reduction capacitors. –2.5 VOUT 5V R =VOUT – (V–) NOTES 2 AD7710 IL + IS MIN V– 213... IIDLSN =MC IL N=O =DA ODM ICNNUOIMRTUR CMEON SNTHNUENCTT CTOUR TRHEISN TPIN 00841-024 +VIN Figure 24. Negative (−2.5 V Shunt Mode Reference) VOUT 6 REF IN+ A precise –2.5 V reference capable of supplying up to 100 mA to 1F AD780 a load can be implemented with the AD780 in series mode, using 3 100F the bootstrap circuit shown in Figure 25. 2.5V/3.0V 100nF GND O/P SELECT +5V 4 8 REF IN– 00841-022 2 +VIN Figure 22. Precision 2.5 V or 3.0 V Reference for the 1k OUT AD780 AD7710 High Resolution, Σ-Δ ADC 6 8 +5V 4.5 V REFERENCE FROM 5 V SUPPLY CONNECT IF –3V OUTPUT 4 DESIRED Some 5 V high resolution ADCs can accommodate reference – –2.5V (IL 100mA) voltages up to 4.5 V. The AD780 can be used to provide a OP07 2N3906 precision 4.5 V reference voltage from a 5 V supply using the + circuit shown in Figure 23. This circuit provides a regulated 4.5 V output from a supply voltage as low as 4.7 V. The high –5V –5V quality tantalum 10 μF capacitor, in parallel with the ceramic AouDtp7u8t0 i0m.1p eμdFa cnacpea acritoourn adn 5d0 t hMe H3.z9. Ω resistor, ensures a low 1000pF 00841-025 Figure 25. −2.5 V High Load Current Reference Rev. I | Page 10 of 12

Data Sheet AD780 OUTLINE DIMENSIONS 5.00(0.1968) 4.80(0.1890) 8 5 4.00(0.1574) 6.20(0.2441) 3.80(0.1497) 1 4 5.80(0.2284) 1.27(0.0500) 0.50(0.0196) BSC 1.75(0.0688) 0.25(0.0099) 45° 0.25(0.0098) 1.35(0.0532) 8° 0.10(0.0040) 0° COPLANARITY 0.51(0.0201) 0.10 SEATING 0.31(0.0122) 0.25(0.0098) 10..2470((00..00510507)) PLANE 0.17(0.0067) COMPLIANTTOJEDECSTANDARDSMS-012-AA C(RINOEFNPEATRRREOENNLCLTEIHNEOGSNDELISYM)AEANNRDSEIAORRNOESUNANORDETEDAIN-POMPFRIFLOLMPIMIRLELIATIMTEEERTFSEO;RIRNECUQHSUEDIVIINMAELDENENSSTIIOGSNNFS.OR 012407-A Figure 26. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) 0.400 (10.16) 0.365 (9.27) 0.355 (9.02) 8 5 0.280 (7.11) 0.250 (6.35) 1 4 0.240 (6.10) 0.325 (8.26) 0.310 (7.87) 0.100 (2.54) 0.300 (7.62) BSC 0.060 (1.52) 0.195 (4.95) 0.210 (5.33) MAX 0.130 (3.30) MAX 0.115 (2.92) 0.015 0.150 (3.81) (0.38) 0.015 (0.38) 0.130 (3.30) MIN GAUGE 0.115 (2.92) SEATING PLANE 0.014 (0.36) PLANE 0.010 (0.25) 0.022 (0.56) 0.008 (0.20) 0.005 (0.13) 0.430 (10.92) 0.018 (0.46) MIN MAX 0.014 (0.36) 0.070 (1.78) 0.060 (1.52) 0.045 (1.14) COMPLIANTTO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONSARE IN INCHES; MILLIMETER DIMENSIONS (RCINEOFRPEANRREERENN LCTEEHA EODSNSEL MSY)AAAYNR BDEE AR CROOEU NNNFODIGETUDAR-POEPFDRFOA INSPC RWHIAH ETOEQL UFEIO VORAR LU EHSNAETL ISFN FLDOEEARSDIGSN.. 070606-A Figure 27. 8-Lead Plastic Dual-In-Line Package [PDIP] Narrow Body (N-8) Dimensions shown in inches and (millimeters) Rev. I | Page 11 of 12

AD780 Data Sheet ORDERING GUIDE Initial Temperature Temperature Package Package Qty. per Tube/ Model1 Error Range Coefficient Description Option Reel/Wafflepack AD780ANZ ±5.0 mV −40°C to +85°C 7 ppm/°C 8-Lead PDIP N-8 50 AD780AR ±5.0 mV −40°C to +85°C 7 ppm/°C 8-Lead SOIC_N R-8 98 AD780AR-REEL7 ±5.0 mV −40°C to +85°C 7 ppm/°C 8-Lead SOIC_N R-8 750 AD780ARZ ±5.0 mV −40°C to +85°C 7 ppm/°C 8-Lead SOIC_N R-8 98 AD780ARZ-REEL7 ±5.0 mV −40°C to +85°C 7 ppm/°C 8-Lead SOIC_N R-8 750 AD780BNZ ±1.0 mV −40°C to +85°C 3 ppm/°C 8-Lead PDIP N-8 50 AD780BR ±1.0 mV −40°C to +85°C 3 ppm/°C 8-Lead SOIC_N R-8 98 AD780BR-REEL7 ±1.0 mV −40°C to +85°C 3 ppm/°C 8-Lead SOIC_N R-8 750 AD780BRZ ±1.0 mV −40°C to +85°C 3 ppm/°C 8-Lead SOIC_N R-8 98 AD780BRZ-REEL ±1.0 mV −40°C to +85°C 3 ppm/°C 8-Lead SOIC_N R-8 2,500 AD780BRZ-REEL7 ±1.0 mV −40°C to +85°C 3 ppm/°C 8-Lead SOIC_N R-8 750 AD780CRZ ±1.5 mV −40°C to +85°C 7 ppm/°C 8-Lead SOIC_N R-8 98 AD780CRZ-REEL7 ±1.5 mV −40°C to +85°C 7 ppm/°C 8-Lead SOIC_N R-8 750 AD780-001C DIE 165 1 Z = RoHS Compliant Part. ©2002–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00841-0-8/17(I) Rev. I | Page 12 of 12

Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: A nalog Devices Inc.: AD780BR-REEL7 AD780BNZ AD780ANZ AD780CRZ-REEL7 AD780BRZ-REEL7 AD780BRZ-REEL AD780AR- REEL7 AD780ARZ-REEL7 AD780AR AD780BRZ AD780CRZ AD780BR AD780ARZ