ICGOO在线商城 > 集成电路(IC) > 嵌入式 - FPGA(现场可编程门阵列) > A3P030-QNG48
数量阶梯 | 香港交货 | 国内含税 |
+xxxx | $xxxx | ¥xxxx |
查看当月历史价格
查看今年历史价格
A3P030-QNG48产品简介:
ICGOO电子元器件商城为您提供A3P030-QNG48由MICRO-SEMI设计生产,在icgoo商城现货销售,并且可以通过原厂、代理商等渠道进行代购。 A3P030-QNG48价格参考。MICRO-SEMIA3P030-QNG48封装/规格:嵌入式 - FPGA(现场可编程门阵列), 。您可以下载A3P030-QNG48参考资料、Datasheet数据手册功能说明书,资料中有A3P030-QNG48 详细功能的应用电路图电压和使用方法及教程。
参数 | 数值 |
产品目录 | 集成电路 (IC) |
描述 | IC FPGA 34 I/O 48QFN |
产品分类 | |
I/O数 | 34 |
LAB/CLB数 | - |
品牌 | Microsemi SoC |
数据手册 | http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=131351http://www.microsemi.com/document-portal/doc_download/130704-proasic3-flash-family-fpgas-datasheet |
产品图片 | |
产品型号 | A3P030-QNG48 |
PCN设计/规格 | http://www.microsemi.com/document-portal/doc_download/132099-pcn1201-addendum-c |
rohs | 无铅 / 符合限制有害物质指令(RoHS)规范要求 |
产品系列 | ProASIC3 |
供应商器件封装 | 48-QFN(6x6) |
其它名称 | 1100-1012 |
安装类型 | 表面贴装 |
封装/外壳 | 48-VFQFN 裸露焊盘 |
工作温度 | 0°C ~ 70°C |
总RAM位数 | - |
栅极数 | 30000 |
标准包装 | 260 |
电压-电源 | 1.425 V ~ 1.575 V |
逻辑元件/单元数 | - |
Revision 18 DS0097 ProASIC3 Flash Family FPGAs with Optional Soft ARM Support Features and Benefits Advanced I/O • 700 Mbps DDR, LVDS-Capable I/Os (A3P250 and above) High Capacity • 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation • 15 K to 1 M System Gates • Wide Range Power Supply Voltage Support per JESD8-B, • Up to 144 Kbits of True Dual-Port SRAM Allowing I/Os to Operate from 2.7 V to 3.6 V • Up to 300 User I/Os • Bank-Selectable I/O Voltages—up to 4 Banks per Chip Reprogrammable Flash Technology • Single-Ended I/O Standards: LVTTL, LVCMOS 3.3V/ • 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS 2.5V/1.8V/1.5V, 3.3V PCI / 3.3V PCI-X† and LVCMOS Process 2.5V/5.0V Input • Instant On Level 0 Support • Differential I/O Standards: LVPECL, LVDS, B-LVDS, and M-LVDS (A3P250 and above) • Single-Chip Solution • I/O Registers on Input, Output, and Enable Paths • Retains Programmed Design when Powered Off • Hot-Swappable and Cold Sparing I/Os‡ High Performance • Programmable Output Slew Rate† and Drive Strength • 350 MHz System Performance • Weak Pull-Up/-Down • 3.3 V, 66 MHz 64-Bit PCI† • IEEE1149.1 (JTAG) Boundary Scan Test In-System Programming (ISP) and Security • Pin-Compatible Packages across the ProASIC3 Family • ISP Using On-Chip 128-Bit Advanced Encryption Standard Clock Conditioning Circuit (CCC) and PLL† (AES) Decryption (except ARM®-enabled ProASIC®3 devices) • Six CCC Blocks, One with an Integrated PLL via JTAG (IEEE1532–compliant)† • Configurable Phase-Shift, Multiply/Divide, Delay Capabilities • FlashLock® to Secure FPGA Contents and External Feedback Low Power • Wide Input Frequency Range (1.5 MHz to 350MHz) • Core Voltage for Low Power Embedded Memory† • Support for 1.5 V-Only Systems • 1 Kbit of FlashROM User Nonvolatile Memory • Low-Impedance Flash Switches • SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit RAM High-Performance Routing Hierarchy Blocks (×1, ×2, ×4, ×9, and ×18 organizations)† • Segmented, Hierarchical Routing and Clock Structure • True Dual-Port SRAM (except ×18) ARM Processor Support in ProASIC3 FPGAs • M1 ProASIC3 Devices—ARM®Cortex®-M1 Soft Processor Available with or without Debug ProASIC3 Devices A3P0151 A3P030 A3P060 A3P125 A3P250 A3P400 A3P600 A3P1000 Cortex-M1 Devices2 M1A3P250 M1A3P400 M1A3P600 M1A3P1000 System Gates 15,000 30,000 60,000 125,000 250,000 400,000 600,000 1,000,000 Typical Equivalent Macrocells 128 256 512 1,024 2,048 – – – VersaTiles (D-flip-flops) 384 768 1,536 3,072 6,144 9,216 13,824 24,576 RAM Kbits (1,024 bits) – – 18 36 36 54 108 144 4,608-Bit Blocks – – 4 8 8 12 24 32 FlashROM Kbits 1 1 1 1 1 1 1 1 Secure (AES) ISP3 – – Yes Yes Yes Yes Yes Yes Integrated PLL in CCCs – – 1 1 1 1 1 1 VersaNet Globals4 6 6 18 18 18 18 18 18 I/O Banks 2 2 2 2 4 4 4 4 Maximum User I/Os 49 81 96 133 157 194 235 300 Notes: 1. A3P015 is not recommended for new designs. 2. Refer to the Cortex-M1 product brief for more information. 3. AES is not available for Cortex-M1 ProASIC3 devices. 4. Six chip (main) and three quadrant global networks are available for A3P060 and above. 5. The M1A3P250 device does not support this package. 6. For higher densities and support of additional features, refer to the ProASIC3E Flash Family FPGAs datasheet. 7. Package not available. † A3P015 and A3P030 devices do not support this feature. ‡ Supported only by A3P015 and A3P030 devices. March 2016 I © 2016 Microsemi Corporation
ProASIC3 Flash Family FPGAs ProASIC3 Devices A3P0151 A3P030 A3P060 A3P125 A3P250 A3P400 A3P600 A3P1000 Cortex-M1 Devices2 M1A3P250 M1A3P400 M1A3P600 M1A3P1000 Package Pins QFN QN68 QN48, QN68, QN1327 QN1327 QN1327 QN1327 CS CS121 VQFP VQ100 VQ100 VQ100 VQ100 TQFP TQ144 TQ144 PQFP PQ208 PQ208 PQ208 PQ208 PQ208 FBGA FG144 FG144 FG144/2565 FG144/256/ FG144/256/ FG144/256/ 484 484 484 Notes: 1. A3P015 is not recommended for new designs. 2. Refer to the Cortex-M1 product brief for more information. 3. AES is not available for Cortex-M1 ProASIC3 devices. 4. Six chip (main) and three quadrant global networks are available for A3P060 and above. 5. The M1A3P250 device does not support this package. 6. For higher densities and support of additional features, refer to the ProASIC3E Flash Family FPGAs datasheet. 7. Package not available. II Revision 18
ProASIC3 Flash Family FPGAs 1 I/Os Per Package ProASIC3 Devices A3P0152 A3P030 A3P060 A3P125 A3P2503 A3P4003 A3P600 A3P1000 Cortex-M1 Devices M1A3P2503,5 M1A3P4003 M1A3P600 M1A3P1000 I/O Type s s s s r r r r O O O O 4O Pai 4O Pai 4O Pai 4O Pai d I/ d I/ d I/ d I/ d I/ O d I/ O d I/ O d I/ O Ende Ende Ende Ende Ende ntial I/ Ende ntial I/ Ende ntial I/ Ende ntial I/ e- e- e- e- e- e e- e e- e e- e gl gl gl gl gl er gl er gl er gl er Package Sin Sin Sin Sin Sin Diff Sin Diff Sin Diff Sin Diff QN48 – 34 – – – – – – – – – QN68 49 49 – – – – – – – – – QN1327 – 81 80 84 87 19 – – – – – CS121 – – 96 – – – – – – – – – VQ100 – 77 71 71 68 13 – – – – – TQ144 – – 91 100 – – – – – – – – PQ208 – – – 133 151 34 151 34 154 35 154 35 FG144 – – 96 97 97 24 97 25 97 25 97 25 FG2565,6 – – – – 157 38 178 38 177 43 177 44 FG4846 – – – – – – 194 38 235 60 300 74 Notes: 1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3 FPGA Fabric User Guide to ensure complying with design and board migration requirements. 2. A3P015 is not recommended for new designs. 3. For A3P250 and A3P400 devices, the maximum number of LVPECL pairs in east and west banks cannot exceed 15. Refer to the ProASIC3 FPGA Fabric Users Guide for position assignments of the 15 LVPECL pairs. 4. Each used differential I/O pair reduces the number of single-ended I/Os available by two. 5. The M1A3P250 device does not support FG256 package. 6. FG256 and FG484 are footprint-compatible packages. 7. Package not available. Table 1 • ProASIC3 FPGAs Package Sizes Dimensions Package CS121 QN48 QN68 QN132 * VQ100 TQ144 PQ208 FG144 FG256 FG484 Length × Width 6 × 6 6 × 6 8 × 8 8 × 8 14 × 14 20 × 20 28 × 28 13 × 13 17 × 17 23 × 23 (mm × mm) Nominal Area 36 36 64 64 196 400 784 169 289 529 (mm2) Pitch (mm) 0.5 0.4 0.4 0.5 0.5 0.5 0.5 1.0 1.0 1.0 Height (mm) 0.99 0.90 0.90 0.75 1.00 1.40 3.40 1.45 1.60 2.23 Note: * Package not available Revision 18 III
ProASIC3 Flash Family FPGAs ProASIC3 Ordering Information A3P1000 _ 1 FG G 144 I Y Security Feature Y = Device Includes License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio Blank = Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio Note: Only devices with packages greater than or equal to 5x5 are supported Application (Temperature Range) Blank= Commercial (0°C to +85°C Junction Temperature) I= Industrial (–40°C to +100°C Junction Temperature) PP= Pre-Production ES= Engineering Sample (Room Temperature Only) Package Lead Count Lead-Free Packaging Blank= Standard Packaging G= RoHS-Compliant (Green) Packaging (some packages also halogen-free) Package Type QN = Quad Flat Pack No Leads (0.4 mm and 0.5 mm pitches) VQ = Very Thin Quad Flat Pack (0.5 mm pitch) TQ = Thin Quad Flat Pack (0.5 mm pitch) PQ = Plastic Quad Flat Pack (0.5 mm pitch) FG = Fine Pitch Ball Grid Array (1.0 mm pitch) Speed Grade CS = Chip Scale Package (0.5 mm pitch) Blank = Standard 1 = 15% Faster than Standard Part Number 2 = 25% Faster than Standard ProASIC3 Devices A3P015= 15,000 System Gates (A3P015 is not recommended for new designs.) A3P030= 30,000 System Gates A3P060= 60,000 System Gates A3P125= 125,000 System Gates A3P250= 250,000 System Gates A3P400= 400,000 System Gates A3P600= 600,000 System Gates A3P1000= 1,000,000 System Gates ProASIC3 Devices with Cortex-M1 M1A3P250= 250,000 System Gates M1A3P400= 400,000 System Gates M1A3P600= 600,000 System Gates M1A3P1000= 1,000,000 System Gates ProASIC3 Device Status ProASIC3 Devices Status Cortex-M1 Devices Status A3P015 Not recommended for new designs. A3P030 Production A3P060 Production A3P125 Production A3P250 Production M1A3P250 Production A3P400 Production M1A3P400 Production A3P600 Production M1A3P600 Production A3P1000 Production M1A3P1000 Production IV Revision 18
ProASIC3 Flash Family FPGAs ProASIC3 Device Family Overview General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 ProASIC3 DC and Switching Characteristics General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-81 Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-85 Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-90 Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-92 Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-107 JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-108 Pin Descriptions Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 Package Pin Assignments QN48 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 QN68 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 QN132 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 CS121 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15 VQ100 – Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18 TQ144 – Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23 PQ208 – Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 FG144 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-39 FG256 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-52 FG484 – Bottom View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-65 Datasheet Information List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15 Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15 Revision 18 V
1 – ProASIC3 Device Family Overview General Description ProASIC3, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASICPLUS® family. Nonvolatile flash technology gives ProASIC3 devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools. ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P015 and A3P030 devices have no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os. ProASIC3 devices support the ARM Cortex-M1 processor. The ARM-enabled devices have Microsemi ordering numbers that begin with M1A3P (Cortex-M1) and do not support AES decryption. Flash Advantages Reduced Cost of Ownership Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM- based FPGAs, flash-based ProASIC3 devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets. Security The nonvolatile, flash-based ProASIC3 devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer. ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. ARM-enabled ProASIC3 devices do not support user-controlled AES security mechanisms. Since the ARM core must be protected at all times, AES encryption is always on for the core logic, so bitstreams are always encrypted. There is no user access to encryption for the FlashROM programming data. Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3 family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Revision 18 1-1
ProASIC3 Flash Family FPGAs Your valuable IP is protected with industry-standard security, making remote ISP possible. A ProASIC3 device provides the best available security for programmable logic designs. Single Chip Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power- up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3 FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability. Instant On Flash-based ProASIC3 devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based ProASIC3 devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these purposes in a system. In addition, glitches and brownouts in system power will not corrupt the ProASIC3 device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASIC3 devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time. Firm Errors Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of ProASIC3 flash-based FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3 FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric. Low Power Flash-based ProASIC3 devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. ProASIC3 devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs. ProASIC3 devices also have low dynamic power consumption to further maximize power savings. Revision 18 1-2
ProASIC3 Device Family Overview Advanced Flash Technology The ProASIC3 family offers many benefits, including nonvolatility and reprogrammability through an advanced flash- based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy. Advanced Architecture The proprietary ProASIC3 architecture provides granularity comparable to standard-cell ASICs. The ProASIC3 device consists of five distinct and programmable architectural features (Figure1-1 and Figure1-2 on page1-4): • FPGA VersaTiles • Dedicated FlashROM • Dedicated SRAM/FIFO memory† • Extensive CCCs and PLLs† • Advanced I/O structure Bank 0 CCC RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block* 1 B k a n n a k B 0 I/Os VersaTile 1 B k a n n a k B ISP AES User Nonvolatile 0 Charge Pumps Decryption* FlashROM Bank 1 Note: *Not supported by A3P015 and A3P030 devices Figure 1-1 • ProASIC3 Device Architecture Overview with Two I/O Banks (A3P015, A3P030, A3P060, and A3P125) † The A3P015 and A3P030 do not support PLL or SRAM. 1-3 Revision 18
ProASIC3 Flash Family FPGAs Bank 0 CCC RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block 3 B k a n n a k B 1 I/Os VersaTile 3 B k a n n a k B 1 RAM Block 4,608-Bit Dual-Port ISP AES User Nonvolatile Charge Pumps SRAM or FIFO Block Decryption FlashROM (A3P600 and A3P1000) Bank 2 Figure 1-2 • ProASIC3 Device Architecture Overview with Four I/O Banks (A3P250, A3P600, and A3P1000) The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D- flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the ProASIC3 core tile as either a three-input lookup table (LUT) equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the Microsemi ProASIC family of third-generation architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design. VersaTiles The ProASIC3 core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core tiles. The ProASIC3 VersaTile supports the following: • All 3-input logic functions—LUT-3 equivalent • Latch with clear or set • D-flip-flop with clear or set • Enable D-flip-flop with clear or set Refer to Figure1-3 for VersaTile configurations. LUT-3 Equivalent D-Flip-Flop with Clear or Set Enable D-Flip-Flop with Clear or Set Data Y X1 Data Y X2 LUT-3 Y CLK D-FF CLK D-FF X3 CLR Enable CLR Figure 1-3 • VersaTile Configurations Revision 18 1-4
ProASIC3 Device Family Overview User Nonvolatile FlashROM ProASIC3 devices have 1kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications: • Internet protocol addressing (wireless or fixed) • System calibration settings • Device serialization and/or inventory control • Subscription-based business models (for example, set-top boxes) • Secure key storage for secure communications algorithms • Asset management/tracking • Date stamping • Version management The FlashROM is written using the standard ProASIC3 IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the A3P015 and A3P030 devices), as in security keys stored in the FlashROM for a user design. The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array. The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte. The ProASIC3 development software solutions, Libero® System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents. SRAM and FIFO ProASIC3 devices (except the A3P015 and A3P030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in A3P015 and A3P030 devices). In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations. PLL and CCC ProASIC3 devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3 family contains six CCCs. One CCC (center west side) has a PLL. The A3P015 and A3P030 devices do not have a PLL. The six CCC blocks are located at the four corners and the centers of the east and west sides. All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access. The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block. 1-5 Revision 18
ProASIC3 Flash Family FPGAs The CCC block has these key features: • Wide input frequency range (f ) = 1.5 MHz to 350 MHz IN_CCC • Output frequency range (f ) = 0.75 MHz to 350MHz OUT_CCC • Clock delay adjustment via programmable and fixed delays from –7.56 ns to +11.12 ns • 2 programmable delay types for clock skew minimization • Clock frequency synthesis (for PLL only) Additional CCC specifications: • Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only). • Output duty cycle = 50% ± 1.5% or better (for PLL only) • Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only) • Maximum acquisition time = 300 µs (for PLL only) • Low power consumption of 5 mW • Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns (for PLL only) • Four precise phases; maximum misalignment between adjacent phases of 40 ps × (350 MHz / f ) (for OUT_CCC PLL only) Global Clocking ProASIC3 devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network. Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high fanout nets. Revision 18 1-6
ProASIC3 Device Family Overview I/Os with Advanced I/O Standards The ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5V, 1.8V, 2.5V, and 3.3V). ProASIC3 FPGAs support many different I/O standards—single-ended and differential. The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table1-1). Table1-1 • I/O Standards Supported I/O Standards Supported LVTTL/ LVPECL, LVDS, I/O Bank Type Device and Bank Location LVCMOS PCI/PCI-X B-LVDS, M-LVDS Advanced East and west Banks of A3P250 and larger devices Standard Plus North and south banks of A3P250 and Not supported larger devices All banks of A3P060 and A3P125 Standard All banks of A3P015 and A3P030 Not Not supported supported Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following: • Single-Data-Rate applications • Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications ProASIC3 banks for the A3P250 device and above support LVPECL, LVDS, B-LVDS and M-LVDS. B-LVDS and M- LVDS can support up to 20 loads. Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered- up system. Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating. Wide Range I/O Support ProASIC3 devices support JEDEC-defined wide range I/O operation. ProASIC3 supports the JESD8-B specification, covering both 3V and 3.3V supplies, for an effective operating range of 2.7V to 3.6V. Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications. Specifying I/O States During Programming You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the FlashPro User’s Guide for more information. Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only. 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming. 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator window appears. 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box. 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure1-4 on page1-8). 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings: 1 – I/O is set to drive out logic High 1-7 Revision 18
ProASIC3 Flash Family FPGAs 0 – I/O is set to drive out logic Low Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming Z -Tristate: I/O is tristated Figure 1-4 • I/O States During Programming Window 6. Click OK to return to the FlashPoint – Programming File Generator window. Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation. Revision 18 1-8
2 – ProASIC3 DC and Switching Characteristics General Specifications Operating Conditions Stresses beyond those listed in Table2-1 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table2-2 on page2-2 is not implied. Table2-1 • Absolute Maximum Ratings Symbol Parameter Limits Units VCC DC core supply voltage –0.3 to 1.65 V VJTAG JTAG DC voltage –0.3 to 3.75 V VPUMP Programming voltage –0.3 to 3.75 V VCCPLL Analog power supply (PLL) –0.3 to 1.65 V VCCI DC I/O output buffer supply voltage –0.3 to 3.75 V VMV DC I/O input buffer supply voltage –0.3 to 3.75 V VI I/O input voltage –0.3 V to 3.6 V V (when I/O hot insertion mode is enabled) –0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled) T 2 Storage temperature –65 to +150 °C STG T 2 Junction temperature +125 °C J Notes: 1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table2-4 on page2-3. 2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page3-1 for further information. 3. For flash programming and retention maximum limits, refer to Table2-3 on page2-3, and for recommended operating limits, refer to Table2-2 on page2-2. Revision 18 2-1
ProASIC3 Flash Family FPGAs Table2-2 • Recommended Operating Conditions1 Symbol Parameters1 Commercial Industrial Units T Junction temperature 0 to 852 -40 to 1002 °C J VCC3 1.5 V DC core supply voltage 1.425 to 1.575 1.425 to 1.575 V VJTAG JTAG DC voltage 1.4 to 3.6 1.4 to 3.6 V VPUMP Programming voltage Programming Mode 3.15 to 3.45 3.15 to 3.45 V Operation4 0 to 3.6 0 to 3.6 V VCCPLL Analog power supply (PLL) 1.425 to 1.575 1.425 to 1.575 V VCCI and VMV5 1.5 V DC supply voltage 1.425 to 1.575 1.425 to 1.575 V 1.8 V DC supply voltage 1.7 to 1.9 1.7 to 1.9 V 2.5 V DC supply voltage 2.3 to 2.7 2.3 to 2.7 V 3.3 V DC supply voltage 3.0 to 3.6 3.0 to 3.6 V 3.3 V wide range DC supply voltage6 2.7 to 3.6 2.7 to 3.6 V LVDS/B-LVDS/M-LVDS differential I/O 2.375 to 2.625 2.375 to 2.625 V LVPECL differential I/O 3.0 to 3.6 3.0 to 3.6 V Notes: 1. All parameters representing voltages are measured with respect to GND unless otherwise specified. 2. Software Default Junction Temperature Range in the Libero® System-on-Chip (SoC) software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help. 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table2-18 on page2-19. 4. VPUMPcan be left floating during operation (not programming mode). 5. VMV and VCCI should be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page3-1 for further information. 6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation. Revision 18 2-2
ProASIC3 DC and Switching Characteristics 110 HTR Lifetime 100 Tj (°C) (yrs) 90 70 102.7 80 85 43.8 100 20.0 70 s 105 15.6 r 60 a 110 12.3 e 50 Y 115 9.7 40 120 7.7 125 6.2 30 130 5.0 20 135 4.0 10 140 3.3 0 145 2.7 150 2.2 70 85 100 105 110 115 120 125 130 135 140 145 150 Temperature (ºC) Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage. Figure 2-1 • High-Temperature Data Retention (HTR) Table2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature1 Product Programming Program Retention Maximum Storage Maximum Operating Grade Cycles (biased/unbiased) Temperature T (°C) Junction Temperature T (°C)2 STG J Commercial 500 20 years 110 100 Industrial 500 20 years 110 100 1. This is a stress rating only; functional operation at any condition other than those indicated is not implied. 2. These limits apply for program/data retention only. Refer to Table2-1 on page2-1 and Table2-2 for device operating conditions and absolute limits. Table2-4 • Overshoot and Undershoot Limits1 Average VCCI–GND Overshoot or Undershoot Maximum Overshoot/ VCCI and VMV Duration as a Percentage of Clock Cycle2 Undershoot2 2.7 V or less 10% 1.4 V 5% 1.49 V 3 V 10% 1.1 V 5% 1.19 V 3.3 V 10% 0.79 V 5% 0.88 V 3.6 V 10% 0.45 V 5% 0.54 V Notes: 1. Based on reliability requirements at 85°C. 2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V. 3. This table does not provide PCI overshoot/undershoot limits. 2-3 Revision 18
ProASIC3 Flash Family FPGAs I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial) Sophisticated power-up management circuitry is designed into every ProASIC®3 device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure2-2 on page2-5. There are five regions to consider during power-up. ProASIC3 I/Os are activated only if ALL of the following three conditions are met: 1. VCC and VCCI are above the minimum specified trip points (Figure2-2 on page2-5). 2. VCCI > VCC – 0.75 V (typical) 3. Chip is in the operating mode. VCCI Trip Point: Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V VCC Trip Point: Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V VCC and VCCI ramp-up trip points are about 100mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following: • During programming, I/Os become tristated and weakly pulled up to VCCI. • JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior. PLL Behavior at Brownout Condition Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLLX exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure2-2 on page2-5 for more details). When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/Down Behavior of Low Power Flash Devices" chapter of the ProASIC3 FPGA Fabric User’s Guide for information on clock and lock recovery. Internal Power-Up Activation Sequence 1. Core 2. Input buffers Output buffers, after 200ns delay from input buffer activation. Thermal Characteristics Introduction The temperature variable in the Microsemi Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature. EQ can be used to calculate junction temperature. T = Junction Temperature = T + T J A where: T = Ambient Temperature A T = Temperature gradient between junction (silicon) and ambient T = * P ja = Junction-to-ambient of the package. numbers are located in Table2-5 on page2-6. ja ja P = Power dissipation Revision 18 2-4
ProASIC3 DC and Switching Characteristics VCC = VCCI + VT where VT can be from 0.58 V to 0.9 V (typically 0.75 V) VCC VCC = 1.575 V Region 4: I/O Region 5: I/O buffers are ON Region 1: I/O Buffers are OFF buffers are ON. and power supplies are within I/Os are functional specification. (except differential I/Os meet the entire datasheet but slower because VCCI and timer specifications for is below specification. For the speed, VIH / VIL, VOH / VOL, etc. same reason, input buffers do not meet VIH / VIL levels, and output buffers do not meet VOH / VOL levels. VCC = 1.425 V Region 2: I/O buffers are ON. Region 3: I/O buffers are ON. I/Os are functional (except differential inputs) I/Os are functional; I/O DC but slower because VCCI / VCC are below specifications are met, specification. For the same reason, input but I/Os are slower because buffers do not meet VIH / VIL levels, and the VCC is below specification. output buffers do not meet VOH / VOL levels. Activation trip point: V = 0.85 V ± 0.25 V a Deactivation trip point: Region 1: I/O buffers are OFF V = 0.75 V ± 0.25 V d Activation trip point: Min VCCI datasheet specification VCCI V = 0.9 V ± 0.3 V voltage at a selected I/O a Deactivation trip point: standard; i.e., 1.425 V or 1.7 V V = 0.8 V ± 0.3 V or 2.3 V or 3.0 V d Figure 2-2 • I/O State as a Function of VCCI and VCC Voltage Levels Package Thermal Characteristics The device junction-to-case thermal resistivity is and the junction-to-ambient air thermal resistivity is . The jc ja thermal characteristics for are shown for two air flow rates. ja 2-5 Revision 18
ProASIC3 Flash Family FPGAs The absolute maximum junction temperature is 100°C. EQ1 shows a sample calculation of the absolute maximum power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air. Max. junction temp. (C)–Max. ambient temp. (C) 100C–70C · Maximum Power Allowed = ------------------------------------------------------------------------------------------------------------------------------------------ = ------------------------------------- = 1.463 W (C/W) 20.5C/W ja EQ 1 Table2-5 • Package Thermal Resistivities ja Package Type Device Pin Count Still Air 200 ft/min 500 ft/min Units jc Quad Flat No Lead A3P030 132 0.4 21.4 16.8 15.3 °C/W A3P060 132 0.3 21.2 16.6 15.0 °C/W A3P125 132 0.2 21.1 16.5 14.9 °C/W A3P250 132 0.1 21.0 16.4 14.8 °C/W Very Thin Quad Flat Pack (VQFP) All devices 100 10.0 35.3 29.4 27.1 °C/W Thin Quad Flat Pack (TQFP) All devices 144 11.0 33.5 28.0 25.7 °C/W Plastic Quad Flat Pack (PQFP) All devices 208 8.0 26.1 22.5 20.8 °C/W Fine Pitch Ball Grid Array (FBGA) See note* 144 3.8 26.9 22.9 21.5 °C/W See note* 256 3.8 26.6 22.8 21.5 °C/W See note* 484 3.2 20.5 17.0 15.9 °C/W A3P1000 144 6.3 31.6 26.2 24.2 °C/W A3P1000 256 6.6 28.1 24.4 22.7 °C/W A3P1000 484 8.0 23.3 19.0 16.7 °C/W Note: *This information applies to all ProASIC3 devices except the A3P1000. Detailed device/package thermal information will be available in future revisions of the datasheet. Temperature and Voltage Derating Factors Table2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T = 70°C, VCC = 1.425 V) J Junction Temperature (°C) Array Voltage VCC (V) –40°C 0°C 25°C 70°C 85°C 100°C 1.425 0.88 0.93 0.95 1.00 1.02 1.04 1.500 0.83 0.88 0.90 0.95 0.96 0.98 1.575 0.80 0.84 0.87 0.91 0.93 0.94 Revision 18 2-6
ProASIC3 DC and Switching Characteristics Calculating Power Dissipation Quiescent Supply Current Table2-7 • Quiescent Supply Current Characteristics A3P015 A3P030 A3P060 A3P125 A3P250 A3P400 A3P600 A3P1000 Typical (25°C) 2 mA 2 mA 2 mA 2 mA 3 mA 3 mA 5 mA 8 mA Max. (Commercial) 10 mA 10 mA 10 mA 10 mA 20 mA 20 mA 30 mA 50 mA Max. (Industrial) 15 mA 15 mA 15 mA 15 mA 30 mA 30 mA 45 mA 75 mA Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table2-11 and Table2-12 on page2-9. Power per I/O Pin Table2-8 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Advanced I/O Banks Static Power Dynamic Power VMV (V) P (mW)1 PAC9 (µW/MHz)2 DC2 Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 16.22 3.3 V LVCMOS Wide Range3 3.3 – 16.22 2.5 V LVCMOS 2.5 – 5.12 1.8 V LVCMOS 1.8 – 2.13 1.5 V LVCMOS (JESD8-11) 1.5 – 1.45 3.3 V PCI 3.3 – 18.11 3.3 V PCI-X 3.3 – 18.11 Differential LVDS 2.5 2.26 1.20 LVPECL 3.3 5.72 1.87 Notes: 1. PDC2 is the static power (where applicable) measured on VMV. 2. PAC9 is the total dynamic power measured on VCC and VMV. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. Table2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks Static Power Dynamic Power VMV (V) PDC2 (mW)1 PAC9 (µW/MHz)2 Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 16.23 3.3 V LVCMOS Wide Range3 3.3 – 16.23 Notes: 1. PDC2 is the static power (where applicable) measured on VMV. 2. PAC9 is the total dynamic power measured on VCC and VMV. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. 2-7 Revision 18
ProASIC3 Flash Family FPGAs Table2-9 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks Static Power Dynamic Power VMV (V) PDC2 (mW)1 PAC9 (µW/MHz)2 2.5 V LVCMOS 2.5 – 5.14 1.8 V LVCMOS 1.8 – 2.13 1.5 V LVCMOS (JESD8-11) 1.5 – 1.48 3.3 V PCI 3.3 – 18.13 3.3 V PCI-X 3.3 – 18.13 Notes: 1. PDC2 is the static power (where applicable) measured on VMV. 2. PAC9 is the total dynamic power measured on VCC and VMV. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. Table2-10 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings Applicable to Standard I/O Banks Static Power Dynamic Power VMV (V) PDC2(mW)1 PAC9 (µW/MHz)2 Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 17.24 3.3 V LVCMOS Wide Range3 3.3 – 17.24 2.5 V LVCMOS 2.5 – 5.19 1.8 V LVCMOS 1.8 – 2.18 1.5 V LVCMOS (JESD8-11) 1.5 – 1.52 Notes: 1. PDC2 is the static power (where applicable) measured on VMV. 2. PAC9 is the total dynamic power measured on VCC and VMV. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. Revision 18 2-8
ProASIC3 DC and Switching Characteristics Table2-11 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 Applicable to Advanced I/O Banks Static Power Dynamic Power C (pF) VCCI (V) PDC3 (mW)2 PAC10 (µW/MHz)3 LOAD Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 468.67 3.3 V LVCMOS Wide Range4 35 3.3 – 468.67 2.5 V LVCMOS 35 2.5 – 267.48 1.8 V LVCMOS 35 1.8 – 149.46 1.5 V LVCMOS 35 1.5 – 103.12 (JESD8-11) 3.3 V PCI 10 3.3 – 201.02 3.3 V PCI-X 10 3.3 – 201.02 Differential LVDS – 2.5 7.74 88.92 LVPECL – 3.3 19.54 166.52 Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. PDC3 is the static power (where applicable) measured on VCCI. 3. PAC10 is the total dynamic power measured on VCC and VCCI. 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. Table2-12 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings1 Applicable to Standard Plus I/O Banks Static Power Dynamic Power C (pF) VCCI (V) PDC3 (mW)2 PAC10 (µW/MHz)3 LOAD Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 452.67 3.3 V LVCMOS Wide Range4 35 3.3 – 452.67 2.5 V LVCMOS 35 2.5 – 258.32 1.8 V LVCMOS 35 1.8 – 133.59 1.5 V LVCMOS (JESD8-11) 35 1.5 – 92.84 3.3 V PCI 10 3.3 – 184.92 3.3 V PCI-X 10 3.3 – 184.92 Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. P is the static power (where applicable) measured on VMV. DC3 3. P is the total dynamic power measured on VCC and VMV. AC10 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. 2-9 Revision 18
ProASIC3 Flash Family FPGAs Table2-13 • Summary of I/O Output Buffer Power (Per Pin) – Default I/O Software Settings1 Applicable to Standard I/O Banks Static Power Dynamic Power C (pF) VCCI (V) PDC3 (mW)2 PAC10 (µW/MHz)3 LOAD Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 431.08 3.3 V LVCMOS Wide Range4 35 3.3 – 431.08 2.5 V LVCMOS 35 2.5 – 247.36 1.8 V LVCMOS 35 1.8 – 128.46 1.5 V LVCMOS (JESD8-11) 35 1.5 – 89.46 Notes: 1. Dynamic power consumption is given for standard load and software default drive strength and output slew. 2. P is the static power (where applicable) measured on VCCI. DC3 3. P is the total dynamic power measured on VCC and VCCI. AC10 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. Revision 18 2-10
ProASIC3 DC and Switching Characteristics Power Consumption of Various Internal Resources Table2-14 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices Device Specific Dynamic Contributions (µW/MHz) 0 0 0 0 0 5 0 0 5 0 0 0 5 2 6 3 1 1 6 4 2 1 0 0 0 P P P P P P P P Parameter Definition 3 3 3 3 3 3 3 3 A A A A A A A A PAC1 Clock contribution of a Global Rib 14.50 12.80 12.80 11.00 11.00 9.30 9.30 9.30 PAC2 Clock contribution of a Global Spine 2.48 1.85 1.35 1.58 0.81 0.81 0.41 0.41 PAC3 Clock contribution of a VersaTile row 0.81 PAC4 Clock contribution of a VersaTile used as a 0.12 sequential module PAC5 First contribution of a VersaTile used as a 0.07 sequential module PAC6 Second contribution of a VersaTile used as a 0.29 sequential module PAC7 Contribution of a VersaTile used as a 0.29 combinatorial Module PAC8 Average contribution of a routing net 0.70 PAC9 Contribution of an I/O input pin (standard See Table2-8 on page2-7 through dependent) Table2-10 on page2-8. PAC10 Contribution of an I/O output pin (standard See Table2-11 on page2-9 through dependent) Table2-13 on page2-10. PAC11 Average contribution of a RAM block during a 25.00 read operation PAC12 Average contribution of a RAM block during a 30.00 write operation PAC13 Dynamic contribution for PLL 2.60 Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi Power spreadsheet calculator or SmartPower tool in Libero SoC software. 2-11 Revision 18
ProASIC3 Flash Family FPGAs Table2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices Definition Device Specific Static Power (mW) 0 0 0 0 0 5 0 0 5 0 0 0 5 2 6 3 1 1 6 4 2 1 0 0 0 P P P P P P P P Parameter 3 3 3 3 3 3 3 3 A A A A A A A A PDC1 Array static power in Active mode See Table2-7 on page2-7. PDC2 I/O input pin static power (standard-dependent) See Table2-8 on page2-7 through Table2-10 on page2-8. PDC3 I/O output pin static power (standard-dependent) See Table2-11 on page2-9 through Table2-13 on page2-10. PDC4 Static PLL contribution 2.55 mW PDC5 Bank quiescent power (VCCI-dependent) See Table2-7 on page2-7. Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi Power spreadsheet calculator or SmartPower tool in Libero SoC software. Power Calculation Methodology This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software. The power calculation methodology described below uses the following variables: • The number of PLLs as well as the number and the frequency of each output clock generated • The number of combinatorial and sequential cells used in the design • The internal clock frequencies • The number and the standard of I/O pins used in the design • The number of RAM blocks used in the design • Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table2-16 on page2-14. • Enable rates of output buffers—guidelines are provided for typical applications in Table2-17 on page2-14. • Read rate and write rate to the memory—guidelines are provided for typical applications in Table2-17 on page2-14. The calculation should be repeated for each clock domain defined in the design. Methodology Total Power Consumption—P TOTAL P = P + P TOTAL STAT DYN P is the total static power consumption. STAT P is the total dynamic power consumption. DYN Total Static Power Consumption—P STAT P = P + N * P + N * P STAT DC1 INPUTS DC2 OUTPUTS DC3 N is the number of I/O input buffers used in the design. INPUTS N is the number of I/O output buffers used in the design. OUTPUTS Total Dynamic Power Consumption—P DYN P = P + P + P + P + P + P + P + P DYN CLOCK S-CELL C-CELL NET INPUTS OUTPUTS MEMORY PLL Global Clock Contribution—P CLOCK P = (P + N *P + N *P + N * P ) * F CLOCK AC1 SPINE AC2 ROW AC3 S-CELL AC4 CLK N is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" SPINE section of the Global Resources chapter in the ProASIC3 FPGA Fabric User's Guide. N is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section ROW of the Global Resources chapter in the ProASIC3 FPGA Fabric User's Guide. Revision 18 2-12
ProASIC3 DC and Switching Characteristics F is the global clock signal frequency. CLK N is the number of VersaTiles used as sequential modules in the design. S-CELL P , P , P , and P are device-dependent. AC1 AC2 AC3 AC4 Sequential Cells Contribution—P S-CELL P = N * (P + / 2 * P ) * F S-CELL S-CELL AC5 1 AC6 CLK N is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is S-CELL used, it should be accounted for as 1. is the toggle rate of VersaTile outputs—guidelines are provided in Table2-16 on page2-14. 1 F is the global clock signal frequency. CLK Combinatorial Cells Contribution—P C-CELL P = N * / 2 * P * F C-CELL C-CELL 1 AC7 CLK N is the number of VersaTiles used as combinatorial modules in the design. C-CELL is the toggle rate of VersaTile outputs—guidelines are provided in Table2-16 on page2-14. 1 F is the global clock signal frequency. CLK Routing Net Contribution—P NET P = (N + N ) * / 2 * P * F NET S-CELL C-CELL 1 AC8 CLK N is the number of VersaTiles used as sequential modules in the design. S-CELL N is the number of VersaTiles used as combinatorial modules in the design. C-CELL is the toggle rate of VersaTile outputs—guidelines are provided in Table2-16 on page2-14. 1 F is the global clock signal frequency. CLK I/O Input Buffer Contribution—P INPUTS P = N * / 2 * P * F INPUTS INPUTS 2 AC9 CLK N is the number of I/O input buffers used in the design. INPUTS is the I/O buffer toggle rate—guidelines are provided in Table2-16 on page2-14. 2 F is the global clock signal frequency. CLK I/O Output Buffer Contribution—P OUTPUTS P = N * / 2 * * P * F OUTPUTS OUTPUTS 2 1 AC10 CLK N is the number of I/O output buffers used in the design. OUTPUTS is the I/O buffer toggle rate—guidelines are provided in Table2-16 on page2-14. 2 is the I/O buffer enable rate—guidelines are provided in Table2-17 on page2-14. 1 F is the global clock signal frequency. CLK 2-13 Revision 18
ProASIC3 Flash Family FPGAs RAM Contribution—P MEMORY P = P * N * F * + P * N * F * MEMORY AC11 BLOCKS READ-CLOCK 2 AC12 BLOCK WRITE-CLOCK 3 N is the number of RAM blocks used in the design. BLOCKS F is the memory read clock frequency. READ-CLOCK is the RAM enable rate for read operations. 2 F is the memory write clock frequency. WRITE-CLOCK is the RAM enable rate for write operations—guidelines are provided in Table2-17 on page2-14. 3 PLL Contribution—P PLL P = P + P *F PLL DC4 AC13 CLKOUT F is the output clock frequency.1 CLKOUT Guidelines Toggle Rate Definition A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples: • The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency. • The average toggle rate of an 8-bit counter is 25%: – Bit 0 (LSB) = 100% – Bit 1 = 50% – Bit 2 = 25% – … – Bit 7 (MSB) = 0.78125% – Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8 Enable Rate Definition Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%. Table2-16 • Toggle Rate Guidelines Recommended for Power Calculation Component Definition Guideline Toggle rate of VersaTile outputs 10% 1 I/O buffer toggle rate 10% 2 Table2-17 • Enable Rate Guidelines Recommended for Power Calculation Component Definition Guideline I/O output buffer enable rate 100% 1 RAM enable rate for read operations 12.5% 2 RAM enable rate for write operations 12.5% 3 1. The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P * F product) to the total PLL contribution. AC14 CLKOUT Revision 18 2-14
ProASIC3 DC and Switching Characteristics User I/O Characteristics Timing Model I/O Module (Non-Registered) Combinational Cell Combinational Cell LVPECL (Applicable to Y Y Advanced I/O Banks Only)L tPD = 0.56 ns tPD = 0.49 ns tDP = 1.34 ns I/O Module (Non-Registered) Combinational Cell Y LVTTLOutput drive strength = 12 mA High slew rate tPD = 0.87 ns tDP = 2.64 ns (Advanced I/O Banks) I/O Module Combinational Cell (Non-Registered) I/O Module Y (Registered) LVTTLOutput drive strength = 8 mA tPY = 1.05 ns High slew rate tDP = 3.66 ns (Advanced I/O Banks) (ApLpVliPcEabCleL D Q tPD = 0.47 ns I/O Module (Non-Registered) to Advanced Combinational Cell I/O Banks only) Y LVCMOS 1.5 VOutput drive strength = 4 mA ttIISCULKDQ = = 0 0.2.264 n nss tPD = 0.47 ns tDP = 3.97 ns (Advanced I/O BankHsi)gh slew rate Input LVTTL Clock I/O Module Register CellCombinational Cell Register Cell (Registered) tPY = 0.76 ns (Advanced I/O Banks) D Q Y D Q D Q LVTTL 3.3 V Output drive I/O Module strength = 12 mA High slew rate (Non-Registered) tPD = 0.47 ns tDP = 2.64 ns (Advanced I/O Banks) BLLVVDDSS,, ttCSLUKDQ = = 0 0.4.535 n nss ttCSLUKDQ = = 0 0.4.535 n nss ttOOSCULKDQ = = 0 0.3.519 n nss M-LVDS Input LVTTL Input LVTTL (Applicable for tPY = 1.20 ns Clock Clock Advanced I/O Banks only) tPY = 0.76 ns tPY = 0.76 ns (Advanced I/O Banks) (Advanced I/O Banks) Figure 2-3 • Timing Model Operating Conditions: –2 Speed, Commercial Temperature Range (T = 70°C), Worst Case J VCC=1.425V 2-15 Revision 18
ProASIC3 Flash Family FPGAs t t PY DIN D Q PAD DIN Y CLK To Array t = MAX(t (R), t (F)) I/O Interface PY PY PY t = MAX(t (R), t (F)) DIN DIN DIN VIH V V PAD trip trip VIL VCC 50% 50% Y GND t t PY PY (R) (F) VCC 50% 50% DIN GND t t DIN DIN (R) (F) Figure 2-4 • Input Buffer Timing Model and Delays (Example) Revision 18 2-16
ProASIC3 DC and Switching Characteristics tDOUT tDP D Q PAD DOUT D CLK Std Load From Array t = MAX(t (R), t (F)) DP DP DP I/O Interface t = MAX(t (R), t (F)) DOUT DOUT DOUT t t DOUT DOUT (R) VCC (F) 50% 50% D 0 V VCC 50% 50% DOUT 0 V VOH Vtrip Vtrip V PAD OL t t DP DP (R) (F) Figure 2-5 • Output Buffer Model and Delays (Example) 2-17 Revision 18
ProASIC3 Flash Family FPGAs t EOUT D Q E CLK t , t , t , t , t , t ZL ZH HZ LZ ZLS ZHS EOUT D Q PAD DOUT D CLK I/O Interface tEOUT = MAX(tEOUT(r), tEOUT(f)) VCC D VCC 50% 50% E t t EOUT (F) EOUT (R) VCC 50% 50% 50% 50% t EOUT t LZ ZH tZL tHZ VCCI PAD 90% VCCI Vtrip Vtrip VOL 10% V CCI VCC D VCC E 50% t 50% t EOUT (R) EOUT (F) VCC 50% 50% EOUT 50% t t ZHS ZLS VOH PAD Vtrip Vtrip VOL Figure 2-6 • Tristate Output Buffer Timing Model and Delays (Example) Revision 18 2-18
ProASIC3 DC and Switching Characteristics Overview of I/O Performance Summary of I/O DC Input and Output Levels – Default I/O Software Settings Table2-18 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Advanced I/O Banks Equiv. VIL VIH VOL VOH Software Default Drive Drive Strength Slew Min Max Min Max Max Min IOL1 IOH1 I/O Standard Strength Option2 Rate V V V V V V mA mA 3.3 V LVTTL / 12 mA 12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12 3.3 V LVCMOS 3.3 V 100 µA 12 mA High –0.3 0.8 2 3.6 0.2 VCCI – 0.2 0.1 0.1 LVCMOS Wide Range3 2.5 V 12 mA 12 mA High –0.3 0.7 1.7 2.7 0.7 1.7 12 12 LVCMOS 1.8 V 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 LVCMOS 1.5 V 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.6 0.25 * VCCI 0.75 * VCCI 12 12 LVCMOS 3.3 V PCI Per PCI specifications 3.3 V PCI-X Per PCI-X specifications Notes: 1. Currents are measured at 85°C junction temperature. 2. 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 2-19 Revision 18
ProASIC3 Flash Family FPGAs Table2-19 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard Plus I/O Banks Equiv. VIL VIH VOL VOH Software Default Drive Drive Strength Slew Min Max Min Max Max Min IOL1 IOH1 I/O Standard Strength Option2 Rate V V V V V V mA mA 3.3 V LVTTL / 12 mA 12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12 3.3V LVCMOS 3.3 V 100 µA 12 mA High –0.3 0.8 2 3.6 0.2 VCCI – 0.2 0.1 0.1 LVCMOS Wide Range3 2.5 V 12 mA 12 mA High –0.3 0.7 1.7 2.7 0.7 1.7 12 12 LVCMOS 1.8 V 8 mA 8 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 8 8 LVCMOS 0.45 1.5 V 4 mA 4 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.6 0.25 * VCCI 0.75 * VCCI 4 4 LVCMOS 3.3 V PCI Per PCI specifications 3.3 V PCI-X Per PCI-X specifications Notes: 1. Currents are measured at 85°C junction temperature. 2. 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. Revision 18 2-20
ProASIC3 DC and Switching Characteristics Table2-20 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks Equiv. VIL VIH VOL VOH Software Default Drive Drive Strength Slew Min Max Min Max Max Min IOL1IOH1 I/O Standard Strength Option2 Rate V V V V V V mA mA 3.3 V LVTTL / 8 mA 8 mA High –0.3 0.8 2 3.6 0.4 2.4 8 8 3.3 V LVCMOS 3.3 V 100 µA 8 mA High –0.3 0.8 2 3.6 0.2 VCCI – 0.2 0.1 0.1 LVCMOS Wide Range3 2.5 V 8 mA 8 mA High –0.3 0.7 1.7 2.7 0.7 1.7 8 8 LVCMOS 1.8 V 4 mA 4 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 LVCMOS 1.5 V 2 mA 2 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 LVCMOS Notes: 1. Currents are measured at 85°C junction temperature. 2. 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at the equivalent software default drive strength. These values are for Normal Ranges ONLY. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. Table2-21 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions Commercial1 Industrial2 IIL3 IIH4 IIL3 IIH4 DC I/O Standards µA µA µA µA 3.3 V LVTTL / 3.3 V LVCMOS 10 10 15 15 3.3 V LVCMOS Wide Range 10 10 15 15 2.5 V LVCMOS 10 10 15 15 1.8 V LVCMOS 10 10 15 15 1.5 V LVCMOS 10 10 15 15 3.3 V PCI 10 10 15 15 3.3 V PCI-X 10 10 15 15 Notes: 1. Commercial range (0°C < T < 70°C) A 2. Industrial range (–40°C < T < 85°C) A 3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < V <V . IN IL 4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 2-21 Revision 18
ProASIC3 Flash Family FPGAs Summary of I/O Timing Characteristics – Default I/O Software Settings Table2-22 • Summary of AC Measuring Points Standard Measuring Trip Point (V ) trip 3.3 V LVTTL / 3.3 V LVCMOS 1.4 V 3.3 V LVCMOS Wide Range 1.4 V 2.5 V LVCMOS 1.2 V 1.8 V LVCMOS 0.90 V 1.5 V LVCMOS 0.75 V 3.3 V PCI 0.285 * VCCI (RR) 0.615 * VCCI (FF) 3.3 V PCI-X 0.285 * VCCI (RR) 0.615 * VCCI (FF) Table2-23 • I/O AC Parameter Definitions Parameter Parameter Definition t Data to Pad delay through the Output Buffer DP t Pad to Data delay through the Input Buffer PY t Data to Output Buffer delay through the I/O interface DOUT t Enable to Output Buffer Tristate Control delay through the I/O interface EOUT t Input Buffer to Data delay through the I/O interface DIN t Enable to Pad delay through the Output Buffer—High to Z HZ t Enable to Pad delay through the Output Buffer—Z to High ZH t Enable to Pad delay through the Output Buffer—Low to Z LZ t Enable to Pad delay through the Output Buffer—Z to Low ZL t Enable to Pad delay through the Output Buffer with delayed enable—Z to High ZHS t Enable to Pad delay through the Output Buffer with delayed enable—Z to Low ZLS Revision 18 2-22
ProASIC3 DC and Switching Characteristics Table2-24 • Summary of I/O Timing Characteristics—Software Default Settings –2 Speed Grade, Commercial-Case Conditions: T = 70°C, Worst Case VCC= 1.425 V, J Worst-Case VCCI (per standard) Advanced I/O Banks ult 1n I/O Standard Drive Strength Equiv. Software DefaDrive Strength Optio Slew Rate Capacitive Load (pF) External Resistor () (ns)DOUT (ns)DP (ns)DIN (ns)PY (ns)EOUT (ns)ZL (ns)ZH (ns)LZ (ns)HZ (ns)ZLS (ns)ZHS Units t t t t t t t t t t t 3.3 V LVTTL / 12 mA 12 mA High 35 – 0.45 2.64 0.03 0.76 0.32 2.69 2.11 2.40 2.68 4.36 3.78 ns 3.3 V LVCMOS 3.3 V LVCMOS 100 µA 12 mA High 35 – 0.45 4.08 0.03 0.76 0.32 4.08 3.20 3.71 4.14 6.61 5.74 ns Wide Range2 2.5 V LVCMOS 12 mA 12 mA High 35 – 0.45 2.66 0.03 0.98 0.32 2.71 2.56 2.47 2.57 4.38 4.23 ns 1.8 V LVCMOS 12 mA 12 mA High 35 – 0.45 2.64 0.03 0.91 0.32 2.69 2.27 2.76 3.05 4.36 3.94 ns 1.5 V LVCMOS 12 mA 12 mA High 35 – 0.45 3.05 0.03 1.07 0.32 3.10 2.67 2.95 3.14 4.77 4.34 ns 3.3 V PCI Per – High 10 25 4 0.45 2.00 0.03 0.65 0.32 2.04 1.46 2.40 2.68 3.71 3.13 ns PCI spec 3.3 V PCI-X Per – High 10 25 4 0.45 2.00 0.03 0.62 0.32 2.04 1.46 2.40 2.68 3.71 3.13 ns PCI-X spec LVDS 24 mA – High – – 0.45 1.37 0.03 1.20 – – – – – – – ns LVPECL 24 mA – High – – 0.45 1.34 0.03 1.05 – – – – – – – ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3V software macros support LVCMOS 3.3V wide range as specified in the JESD-8B specification. 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure2-11 on page2-64 for connectivity. This resistor is not required during normal operation. 2-23 Revision 18
ProASIC3 Flash Family FPGAs Table2-25 • Summary of I/O Timing Characteristics—Software Default Settings –2 Speed Grade, Commercial-Case Conditions: T = 70°C, Worst Case VCC= 1.425 V, J Worst-Case VCCI (per standard) Standard Plus I/O Banks ult 1n ao ) I/O Standard Drive Strength Equiv. Software DefDrive Strength Opti Slew Rate Capacitive Load (pF External Resistor (ns)DOUT (ns)DP (ns)DIN (ns)PY (ns)EOUT (ns)ZL (ns)ZH (ns)LZ (ns)HZ (ns)ZLS (ns)ZHS Units t t t t t t t t t t t 3.3 V LVTTL / 12 mA 12 mA High 35 – 0.45 2.36 0.03 0.75 0.32 2.40 1.93 2.08 2.41 4.07 3.60 ns 3.3 V LVCMOS 3.3 V LVCMOS 100 µA 12 mA High 35 – 0.45 3.65 0.03 1.14 0.32 3.65 2.93 3.22 3.72 6.18 5.46 ns Wide Range2 2.5 V LVCMOS 12 mA 12 mA High 35 – 0.45 2.39 0.03 0.97 0.32 2.44 2.35 2.11 2.32 4.11 4.02 ns 1.8 V LVCMOS 8 mA 8 mA High 35 – 0.45 3.03 0.03 0.90 0.32 2.87 3.03 2.19 2.32 4.54 4.70 ns 1.5 V LVCMOS 4 mA 4 mA High 35 – 0.45 3.61 0.03 1.06 0.32 3.35 3.61 2.26 2.34 5.02 5.28 ns 3.3 V PCI Per – High 10 25 4 0.45 1.72 0.03 0.64 0.32 1.76 1.27 2.08 2.41 3.42 2.94 ns PCI spec 3.3 V PCI-X Per – High 10 25 4 0.45 1.72 0.03 0.62 0.32 1.76 1.27 2.08 2.41 3.42 2.94 ns PCI-X spec Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3V software macros support LVCMOS 3.3V wide range as specified in the JESD8-B specification. 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure2-11 on page2-64 for connectivity. This resistor is not required during normal operation. Revision 18 2-24
ProASIC3 DC and Switching Characteristics Table2-26 • Summary of I/O Timing Characteristics—Software Default Settings –2 Speed Grade, Commercial-Case Conditions: T = 70°C, Worst Case VCC = 1.425 V, J Worst-Case VCCI (per standard) Standard I/O Banks ult 1n ao ) I/O Standard Drive Strength Equiv. Software DefDrive Strength Opti Slew Rate Capacitive Load (pF External Resistor (ns)DOUT (ns)DP (ns)DIN (ns)PY (ns)EOUT (ns)ZL (ns)ZH (ns)LZ (ns)HZ Units t t t t t t t t t 3.3 V LVTTL / 8 mA 8 mA High 35 – 0.45 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01 ns 3.3V LVCMOS 3.3V LVCMOS100 µA 8 mA High 35 – 0.45 5.09 0.03 1.13 0.32 5.09 4.25 2.77 3.11 ns Wide Range2 2.5V LVCMOS 8 mA 8 mA High 35 – 0.45 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91 ns 1.8V LVCMOS 4 mA 4 mA High 35 – 0.45 4.74 0.03 0.90 0.32 4.02 4.74 1.80 1.85 ns 1.5V LVCMOS 2 mA 2 mA High 35 – 0.45 5.71 0.03 1.06 0.32 4.71 5.71 1.83 1.83 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-25 Revision 18
ProASIC3 Flash Family FPGAs I/O DC Characteristics Table2-27 • Input Capacitance Symbol Definition Conditions Min Max Units C Input capacitance VIN= 0, f = 1.0 MHz – 8 pF IN C Input capacitance on the clock pin VIN= 0, f = 1.0 MHz – 8 pF INCLK Table2-28 • I/O Output Buffer Maximum Resistances1 Applicable to Advanced I/O Banks Standard Drive Strength R ()2 R ()3 PULL-DOWN PULL-UP 3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300 4 mA 100 300 6 mA 50 150 8 mA 50 150 12 mA 25 75 16 mA 17 50 24 mA 11 33 3.3 V LVCMOS Wide Range4 100 µA Same as regular 3.3V Same as regular 3.3V LVCMOS LVCMOS 2.5 V LVCMOS 2 mA 100 200 4 mA 100 200 6 mA 50 100 8 mA 50 100 12 mA 25 50 16 mA 20 40 24 mA 11 22 1.8 V LVCMOS 2 mA 200 225 4 mA 100 112 6 mA 50 56 8 mA 50 56 12 mA 20 22 16 mA 20 22 1.5 V LVCMOS 2 mA 200 224 4 mA 100 112 6 mA 67 75 8 mA 33 37 12 mA 33 37 3.3 V PCI/PCI-X Per PCI/PCI-X 25 75 specification Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx. 2. R = (VOLspec) / IOLspec (PULL-DOWN-MAX) 3. R = (VCCImax – VOHspec) / IOHspec (PULL-UP-MAX) 4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. Revision 18 2-26
ProASIC3 DC and Switching Characteristics Table2-29 • I/O Output Buffer Maximum Resistances1 Applicable to Standard Plus I/O Banks Standard Drive Strength R ()2 R ()3 PULL-DOWN PULL-UP 3.3 V LVTTL / 3.3 V 2 mA 100 300 LVCMOS 4 mA 100 300 6 mA 50 150 8 mA 50 150 12 mA 25 75 16 mA 25 75 3.3 V LVCMOS Wide 100 µA Same as regular 3.3V LVCMOS Same as regular 3.3V LVCMOS Range4 2.5 V LVCMOS 2 mA 100 200 4 mA 100 200 6 mA 50 100 8 mA 50 100 12 mA 25 50 1.8 V LVCMOS 2 mA 200 225 4 mA 100 112 6 mA 50 56 8 mA 50 56 1.5 V LVCMOS 2 mA 200 224 4 mA 100 112 3.3 V PCI/PCI-X Per PCI/PCI-X 25 75 specification Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx. 2. R = (VOLspec) / IOLspec (PULL-DOWN-MAX) 3. R = (VCCImax – VOHspec) / IOHspec (PULL-UP-MAX) 4. All LVCMOS 3.3V software macros support LVCMOS 3.3V wide range as specified in the JESD-8B specification. 2-27 Revision 18
ProASIC3 Flash Family FPGAs Table2-30 • I/O Output Buffer Maximum Resistances1 Applicable to Standard I/O Banks R R PULL-DOWN PULL-UP Standard Drive Strength ()2 ()3 3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300 4 mA 100 300 6 mA 50 150 8 mA 50 150 3.3 V LVCMOS Wide Range4 100 µA Same as regular 3.3V Same as regular LVCMOS 3.3V LVCMOS 2.5 V LVCMOS 2 mA 100 200 4 mA 100 200 6 mA 50 100 8 mA 50 100 1.8 V LVCMOS 2 mA 200 225 4 mA 100 112 1.5 V LVCMOS 2 mA 200 224 Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx. 2. R = (VOLspec) / IOLspec (PULL-DOWN-MAX) 3. R = (VCCImax – VOHspec) / IOHspec (PULL-UP-MAX) 4. All LVCMOS 3.3V software macros support LVCMOS 3.3V wide range as specified in the JESD-8B specification. Table2-31 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values R 1 R 2 (WEAK PULL-UP) (WEAK PULL-DOWN) () () VCCI Min Max Min Max 3.3 V 10 k 45 k 10 k 45 k 3.3 V (wide range I/Os) 10 k 45 k 10 k 45 k 2.5 V 11 k 55 k 12 k 74 k 1.8 V 18 k 70 k 17 k 110 k 1.5 V 19 k 90 k 19 k 140 k Notes: 1. R = (VCCI – VOH ) / I (WEAK PULL-UP-MAX) MAX spec (WEAK PULL-UP-MIN) 2. R = (VOL ) / I (WEAK PULL-DOWN-MAX) spec (WEAK PULL-DOWN-MIN) Revision 18 2-28
ProASIC3 DC and Switching Characteristics Table2-32 • I/O Short Currents IOSH/IOSL Applicable to Advanced I/O Banks Drive Strength IOSL (mA)1 IOSH (mA)1 3.3 V LVTTL / 3.3 V LVCMOS 2 mA 27 25 4 mA 27 25 6 mA 54 51 8 mA 54 51 12 mA 109 103 16 mA 127 132 24 mA 181 268 3.3 V LVCMOS Wide Range2 100 µA Same as regular 3.3V Same as regular 3.3V LVCMOS LVCMOS 2.5 V LVCMOS 2 mA 18 16 4 mA 18 16 6 mA 37 32 8 mA 37 32 12 mA 74 65 16 mA 87 83 24 mA 124 169 1.8 V LVCMOS 2 mA 11 9 4 mA 22 17 6 mA 44 35 8 mA 51 45 12 mA 74 91 16 mA 74 91 1.5 V LVCMOS 2 mA 16 13 4 mA 33 25 6 mA 39 32 8 mA 55 66 12 mA 55 66 3.3 V PCI/PCI-X Per PCI/PCI-X 109 103 specification Notes: 1. T = 100°C J 2. Applicable to 3.3 V LVCMOS Wide Range. I /I dependent on the I/O buffer drive strength selected for wide range OSL OSH applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3V wide range as specified in the JESD8-B specification. 2-29 Revision 18
ProASIC3 Flash Family FPGAs Table2-33 • I/O Short Currents IOSH/IOSL Applicable to Standard Plus I/O Banks Drive Strength IOSL (mA)1 IOSH (mA)1 3.3 V LVTTL / 3.3 V LVCMOS 2 mA 27 25 4 mA 27 25 6 mA 54 51 8 mA 54 51 12 mA 109 103 16 mA 109 103 3.3 V LVCMOS Wide Range2 100 µA Same as regular Same as regular 3.3V 3.3V LVCMOS LVCMOS 2.5 V LVCMOS 2 mA 18 16 4 mA 18 16 6 mA 37 32 8 mA 37 32 12 mA 74 65 1.8 V LVCMOS 2 mA 11 9 4 mA 22 17 6 mA 44 35 8 mA 44 35 1.5 V LVCMOS 2 mA 16 13 4 mA 33 25 3.3 V PCI/PCI-X Per PCI/PCI-X 109 103 specification Notes: 1. T = 100°C J 2. Applicable to 3.3 V LVCMOS Wide Range. IOSL/IOSH dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3V wide range as specified in the JESD8- B specification. Revision 18 2-30
ProASIC3 DC and Switching Characteristics Table2-34 • I/O Short Currents IOSH/IOSL Applicable to Standard I/O Banks Drive Strength IOSL (mA)1 IOSH (mA)1 3.3 V LVTTL / 3.3 V LVCMOS 2 mA 27 25 4 mA 27 25 6 mA 54 51 8 mA 54 51 3.3 V LVCMOS Wide Range2 100 µA Same as regular 3.3V Same as regular 3.3V LVCMOS LVCMOS 2.5 V LVCMOS 2 mA 18 16 4 mA 18 16 6 mA 37 32 8 mA 37 32 1.8 V LVCMOS 2 mA 11 9 4 mA 22 17 1.5 V LVCMOS 2 mA 16 13 Notes: 1. T = 100°C J 2. Applicable to 3.3 V LVCMOS Wide Range. I /I dependent on the I/O buffer drive strength selected for wide range OSL OSH applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3V wide range as specified in the JESD-8B specification. The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis. For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions. Table2-35 • Duration of Short Circuit Event Before Failure Temperature Time before Failure –40°C > 20 years 0°C > 20 years 25°C > 20 years 70°C 5 years 85°C 2 years 100°C 0.5 years Table2-36 • I/O Input Rise Time, Fall Time, and Related I/O Reliability Input Buffer Input Rise/Fall Time (min) Input Rise/Fall Time (max) Reliability LVTTL/LVCMOS No requirement 10 ns * 20 years (110°C) LVDS/B-LVDS/ No requirement 10 ns * 10 years (100°C) M-LVDS/LVPECL Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals. 2-31 Revision 18
ProASIC3 Flash Family FPGAs Single-Ended I/O Characteristics 3.3 V LVTTL / 3.3 V LVCMOS Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3V applications. It uses an LVTTL input buffer and push-pull output buffer. Table2-37 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Min Max Min Max Max Min Max Max Drive Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 27 25 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 54 51 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 10 10 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 109 103 10 10 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 127 132 10 10 24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 181 268 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table2-38 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Min Max Min Max Max Min Max Max Drive Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 27 25 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 54 51 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 10 10 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 109 103 10 10 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 109 103 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Revision 18 2-32
ProASIC3 DC and Switching Characteristics Table2-39 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Min Max Min Max Max Min Max Max Drive Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. I is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is IH larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. R to VCCI for t / t / t R = 1 kΩ LZ ZL ZLS Test Point R to GND for t / t / t HZ ZH ZHS Test Point Datapath 35 pF Enable Path 35 pF for t / t / t / t ZH ZHS ZL ZLS 35 pF for t / t HZ LZ Figure 2-7 • AC Loading Table2-40 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 0 3.3 1.4 35 Note: *Measuring point = Vtrip. See Table2-22 on page2-22 for a complete table of trip points. 2-33 Revision 18
ProASIC3 Flash Family FPGAs Timing Characteristics Table2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Advanced I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.66 7.66 0.04 1.02 0.43 7.80 6.59 2.65 2.61 10.03 8.82 ns –1 0.56 6.51 0.04 0.86 0.36 6.63 5.60 2.25 2.22 8.54 7.51 ns –2 0.49 5.72 0.03 0.76 0.32 5.82 4.92 1.98 1.95 7.49 6.59 ns 4 mA Std. 0.66 7.66 0.04 1.02 0.43 7.80 6.59 2.65 2.61 10.03 8.82 ns –1 0.56 6.51 0.04 0.86 0.36 6.63 5.60 2.25 2.22 8.54 7.51 ns –2 0.49 5.72 0.03 0.76 0.32 5.82 4.92 1.98 1.95 7.49 6.59 ns 6 mA Std. 0.66 4.91 0.04 1.02 0.43 5.00 4.07 2.99 3.20 7.23 6.31 ns –1 0.56 4.17 0.04 0.86 0.36 4.25 3.46 2.54 2.73 6.15 5.36 ns –2 0.49 3.66 0.03 0.76 0.32 3.73 3.04 2.23 2.39 5.40 4.71 ns 8 mA Std. 0.66 4.91 0.04 1.02 0.43 5.00 4.07 2.99 3.20 7.23 6.31 ns –1 0.56 4.17 0.04 0.86 0.36 4.25 3.46 2.54 2.73 6.15 5.36 ns –2 0.49 3.66 0.03 0.76 0.32 3.73 3.04 2.23 2.39 5.40 4.71 ns 12 mA Std. 0.66 3.53 0.04 1.02 0.43 3.60 2.82 3.21 3.58 5.83 5.06 ns –1 0.56 3.00 0.04 0.86 0.36 3.06 2.40 2.73 3.05 4.96 4.30 ns –2 0.49 2.64 0.03 0.76 0.32 2.69 2.11 2.40 2.68 4.36 3.78 ns 16 mA Std. 0.66 3.33 0.04 1.02 0.43 3.39 2.56 3.26 3.68 5.63 4.80 ns –1 0.56 2.83 0.04 0.86 0.36 2.89 2.18 2.77 3.13 4.79 4.08 ns –2 0.49 2.49 0.03 0.76 0.32 2.53 1.91 2.44 2.75 4.20 3.58 ns 24 mA Std. 0.66 3.08 0.04 1.02 0.43 3.13 2.12 3.32 4.06 5.37 4.35 ns –1 0.56 2.62 0.04 0.86 0.36 2.66 1.80 2.83 3.45 4.57 3.70 ns –2 0.49 2.30 0.03 0.76 0.32 2.34 1.58 2.48 3.03 4.01 3.25 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-34
ProASIC3 DC and Switching Characteristics Table2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Advanced I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.66 10.26 0.04 1.02 0.43 10.45 8.90 2.64 2.46 12.68 11.13 ns –1 0.56 8.72 0.04 0.86 0.36 8.89 7.57 2.25 2.09 10.79 9.47 ns –2 0.49 7.66 0.03 0.76 0.32 7.80 6.64 1.98 1.83 9.47 8.31 ns 4 mA Std. 0.66 10.26 0.04 1.02 0.43 10.45 8.90 2.64 2.46 12.68 11.13 ns –1 0.56 8.72 0.04 0.86 0.36 8.89 7.57 2.25 2.09 10.79 9.47 ns –2 0.49 7.66 0.03 0.76 0.32 7.80 6.64 1.98 1.83 9.47 8.31 ns 6 mA Std. 0.66 7.27 0.04 1.02 0.43 7.41 6.28 2.98 3.04 9.65 8.52 ns –1 0.56 6.19 0.04 0.86 0.36 6.30 5.35 2.54 2.59 8.20 7.25 ns –2 0.49 5.43 0.03 0.76 0.32 5.53 4.69 2.23 2.27 7.20 6.36 ns 8 mA Std. 0.66 7.27 0.04 1.02 0.43 7.41 6.28 2.98 3.04 9.65 8.52 ns –1 0.56 6.19 0.04 0.86 0.36 6.30 5.35 2.54 2.59 8.20 7.25 ns –2 0.49 5.43 0.03 0.76 0.32 5.53 4.69 2.23 2.27 7.20 6.36 ns 12 mA Std. 0.66 5.58 0.04 1.02 0.43 5.68 4.87 3.21 3.42 7.92 7.11 ns –1 0.56 4.75 0.04 0.86 0.36 4.84 4.14 2.73 2.91 6.74 6.05 ns –2 0.49 4.17 0.03 0.76 0.32 4.24 3.64 2.39 2.55 5.91 5.31 ns 16 mA Std. 0.66 5.21 0.04 1.02 0.43 5.30 4.56 3.26 3.51 7.54 6.80 ns –1 0.56 4.43 0.04 0.86 0.36 4.51 3.88 2.77 2.99 6.41 5.79 ns –2 0.49 3.89 0.03 0.76 0.32 3.96 3.41 2.43 2.62 5.63 5.08 ns 24 mA Std. 0.66 4.85 0.04 1.02 0.43 4.94 4.54 3.32 3.88 7.18 6.78 ns –1 0.56 4.13 0.04 0.86 0.36 4.20 3.87 2.82 3.30 6.10 5.77 ns –2 0.49 3.62 0.03 0.76 0.32 3.69 3.39 2.48 2.90 5.36 5.06 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-35 Revision 18
ProASIC3 Flash Family FPGAs Table2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.66 7.20 0.04 1.00 0.43 7.34 6.29 2.27 2.34 9.57 8.52 ns –1 0.56 6.13 0.04 0.85 0.36 6.24 5.35 1.93 1.99 8.14 7.25 ns –2 0.49 5.38 0.03 0.75 0.32 5.48 4.69 1.70 1.75 7.15 6.36 ns 4 mA Std. 0.66 7.20 0.04 1.00 0.43 7.34 6.29 2.27 2.34 9.57 8.52 ns –1 0.56 6.13 0.04 0.85 0.36 6.24 5.35 1.93 1.99 8.14 7.25 ns –2 0.49 5.38 0.03 0.75 0.32 5.48 4.69 1.70 1.75 7.15 6.36 ns 6 mA Std. 0.66 4.50 0.04 1.00 0.43 4.58 3.82 2.58 2.88 6.82 6.05 ns –1 0.56 3.83 0.04 0.85 0.36 3.90 3.25 2.19 2.45 5.80 5.15 ns –2 0.49 3.36 0.03 0.75 0.32 3.42 2.85 1.92 2.15 5.09 4.52 ns 8 mA Std. 0.66 4.50 0.04 1.00 0.43 4.58 3.82 2.58 2.88 6.82 6.05 ns –1 0.56 3.83 0.04 0.85 0.36 3.90 3.25 2.19 2.45 5.80 5.15 ns –2 0.49 3.36 0.03 0.75 0.32 3.42 2.85 1.92 2.15 5.09 4.52 ns 12 mA Std. 0.66 3.16 0.04 1.00 0.43 3.22 2.58 2.79 3.22 5.45 4.82 ns –1 0.56 2.69 0.04 0.85 0.36 2.74 2.20 2.37 2.74 4.64 4.10 ns –2 0.49 2.36 0.03 0.75 0.32 2.40 1.93 2.08 2.41 4.07 3.60 ns 16 mA Std. 0.66 3.16 0.04 1.00 0.43 3.22 2.58 2.79 3.22 5.45 4.82 ns –1 0.56 2.69 0.04 0.85 0.36 2.74 2.20 2.37 2.74 4.64 4.10 ns –2 0.49 2.36 0.03 0.75 0.32 2.40 1.93 2.08 2.41 4.07 3.60 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-36
ProASIC3 DC and Switching Characteristics Table2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.66 9.68 0.04 1.00 0.43 9.86 8.42 2.28 2.21 12.09 10.66 ns –1 0.56 8.23 0.04 0.85 0.36 8.39 7.17 1.94 1.88 10.29 9.07 ns –2 0.49 7.23 0.03 0.75 0.32 7.36 6.29 1.70 1.65 9.03 7.96 ns 4 mA Std. 0.66 9.68 0.04 1.00 0.43 9.86 8.42 2.28 2.21 12.09 10.66 ns –1 0.56 8.23 0.04 0.85 0.36 8.39 7.17 1.94 1.88 10.29 9.07 ns –2 0.49 7.23 0.03 0.75 0.32 7.36 6.29 1.70 1.65 9.03 7.96 ns 6 mA Std. 0.66 6.70 0.04 1.00 0.43 6.82 5.89 2.58 2.74 9.06 8.12 ns –1 0.56 5.70 0.04 0.85 0.36 5.80 5.01 2.20 2.33 7.71 6.91 ns –2 0.49 5.00 0.03 0.75 0.32 5.10 4.40 1.93 2.05 6.76 6.06 ns 8 mA Std. 0.66 6.70 0.04 1.00 0.43 6.82 5.89 2.58 2.74 9.06 8.12 ns –1 0.56 5.70 0.04 0.85 0.36 5.80 5.01 2.20 2.33 7.71 6.91 ns –2 0.49 5.00 0.03 0.75 0.32 5.10 4.40 1.93 2.05 6.76 6.06 ns 12 mA Std. 0.66 5.05 0.04 1.00 0.43 5.14 4.51 2.79 3.08 7.38 6.75 ns –1 0.56 4.29 0.04 0.85 0.36 4.37 3.84 2.38 2.62 6.28 5.74 ns –2 0.49 3.77 0.03 0.75 0.32 3.84 3.37 2.09 2.30 5.51 5.04 ns 16 mA Std. 0.66 5.05 0.04 1.00 0.43 5.14 4.51 2.79 3.08 7.38 6.75 ns –1 0.56 4.29 0.04 0.85 0.36 4.37 3.84 2.38 2.62 6.28 5.74 ns –2 0.49 3.77 0.03 0.75 0.32 3.84 3.37 2.09 2.30 5.51 5.04 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Table2-45 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard I/O Banks Drive Speed Strength Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.66 7.07 0.04 1.00 0.43 7.20 6.23 2.07 2.15 ns –1 0.56 6.01 0.04 0.85 0.36 6.12 5.30 1.76 1.83 ns –2 0.49 5.28 0.03 0.75 0.32 5.37 4.65 1.55 1.60 ns 4 mA Std. 0.66 7.07 0.04 1.00 0.43 7.20 6.23 2.07 2.15 ns –1 0.56 6.01 0.04 0.85 0.36 6.12 5.30 1.76 1.83 ns –2 0.49 5.28 0.03 0.75 0.32 5.37 4.65 1.55 1.60 ns 6 mA Std. 0.66 4.41 0.04 1.00 0.43 4.49 3.75 2.39 2.69 ns –1 0.56 3.75 0.04 0.85 0.36 3.82 3.19 2.04 2.29 ns –2 0.49 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01 ns 8 mA Std. 0.66 4.41 0.04 1.00 0.43 4.49 3.75 2.39 2.69 ns –1 0.56 3.75 0.04 0.85 0.36 3.82 3.19 2.04 2.29 ns 2-37 Revision 18
ProASIC3 Flash Family FPGAs Table2-45 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard I/O Banks Drive Speed Strength Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ –2 0.49 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Table2-46 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard I/O Banks Drive Speed Strength Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.66 9.46 0.04 1.00 0.43 9.64 8.54 2.07 2.04 ns –1 0.56 8.05 0.04 0.85 0.36 8.20 7.27 1.76 1.73 ns –2 0.49 7.07 0.03 0.75 0.32 7.20 6.38 1.55 1.52 ns 4 mA Std. 0.66 9.46 0.04 1.00 0.43 9.64 8.54 2.07 2.04 ns –1 0.56 8.05 0.04 0.85 0.36 8.20 7.27 1.76 1.73 ns –2 0.49 7.07 0.03 0.75 0.32 7.20 6.38 1.55 1.52 ns 6 mA Std. 0.66 6.57 0.04 1.00 0.43 6.69 5.98 2.40 2.57 ns –1 0.56 5.59 0.04 0.85 0.36 5.69 5.09 2.04 2.19 ns –2 0.49 4.91 0.03 0.75 0.32 5.00 4.47 1.79 1.92 ns 8 mA Std. 0.66 6.57 0.04 1.00 0.43 6.69 5.98 2.40 2.57 ns –1 0.56 5.59 0.04 0.85 0.36 5.69 5.09 2.04 2.19 ns –2 0.49 4.91 0.03 0.75 0.32 5.00 4.47 1.79 1.92 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-38
ProASIC3 DC and Switching Characteristics 3.3 V LVCMOS Wide Range Table2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 3.3 V Equiv. LVCMOS Software Wide Range Default VIL VIH VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Drive Drive Strength Min Max Min Max Max Min Max Max Strength Option1 V V V V V V µA µA mA4 mA4 µA5 µA5 100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 12 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10 100 µA 16 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 132 127 10 10 100 µA 24 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 268 181 10 10 Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 85°C junction temperature. 5. All LVMCOS 3.3V software macros support LVCMOS 3.3V wide range as specified in the JESD8-B specification. 6. Software default selection highlighted in gray. Table2-48 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 3.3 V LVCMOS Equiv. Wide Range Software VIL VIH VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Default Drive Strength Min Max Min Max Max Min Max Max Drive Strength Option1 V V V V V V µA µA mA4 mA4 µA5 µA5 100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 12 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10 100 A 16 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10 Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 85°C junction temperature. 5. All LVMCOS 3.3V software macros support LVCMOS 3.3V wide range as specified in the JESD8-B specification. 6. Software default selection highlighted in gray. 2-39 Revision 18
ProASIC3 Flash Family FPGAs Table2-49 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 3.3 V Equiv. LVCMOS Software Wide Range Default VIL VIH VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Drive Drive Strength Min Max Min Max Max Min Max Max Strength Option1 V V V V V V µA µA mA4 mA4 µA5µA5 100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 85°C junction temperature. 5. All LVMCOS 3.3V software macros support LVCMOS 3.3V wide range as specified in the JESD8-B specification. 6. Software default selection highlighted in gray. Revision 18 2-40
ProASIC3 DC and Switching Characteristics Timing Characteristics Table2-50 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Advanced I/O Banks Equiv. Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 4 mA Std. 0.60 11.84 0.04 1.02 0.43 11.84 10.00 4.10 4.04 15.23 13.40 ns –1 0.51 10.07 0.04 0.86 0.36 10.07 8.51 3.48 3.44 12.96 11.40 ns –2 0.45 8.84 0.03 0.76 0.32 8.84 7.47 3.06 3.02 11.38 10.00 ns 100 µA 6 mA Std. 0.60 7.59 0.04 1.02 0.43 7.59 6.18 4.62 4.95 10.98 9.57 ns –1 0.51 6.45 0.04 0.86 0.36 6.45 5.25 3.93 4.21 9.34 8.14 ns –2 0.45 5.67 0.03 0.76 0.32 5.67 4.61 3.45 3.70 8.20 7.15 ns 100 µA 8 mA Std. 0.60 7.59 0.04 1.02 0.43 7.59 6.18 4.62 4.95 10.98 9.57 ns –1 0.51 6.45 0.04 0.86 0.36 6.45 5.25 3.93 4.21 9.34 8.14 ns –2 0.45 5.67 0.03 0.76 0.32 5.67 4.61 3.45 3.70 8.20 7.15 ns 100 µA 12 mA Std. 0.60 5.46 0.04 1.02 0.43 5.46 4.29 4.97 5.54 8.86 7.68 ns –1 0.51 4.65 0.04 0.86 0.36 4.65 3.65 4.22 4.71 7.53 6.54 ns –2 0.45 4.08 0.03 0.76 0.32 4.08 3.20 3.71 4.14 6.61 5.74 ns 100 µA 16 mA Std. 0.60 5.15 0.04 1.02 0.43 5.15 3.89 5.04 5.69 8.55 7.29 ns –1 0.51 4.38 0.04 0.86 0.36 4.38 3.31 4.29 4.84 7.27 6.20 ns –2 0.45 3.85 0.03 0.76 0.32 3.85 2.91 3.77 4.25 6.38 5.44 ns 100 µA 24 mA Std. 0.60 4.75 0.04 1.02 0.43 4.75 3.22 5.14 6.28 8.15 6.61 ns –1 0.51 4.04 0.04 0.86 0.36 4.04 2.74 4.37 5.34 6.93 5.62 ns –2 0.45 3.55 0.03 0.76 0.32 3.55 2.40 3.84 4.69 6.09 4.94 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. Software default selection highlighted in gray. 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-41 Revision 18
ProASIC3 Flash Family FPGAs Table2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Advanced I/O Banks Equiv. Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 0.60 15.86 0.04 1.54 0.43 15.86 13.51 4.09 3.80 19.25 16.90 ns –1 0.51 13.49 0.04 1.31 0.36 13.49 11.49 3.48 3.23 16.38 14.38 ns –2 0.45 11.84 0.03 1.15 0.32 11.84 10.09 3.05 2.84 14.38 12.62 ns 100 µA 4 mA Std. 0.60 11.25 0.04 1.54 0.43 11.25 9.54 4.61 4.70 14.64 12.93 ns –1 0.51 9.57 0.04 1.31 0.36 9.57 8.11 3.92 4.00 12.46 11.00 ns –2 0.45 8.40 0.03 1.15 0.32 8.40 7.12 3.44 3.51 10.93 9.66 ns 100 µA 6 mA Std. 0.60 11.25 0.04 1.54 0.43 11.25 9.54 4.61 4.70 14.64 12.93 ns –1 0.51 9.57 0.04 1.31 0.36 9.57 8.11 3.92 4.00 12.46 11.00 ns –2 0.45 8.40 0.03 1.15 0.32 8.40 7.12 3.44 3.51 10.93 9.66 ns 100 µA 8 mA Std. 0.60 8.63 0.04 1.54 0.43 8.63 7.39 4.96 5.28 12.02 10.79 ns –1 0.51 7.34 0.04 1.31 0.36 7.34 6.29 4.22 4.49 10.23 9.18 ns –2 0.45 6.44 0.03 1.15 0.32 6.44 5.52 3.70 3.94 8.98 8.06 ns 100 µA 16 mA Std. 0.60 8.05 0.04 1.54 0.43 8.05 6.93 5.03 5.43 11.44 10.32 ns –1 0.51 6.85 0.04 1.31 0.36 6.85 5.90 4.28 4.62 9.74 8.78 ns –2 0.45 6.01 0.03 1.15 0.32 6.01 5.18 3.76 4.06 8.55 7.71 ns 100 µA 24 mA Std. 0.60 7.50 0.04 1.54 0.43 7.50 6.90 5.13 6.00 10.89 10.29 ns –1 0.51 6.38 0.04 1.31 0.36 6.38 5.87 4.36 5.11 9.27 8.76 ns –2 0.45 5.60 0.03 1.15 0.32 5.60 5.15 3.83 4.48 8.13 7.69 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-42
ProASIC3 DC and Switching Characteristics Table2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus I/O Banks Equiv. Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 0.60 11.14 0.04 1.52 0.43 11.14 9.54 3.51 3.61 14.53 12.94 ns –1 0.51 9.48 0.04 1.29 0.36 9.48 8.12 2.99 3.07 12.36 11.00 ns –2 0.45 8.32 0.03 1.14 0.32 8.32 7.13 2.62 2.70 10.85 9.66 ns 100 µA 4 mA Std. 0.60 6.96 0.04 1.52 0.43 6.96 5.79 3.99 4.45 10.35 9.19 ns –1 0.51 5.92 0.04 1.29 0.36 5.92 4.93 3.39 3.78 8.81 7.82 ns –2 0.45 5.20 0.03 1.14 0.32 5.20 4.33 2.98 3.32 7.73 6.86 ns 100 µA 6 mA Std. 0.60 6.96 0.04 1.52 0.43 6.96 5.79 3.99 4.45 10.35 9.19 ns –1 0.51 5.92 0.04 1.29 0.36 5.92 4.93 3.39 3.78 8.81 7.82 ns –2 0.45 5.20 0.03 1.14 0.32 5.20 4.33 2.98 3.32 7.73 6.86 ns 100 µA 8 mA Std. 0.60 4.89 0.04 1.52 0.43 4.89 3.92 4.31 4.98 8.28 7.32 ns –1 0.51 4.16 0.04 1.29 0.36 4.16 3.34 3.67 4.24 7.04 6.22 ns –2 0.45 3.65 0.03 1.14 0.32 3.65 2.93 3.22 3.72 6.18 5.46 ns 100 µA 16 mA Std. 0.60 4.89 0.04 1.52 0.43 4.89 3.92 4.31 4.98 8.28 7.32 ns –1 0.51 4.16 0.04 1.29 0.36 4.16 3.34 3.67 4.24 7.04 6.22 ns –2 0.45 3.65 0.03 1.14 0.32 3.65 2.93 3.22 3.72 6.18 5.46 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. Software default selection highlighted in gray. 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-43 Revision 18
ProASIC3 Flash Family FPGAs Table2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus I/O Banks Equiv. Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 100 µA 2 mA Std. 0.60 14.97 0.04 1.52 0.43 14.97 12.79 3.52 3.41 18.36 16.18 ns –1 0.51 12.73 0.04 1.29 0.36 12.73 10.88 2.99 2.90 15.62 13.77 ns –2 0.45 11.18 0.03 1.14 0.32 11.18 9.55 2.63 2.55 13.71 12.08 ns 100 µA 4 mA Std. 0.60 10.36 0.04 1.52 0.43 10.36 8.93 3.99 4.24 13.75 12.33 ns –1 0.51 8.81 0.04 1.29 0.36 8.81 7.60 3.39 3.60 11.70 10.49 ns –2 0.45 7.74 0.03 1.14 0.32 7.74 6.67 2.98 3.16 10.27 9.21 ns 100 µA 6 mA Std. 0.60 10.36 0.04 1.52 0.43 10.36 8.93 3.99 4.24 13.75 12.33 ns –1 0.51 8.81 0.04 1.29 0.36 8.81 7.60 3.39 3.60 11.70 10.49 ns –2 0.45 7.74 0.03 1.14 0.32 7.74 6.67 2.98 3.16 10.27 9.21 ns 100 µA 8 mA Std. 0.60 7.81 0.04 1.52 0.43 7.81 6.85 4.32 4.76 11.20 10.24 ns –1 0.51 6.64 0.04 1.29 0.36 6.64 5.82 3.67 4.05 9.53 8.71 ns –2 0.45 5.83 0.03 1.14 0.32 5.83 5.11 3.22 3.56 8.36 7.65 ns 100 µA 16 mA Std. 0.60 7.81 0.04 1.52 0.43 7.81 6.85 4.32 4.76 11.20 10.24 ns –1 0.51 6.64 0.04 1.29 0.36 6.64 5.82 3.67 4.05 9.53 8.71 ns –2 0.45 5.83 0.03 1.14 0.32 5.83 5.11 3.22 3.56 8.36 7.65 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-44
ProASIC3 DC and Switching Characteristics Table2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard I/O Banks Equiv. Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 100 µA 2 mA Std. 0.60 10.93 0.04 1.52 0.43 10.93 9.46 3.20 3.32 ns –1 0.51 9.29 0.04 1.29 0.36 9.29 8.04 2.72 2.82 ns –2 0.45 8.16 0.03 1.13 0.32 8.16 7.06 2.39 2.48 ns 100 µA 4 mA Std. 0.60 10.93 0.04 1.52 0.43 10.93 9.46 3.20 3.32 ns –1 0.51 9.29 0.04 1.29 0.36 9.29 8.04 2.72 2.82 ns –2 0.45 8.16 0.03 1.13 0.32 8.16 7.06 2.39 2.48 ns 100 µA 6 mA Std. 0.60 6.82 0.04 1.52 0.43 6.82 5.70 3.70 4.16 ns –1 0.51 5.80 0.04 1.29 0.36 5.80 4.85 3.15 3.54 ns –2 0.45 5.09 0.03 1.13 0.32 5.09 4.25 2.77 3.11 ns 100 µA 8 mA Std. 0.60 6.82 0.04 1.52 0.43 6.82 5.70 3.70 4.16 ns –1 0.51 5.80 0.04 1.29 0.36 5.80 4.85 3.15 3.54 ns –2 0.45 5.09 0.03 1.13 0.32 5.09 4.25 2.77 3.11 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. Software default selection highlighted in gray. 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-45 Revision 18
ProASIC3 Flash Family FPGAs Table2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard I/O Banks Equiv. Software Default Drive Drive Strength Speed Strength Option1 Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 100 µA 2 mA Std. 0.60 14.64 0.04 1.52 0.43 14.64 12.97 3.21 3.15 ns –1 0.51 12.45 0.04 1.29 0.36 12.45 11.04 2.73 2.68 ns –2 0.45 10.93 0.03 1.13 0.32 10.93 9.69 2.39 2.35 ns 100 µA 4 mA Std. 0.60 14.64 0.04 1.52 0.43 14.64 12.97 3.21 3.15 ns –1 0.51 12.45 0.04 1.29 0.36 12.45 11.04 2.73 2.68 ns –2 0.45 10.93 0.03 1.13 0.32 10.93 9.69 2.39 2.35 ns 100 µA 6 mA Std. 0.60 10.16 0.04 1.52 0.43 10.16 9.08 3.71 3.98 ns –1 0.51 8.64 0.04 1.29 0.36 8.64 7.73 3.15 3.39 ns –2 0.45 7.58 0.03 1.13 0.32 7.58 6.78 2.77 2.97 ns 100 µA 8 mA Std. 0.60 10.16 0.04 1.52 0.43 10.16 9.08 3.71 3.98 ns –1 0.51 8.64 0.04 1.29 0.36 8.64 7.73 3.15 3.39 ns –2 0.45 7.58 0.03 1.13 0.32 7.58 6.78 2.77 2.97 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-46
ProASIC3 DC and Switching Characteristics 2.5 V LVCMOS Low-Voltage CMOS for 2.5V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5V applications. Table2-56 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Min. Max. Min. Max. Max. Min. Max. Max. Drive Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 18 16 10 10 4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 18 16 10 10 6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 37 32 10 10 8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 37 32 10 10 12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 74 65 10 10 16 mA –0.3 0.7 1.7 2.7 0.7 1.7 16 16 87 83 10 10 24 mA –0.3 0.7 1.7 2.7 0.7 1.7 24 24 124 169 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table2-57 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Min. Max. Min. Max. Max. Min. Max. Max. Drive Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 18 16 10 10 4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 18 16 10 10 6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 37 32 10 10 8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 37 32 10 10 12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 74 65 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. 2-47 Revision 18
ProASIC3 Flash Family FPGAs Table2-58 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Min. Max., Min. Max. Max. Min. Max. Max. Drive Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.7 1.7 3.6 0.7 1.7 2 2 16 18 10 10 4 mA –0.3 0.7 1.7 3.6 0.7 1.7 4 4 16 18 10 10 6 mA –0.3 0.7 1.7 3.6 0.7 1.7 6 6 32 37 10 10 8 mA –0.3 0.7 1.7 3.6 0.7 1.7 8 8 32 37 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. R to VCCI for t / t / t R = 1 kΩ LZ ZL ZLS Test Point R to GND for t / t / t HZ ZH ZHS Test Point Datapath 35 pF Enable Path 35 pF for t / t / t / t ZH ZHS ZL ZLS 35 pF for t / t HZ LZ Figure 2-8 • AC Loading Table2-59 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 0 2.5 1.2 35 Note: *Measuring point = Vtrip. See Table2-22 on page2-22 for a complete table of trip points. Revision 18 2-48
ProASIC3 DC and Switching Characteristics Timing Characteristics Table2-60 • 2.5 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Advanced I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 4 mA Std. 0.60 8.66 0.04 1.31 0.43 7.83 8.66 2.68 2.30 10.07 10.90 ns –1 0.51 7.37 0.04 1.11 0.36 6.66 7.37 2.28 1.96 8.56 9.27 ns –2 0.45 6.47 0.03 0.98 0.32 5.85 6.47 2.00 1.72 7.52 8.14 ns 6 mA Std. 0.60 5.17 0.04 1.31 0.43 5.04 5.17 3.05 3.00 7.27 7.40 ns –1 0.51 4.39 0.04 1.11 0.36 4.28 4.39 2.59 2.55 6.19 6.30 ns –2 0.45 3.86 0.03 0.98 0.32 3.76 3.86 2.28 2.24 5.43 5.53 ns 8 mA Std. 0.60 5.17 0.04 1.31 0.43 5.04 5.17 3.05 3.00 7.27 7.40 ns –1 0.51 4.39 0.04 1.11 0.36 4.28 4.39 2.59 2.55 6.19 6.30 ns –2 0.45 3.86 0.03 0.98 0.32 3.76 3.86 2.28 2.24 5.43 5.53 ns 12 mA Std. 0.60 3.56 0.04 1.31 0.43 3.63 3.43 3.30 3.44 5.86 5.67 ns –1 0.51 3.03 0.04 1.11 0.36 3.08 2.92 2.81 2.92 4.99 4.82 ns –2 0.45 2.66 0.03 0.98 0.32 2.71 2.56 2.47 2.57 4.38 4.23 ns 16 mA Std. 0.60 3.35 0.04 1.31 0.43 3.41 3.06 3.36 3.55 5.65 5.30 ns –1 0.51 2.85 0.04 1.11 0.36 2.90 2.60 2.86 3.02 4.81 4.51 ns –2 0.45 2.50 0.03 0.98 0.32 2.55 2.29 2.51 2.65 4.22 3.96 ns 24 mA Std. 0.60 3.09 0.04 1.31 0.43 3.15 2.44 3.44 4.00 5.38 4.68 ns –1 0.51 2.63 0.04 1.11 0.36 2.68 2.08 2.92 3.40 4.58 3.98 ns –2 0.45 2.31 0.03 0.98 0.32 2.35 1.82 2.57 2.98 4.02 3.49 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-49 Revision 18
ProASIC3 Flash Family FPGAs Table2-61 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Advanced I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 4 mA Std. 0.60 11.40 0.04 1.31 0.43 11.22 11.40 2.68 2.20 13.45 13.63 ns –1 0.51 9.69 0.04 1.11 0.36 9.54 9.69 2.28 1.88 11.44 11.60 ns –2 0.45 8.51 0.03 0.98 0.32 8.38 8.51 2.00 1.65 10.05 10.18 ns 6 mA Std. 0.60 7.96 0.04 1.31 0.43 8.11 7.81 3.05 2.89 10.34 10.05 ns –1 0.51 6.77 0.04 1.11 0.36 6.90 6.65 2.59 2.46 8.80 8.55 ns –2 0.45 5.94 0.03 0.98 0.32 6.05 5.84 2.28 2.16 7.72 7.50 ns 8 mA Std. 0.60 7.96 0.04 1.31 0.43 8.11 7.81 3.05 2.89 10.34 10.05 ns –1 0.51 6.77 0.04 1.11 0.36 6.90 6.65 2.59 2.46 8.80 8.55 ns –2 0.45 5.94 0.03 0.98 0.32 6.05 5.84 2.28 2.16 7.72 7.50 ns 12 mA Std. 0.60 6.18 0.04 1.31 0.43 6.29 5.92 3.30 3.32 8.53 8.15 ns –1 0.51 5.26 0.04 1.11 0.36 5.35 5.03 2.81 2.83 7.26 6.94 ns –2 0.45 4.61 0.03 0.98 0.32 4.70 4.42 2.47 2.48 6.37 6.09 ns 16 mA Std. 0.60 5.76 0.04 1.31 0.43 5.87 5.53 3.36 3.44 8.11 7.76 ns –1 0.51 4.90 0.04 1.11 0.36 4.99 4.70 2.86 2.92 6.90 6.60 ns –2 0.45 4.30 0.03 0.98 0.32 4.38 4.13 2.51 2.57 6.05 5.80 ns 24 mA Std. 0.60 5.51 0.04 1.31 0.43 5.50 5.51 3.43 3.87 7.74 7.74 ns –1 0.51 4.68 0.04 1.11 0.36 4.68 4.68 2.92 3.29 6.58 6.59 ns –2 0.45 4.11 0.03 0.98 0.32 4.11 4.11 2.56 2.89 5.78 5.78 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-50
ProASIC3 DC and Switching Characteristics Table2-62 • 2.5 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Plus I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 4 mA Std. 0.66 8.28 0.04 1.30 0.43 7.41 8.28 2.25 2.07 9.64 10.51 ns –1 0.56 7.04 0.04 1.10 0.36 6.30 7.04 1.92 1.76 8.20 8.94 ns –2 0.49 6.18 0.03 0.97 0.32 5.53 6.18 1.68 1.55 7.20 7.85 ns 6 mA Std. 0.66 4.85 0.04 1.30 0.43 4.65 4.85 2.59 2.71 6.88 7.09 ns –1 0.56 4.13 0.04 1.10 0.36 3.95 4.13 2.20 2.31 5.85 6.03 ns –2 0.49 3.62 0.03 0.97 0.32 3.47 3.62 1.93 2.02 5.14 5.29 ns 8 mA Std. 0.66 4.85 0.04 1.30 0.43 4.65 4.85 2.59 2.71 6.88 7.09 ns –1 0.56 4.13 0.04 1.10 0.36 3.95 4.13 2.20 2.31 5.85 6.03 ns –2 0.49 3.62 0.03 0.97 0.32 3.47 3.62 1.93 2.02 5.14 5.29 ns 12 mA Std. 0.66 3.21 0.04 1.30 0.43 3.27 3.14 2.82 3.11 5.50 5.38 ns –1 0.56 2.73 0.04 1.10 0.36 2.78 2.67 2.40 2.65 4.68 4.57 ns –2 0.49 2.39 0.03 0.97 0.32 2.44 2.35 2.11 2.32 4.11 4.02 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Table2-63 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Applicable to Standard Plus I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 4 mA Std. 0.66 10.84 0.04 1.30 0.43 10.64 10.84 2.26 1.99 12.87 13.08 ns –1 0.56 9.22 0.04 1.10 0.36 9.05 9.22 1.92 1.69 10.95 11.12 ns –2 0.49 8.10 0.03 0.97 0.32 7.94 8.10 1.68 1.49 9.61 9.77 ns 6 mA Std. 0.66 7.37 0.04 1.30 0.43 7.50 7.36 2.59 2.61 9.74 9.60 ns –1 0.56 6.27 0.04 1.10 0.36 6.38 6.26 2.20 2.22 8.29 8.16 ns –2 0.49 5.50 0.03 0.97 0.32 5.60 5.50 1.93 1.95 7.27 7.17 ns 8 mA Std. 0.66 7.37 0.04 1.30 0.43 7.50 7.36 2.59 2.61 9.74 9.60 ns –1 0.56 6.27 0.04 1.10 0.36 6.38 6.26 2.20 2.22 8.29 8.16 ns –2 0.49 5.50 0.03 0.97 0.32 5.60 5.50 1.93 1.95 7.27 7.17 ns 12 mA Std. 0.66 5.63 0.04 1.30 0.43 5.73 5.51 2.83 3.01 7.97 7.74 ns –1 0.56 4.79 0.04 1.10 0.36 4.88 4.68 2.41 2.56 6.78 6.59 ns –2 0.49 4.20 0.03 0.97 0.32 4.28 4.11 2.11 2.25 5.95 5.78 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-51 Revision 18
ProASIC3 Flash Family FPGAs Table2-64 • 2.5 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard I/O Banks Drive Speed Strength Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.66 8.20 0.04 1.29 0.43 7.24 8.20 2.03 1.91 ns –1 0.56 6.98 0.04 1.10 0.36 6.16 6.98 1.73 1.62 ns –2 0.49 6.13 0.03 0.96 0.32 5.41 6.13 1.52 1.43 ns 4 mA Std. 0.66 8.20 0.04 1.29 0.43 7.24 8.20 2.03 1.91 ns –1 0.56 6.98 0.04 1.10 0.36 6.16 6.98 1.73 1.62 ns –2 0.49 6.13 0.03 0.96 0.32 5.41 6.13 1.52 1.43 ns 6 mA Std. 0.66 4.77 0.04 1.29 0.43 4.55 4.77 2.38 2.55 ns –1 0.56 4.05 0.04 1.10 0.36 3.87 4.05 2.03 2.17 ns –2 0.49 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91 ns 8 mA Std. 0.66 4.77 0.04 1.29 0.43 4.55 4.77 2.38 2.55 ns –1 0.56 4.05 0.04 1.10 0.36 3.87 4.05 2.03 2.17 ns –2 0.49 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Table2-65 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard I/O Banks Drive Speed Strength Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.66 11.00 0.04 1.29 0.43 10.37 11.00 2.03 1.83 ns –1 0.56 9.35 0.04 1.10 0.36 8.83 9.35 1.73 1.56 ns –2 0.49 8.21 0.03 0.96 0.32 7.75 8.21 1.52 1.37 ns 4 mA Std. 0.66 11.00 0.04 1.29 0.43 10.37 11.00 2.03 1.83 ns –1 0.56 9.35 0.04 1.10 0.36 8.83 9.35 1.73 1.56 ns –2 0.49 8.21 0.03 0.96 0.32 7.75 8.21 1.52 1.37 ns 6 mA Std. 0.66 7.50 0.04 1.29 0.43 7.36 7.50 2.39 2.46 ns –1 0.56 6.38 0.04 1.10 0.36 6.26 6.38 2.03 2.10 ns –2 0.49 5.60 0.03 0.96 0.32 5.49 5.60 1.78 1.84 ns 8 mA Std. 0.66 7.50 0.04 1.29 0.43 7.36 7.50 2.39 2.46 ns –1 0.56 6.38 0.04 1.10 0.36 6.26 6.38 2.03 2.10 ns –2 0.49 5.60 0.03 0.96 0.32 5.49 5.60 1.78 1.84 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-52
ProASIC3 DC and Switching Characteristics 1.8 V LVCMOS Low-voltage CMOS for 1.8V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8V applications. It uses a 1.8V input buffer and a push-pull output buffer. Table2-66 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 1.8 V LVCMOS VIL VIH VOL VOH IOLIOH IOSL IOSH IIL1 IIH2 Drive Min Max Min Max Max Min Max Max Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 2 2 11 9 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 4 4 22 17 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 6 6 44 35 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 51 45 10 10 12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 74 91 10 10 16 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 16 16 74 91 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table2-67 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O I/O Banks 1.8 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Drive Min Max Min Max Max Min Max Max Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 11 9 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 22 17 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 6 6 44 35 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 8 8 44 35 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <V CCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. 2-53 Revision 18
ProASIC3 Flash Family FPGAs Table2-68 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 1.8 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 9 11 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 17 22 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. R to VCCI for t / t / t R = 1 kΩ LZ ZL ZLS Test Point R to GND for t / t / t HZ ZH ZHS Test Point Datapath 35 pF Enable Path 35 pF for t / t / t / t ZH ZHS ZL ZLS 35 pF for t / t HZ LZ Figure 2-9 • AC Loading Table2-69 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 0 1.8 0.9 35 Note: *Measuring point = Vtrip See Table2-22 on page2-22 for a complete table of trip points. . Revision 18 2-54
ProASIC3 DC and Switching Characteristics Timing Characteristics Table2-70 • 1.8 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V J Applicable to Advanced I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.66 11.86 0.04 1.22 0.43 9.14 11.86 2.77 1.66 11.37 14.10 ns –1 0.56 10.09 0.04 1.04 0.36 7.77 10.09 2.36 1.41 9.67 11.99 ns –2 0.49 8.86 0.03 0.91 0.32 6.82 8.86 2.07 1.24 8.49 10.53 ns 4 mA Std. 0.66 6.91 0.04 1.22 0.43 5.86 6.91 3.22 2.84 8.10 9.15 ns –1 0.56 5.88 0.04 1.04 0.36 4.99 5.88 2.74 2.41 6.89 7.78 ns –2 0.49 5.16 0.03 0.91 0.32 4.38 5.16 2.41 2.12 6.05 6.83 ns 6 mA Std. 0.66 4.45 0.04 1.22 0.43 4.18 4.45 3.53 3.38 6.42 6.68 ns –1 0.56 3.78 0.04 1.04 0.36 3.56 3.78 3.00 2.88 5.46 5.69 ns –2 0.49 3.32 0.03 0.91 0.32 3.12 3.32 2.64 2.53 4.79 4.99 ns 8 mA Std. 0.66 3.92 0.04 1.22 0.43 3.93 3.92 3.60 3.52 6.16 6.16 ns –1 0.56 3.34 0.04 1.04 0.36 3.34 3.34 3.06 3.00 5.24 5.24 ns –2 0.49 2.93 0.03 0.91 0.32 2.93 2.93 2.69 2.63 4.60 4.60 ns 12 mA Std. 0.66 3.53 0.04 1.22 0.43 3.60 3.04 3.70 4.08 5.84 5.28 ns –1 0.56 3.01 0.04 1.04 0.36 3.06 2.59 3.15 3.47 4.96 4.49 ns –2 0.49 2.64 0.03 0.91 0.32 2.69 2.27 2.76 3.05 4.36 3.94 ns 16 mA Std. 0.66 3.53 0.04 1.22 0.43 3.60 3.04 3.70 4.08 5.84 5.28 ns –1 0.56 3.01 0.04 1.04 0.36 3.06 2.59 3.15 3.47 4.96 4.49 ns –2 0.49 2.64 0.03 0.91 0.32 2.69 2.27 2.76 3.05 4.36 3.94 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-55 Revision 18
ProASIC3 Flash Family FPGAs Table2-71 • 1.8 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V J Applicable to Advanced I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.66 15.53 0.04 1.22 0.43 14.11 15.53 2.78 1.60 16.35 17.77 ns –1 0.56 13.21 0.04 1.04 0.36 12.01 13.21 2.36 1.36 13.91 15.11 ns –2 0.49 11.60 0.03 0.91 0.32 10.54 11.60 2.07 1.19 12.21 13.27 ns 4 mA Std. 0.66 10.48 0.04 1.22 0.43 10.41 10.48 3.23 2.73 12.65 12.71 ns –1 0.56 8.91 0.04 1.04 0.36 8.86 8.91 2.75 2.33 10.76 10.81 ns –2 0.49 7.82 0.03 0.91 0.32 7.77 7.82 2.41 2.04 9.44 9.49 ns 6 mA Std. 0.66 8.05 0.04 1.22 0.43 8.20 7.84 3.54 3.27 10.43 10.08 ns –1 0.56 6.85 0.04 1.04 0.36 6.97 6.67 3.01 2.78 8.88 8.57 ns –2 0.49 6.01 0.03 0.91 0.32 6.12 5.86 2.64 2.44 7.79 7.53 ns 8 mA Std. 0.66 7.50 0.04 1.22 0.43 7.64 7.30 3.61 3.41 9.88 9.53 ns –1 0.56 6.38 0.04 1.04 0.36 6.50 6.21 3.07 2.90 8.40 8.11 ns –2 0.49 5.60 0.03 0.91 0.32 5.71 5.45 2.69 2.55 7.38 7.12 ns 12 mA Std. 0.66 7.29 0.04 1.22 0.43 7.23 7.29 3.71 3.95 9.47 9.53 ns –1 0.56 6.20 0.04 1.04 0.36 6.15 6.20 3.15 3.36 8.06 8.11 ns –2 0.49 5.45 0.03 0.91 0.32 5.40 5.45 2.77 2.95 7.07 7.12 ns 16 mA Std. 0.66 7.29 0.04 1.22 0.43 7.23 7.29 3.71 3.95 9.47 9.53 ns –1 0.56 6.20 0.04 1.04 0.36 6.15 6.20 3.15 3.36 8.06 8.11 ns –2 0.49 5.45 0.03 0.91 0.32 5.40 5.45 2.77 2.95 7.07 7.12 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-56
ProASIC3 DC and Switching Characteristics Table2-72 • 1.8 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V J Applicable to Standard Plus I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.66 11.33 0.04 1.20 0.43 8.72 11.33 2.24 1.52 10.96 13.57 ns –1 0.56 9.64 0.04 1.02 0.36 7.42 9.64 1.91 1.29 9.32 11.54 ns –2 0.49 8.46 0.03 0.90 0.32 6.51 8.46 1.68 1.14 8.18 10.13 ns 4 mA Std. 0.66 6.48 0.04 1.20 0.43 5.48 6.48 2.65 2.60 7.72 8.72 ns –1 0.56 5.51 0.04 1.02 0.36 4.66 5.51 2.25 2.21 6.56 7.42 ns –2 0.49 4.84 0.03 0.90 0.32 4.09 4.84 1.98 1.94 5.76 6.51 ns 6 mA Std. 0.66 4.06 0.04 1.20 0.43 3.84 4.06 2.93 3.10 6.07 6.30 ns –1 0.56 3.45 0.04 1.02 0.36 3.27 3.45 2.49 2.64 5.17 5.36 ns –2 0.49 3.03 0.03 0.90 0.32 2.87 3.03 2.19 2.32 4.54 4.70 ns 8 mA Std. 0.66 4.06 0.04 1.20 0.43 3.84 4.06 2.93 3.10 6.07 6.30 ns –1 0.56 3.45 0.04 1.02 0.36 3.27 3.45 2.49 2.64 5.17 5.36 ns –2 0.49 3.03 0.03 0.90 0.32 2.87 3.03 2.19 2.32 4.54 4.70 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-57 Revision 18
ProASIC3 Flash Family FPGAs Table2-73 • 1.8 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V J Applicable to Standard Plus I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.66 14.80 0.04 1.20 0.43 13.49 14.80 2.25 1.46 15.73 17.04 ns –1 0.56 12.59 0.04 1.02 0.36 11.48 12.59 1.91 1.25 13.38 14.49 ns –2 0.49 11.05 0.03 0.90 0.32 10.08 11.05 1.68 1.09 11.75 12.72 ns 4 mA Std. 0.66 9.90 0.04 1.20 0.43 9.73 9.90 2.65 2.50 11.97 12.13 ns –1 0.56 8.42 0.04 1.02 0.36 8.28 8.42 2.26 2.12 10.18 10.32 ns –2 0.49 7.39 0.03 0.90 0.32 7.27 7.39 1.98 1.86 8.94 9.06 ns 6 mA Std. 0.66 7.44 0.04 1.20 0.43 7.58 7.32 2.94 2.99 9.81 9.56 ns –1 0.56 6.33 0.04 1.02 0.36 6.44 6.23 2.50 2.54 8.35 8.13 ns –2 0.49 5.55 0.03 0.90 0.32 5.66 5.47 2.19 2.23 7.33 7.14 ns 8 mA Std. 0.66 7.44 0.04 1.20 0.43 7.58 7.32 2.94 2.99 9.81 9.56 ns –1 0.56 6.33 0.04 1.02 0.36 6.44 6.23 2.50 2.54 8.35 8.13 ns –2 0.49 5.55 0.03 0.90 0.32 5.66 5.47 2.19 2.23 7.33 7.14 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Table2-74 • 1.8 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V J Applicable to Standard I/O Banks Drive Speed Strength Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.66 11.21 0.04 1.20 0.43 8.53 11.21 1.99 1.21 ns –1 0.56 9.54 0.04 1.02 0.36 7.26 9.54 1.69 1.03 ns –2 0.49 8.37 0.03 0.90 0.32 6.37 8.37 1.49 0.90 ns 4 mA Std. 0.66 6.34 0.04 1.20 0.43 5.38 6.34 2.41 2.48 ns –1 0.56 5.40 0.04 1.02 0.36 4.58 5.40 2.05 2.11 ns –2 0.49 4.74 0.03 0.90 0.32 4.02 4.74 1.80 1.85 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-58
ProASIC3 DC and Switching Characteristics Table2-75 • 1.8 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard I/O Banks Drive Speed Strength Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.66 15.01 0.04 1.20 0.43 13.15 15.01 1.99 1.99 ns –1 0.56 12.77 0.04 1.02 0.36 11.19 12.77 1.70 1.70 ns –2 0.49 11.21 0.03 0.90 0.32 9.82 11.21 1.49 1.49 ns 4 mA Std. 0.66 10.10 0.04 1.20 0.43 9.55 10.10 2.41 2.37 ns –1 0.56 8.59 0.04 1.02 0.36 8.13 8.59 2.05 2.02 ns –2 0.49 7.54 0.03 0.90 0.32 7.13 7.54 1.80 1.77 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 1.5 V LVCMOS (JESD8-11) Low-Voltage CMOS for 1.5V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5V applications. It uses a 1.5V input buffer and a push-pull output buffer. Table2-76 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 1.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Drive Min. Max. Min. Max., Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10 12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. 2-59 Revision 18
ProASIC3 Flash Family FPGAs Table2-77 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 1.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table2-78 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 1.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Drive Min. Max. Min. Max. Max. Min. Max. Max. Strength V V V V V V mA mA mA3 mA3 µA4 µA4 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 13 16 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. R to VCCI for t / t / t R = 1 kΩ LZ ZL ZLS Test Point R to GND for t / t / t HZ ZH ZHS Test Point Datapath 35 pF Enable Path 35 pF for t / t / t / t ZH ZHS ZL ZLS 35 pF for t / t HZ LZ Figure 2-10 • AC Loading Table2-79 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 0 1.5 0.75 35 Note: *Measuring point = V See Table2-22 on page2-22 for a complete table of trip points. trip. Revision 18 2-60
ProASIC3 DC and Switching Characteristics Timing Characteristics Table2-80 • 1.5 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V J Applicable to Advanced I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.66 8.36 0.04 1.44 0.43 6.82 8.36 3.39 2.77 9.06 10.60 ns –1 0.56 7.11 0.04 1.22 0.36 5.80 7.11 2.88 2.35 7.71 9.02 ns –2 0.49 6.24 0.03 1.07 0.32 5.10 6.24 2.53 2.06 6.76 7.91 ns 4 mA Std. 0.66 5.31 0.04 1.44 0.43 4.85 5.31 3.74 3.40 7.09 7.55 ns –1 0.56 4.52 0.04 1.22 0.36 4.13 4.52 3.18 2.89 6.03 6.42 ns –2 0.49 3.97 0.03 1.07 0.32 3.62 3.97 2.79 2.54 5.29 5.64 ns 6 mA Std. 0.66 4.67 0.04 1.44 0.43 4.55 4.67 3.82 3.56 6.78 6.90 ns –1 0.56 3.97 0.04 1.22 0.36 3.87 3.97 3.25 3.03 5.77 5.87 ns –2 0.49 3.49 0.03 1.07 0.32 3.40 3.49 2.85 2.66 5.07 5.16 ns 8 mA Std. 0.66 4.08 0.04 1.44 0.43 4.15 3.58 3.94 4.20 6.39 5.81 ns –1 0.56 3.47 0.04 1.22 0.36 3.53 3.04 3.36 3.58 5.44 4.95 ns –2 0.49 3.05 0.03 1.07 0.32 3.10 2.67 2.95 3.14 4.77 4.34 ns 12 mA Std. 0.66 4.08 0.04 1.44 0.43 4.15 3.58 3.94 4.20 6.39 5.81 ns –1 0.56 3.47 0.04 1.22 0.36 3.53 3.04 3.36 3.58 5.44 4.95 ns –2 0.49 3.05 0.03 1.07 0.32 3.10 2.67 2.95 3.14 4.77 4.34 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-61 Revision 18
ProASIC3 Flash Family FPGAs Table2-81 • 1.5 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V J Applicable to Advanced I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.66 12.78 0.04 1.44 0.43 12.81 12.78 3.40 2.64 15.05 15.02 ns –1 0.56 10.87 0.04 1.22 0.36 10.90 10.87 2.89 2.25 12.80 12.78 ns –2 0.49 9.55 0.03 1.07 0.32 9.57 9.55 2.54 1.97 11.24 11.22 ns 4 mA Std. 0.66 10.01 0.04 1.44 0.43 10.19 9.55 3.75 3.27 12.43 11.78 ns –1 0.56 8.51 0.04 1.22 0.36 8.67 8.12 3.19 2.78 10.57 10.02 ns –2 0.49 7.47 0.03 1.07 0.32 7.61 7.13 2.80 2.44 9.28 8.80 ns 6 mA Std. 0.66 9.33 0.04 1.44 0.43 9.51 8.89 3.83 3.43 11.74 11.13 ns –1 0.56 7.94 0.04 1.22 0.36 8.09 7.56 3.26 2.92 9.99 9.47 ns –2 0.49 6.97 0.03 1.07 0.32 7.10 6.64 2.86 2.56 8.77 8.31 ns 8 mA Std. 0.66 8.91 0.04 1.44 0.43 9.07 8.89 3.95 4.05 11.31 11.13 ns –1 0.56 7.58 0.04 1.22 0.36 7.72 7.57 3.36 3.44 9.62 9.47 ns –2 0.49 6.65 0.03 1.07 0.32 6.78 6.64 2.95 3.02 8.45 8.31 ns 12 mA Std. 0.66 8.91 0.04 1.44 0.43 9.07 8.89 3.95 4.05 11.31 11.13 ns –1 0.56 7.58 0.04 1.22 0.36 7.72 7.57 3.36 3.44 9.62 9.47 ns –2 0.49 6.65 0.03 1.07 0.32 6.78 6.64 2.95 3.02 8.45 8.31 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Table2-82 • 1.5 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V J Applicable to Standard Plus I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.66 7.83 0.04 1.42 0.43 6.42 7.83 2.71 2.55 8.65 10.07 ns –1 0.56 6.66 0.04 1.21 0.36 5.46 6.66 2.31 2.17 7.36 8.56 ns –2 0.49 5.85 0.03 1.06 0.32 4.79 5.85 2.02 1.90 6.46 7.52 ns 4 mA Std. 0.66 4.84 0.04 1.42 0.43 4.49 4.84 3.03 3.13 6.72 7.08 ns –1 0.56 4.12 0.04 1.21 0.36 3.82 4.12 2.58 2.66 5.72 6.02 ns –2 0.49 3.61 0.03 1.06 0.32 3.35 3.61 2.26 2.34 5.02 5.28 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-62
ProASIC3 DC and Switching Characteristics Table2-83 • 1.5 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V J Applicable to Standard Plus I/O Banks Drive Speed Strength Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS 2 mA Std. 0.66 12.08 0.04 1.42 0.43 12.01 12.08 2.72 2.43 14.24 14.31 ns –1 0.56 10.27 0.04 1.21 0.36 10.21 10.27 2.31 2.06 12.12 12.18 ns –2 0.49 9.02 0.03 1.06 0.32 8.97 9.02 2.03 1.81 10.64 10.69 ns 4 mA Std. 0.66 9.28 0.04 1.42 0.43 9.45 8.91 3.04 3.00 11.69 11.15 ns –1 0.56 7.89 0.04 1.21 0.36 8.04 7.58 2.58 2.55 9.94 9.49 ns –2 0.49 6.93 0.03 1.06 0.32 7.06 6.66 2.27 2.24 8.73 8.33 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Table2-84 • 1.5 V LVCMOS High Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard I/O Banks Drive Speed Strength Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.66 7.65 0.04 1.42 0.43 6.31 7.65 2.45 2.45 ns –1 0.56 6.50 0.04 1.21 0.36 5.37 6.50 2.08 2.08 ns –2 0.49 5.71 0.03 1.06 0.32 4.71 5.71 1.83 1.83 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Table2-85 • 1.5 V LVCMOS Low Slew Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard I/O Banks Drive Speed Strength Grade t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ 2 mA Std. 0.66 12.33 0.04 1.42 0.43 11.79 12.33 2.45 2.32 ns –1 0.56 10.49 0.04 1.21 0.36 10.03 10.49 2.08 1.98 ns –2 0.49 9.21 0.03 1.06 0.32 8.81 9.21 1.83 1.73 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-63 Revision 18
ProASIC3 Flash Family FPGAs 3.3 V PCI, 3.3 V PCI-X Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications. Table2-86 • Minimum and Maximum DC Input and Output Levels 3.3 V PCI/PCI-X VIL VIH VOL VOH IOLIOH IOSL IOSH IIL IIH Min. Max. Min. Max. Max,. Min. Max. Max. Drive Strength V V V V V V mA mA mA1 mA1 µA2 µA2 Per PCI specification Per PCI curves 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 85°C junction temperature. AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure2-11. R to VCCI for t (F) R to VCCI for t / t / t R = 25Ω DP R = 1 kΩ LZ ZL ZLS Test Point R to GND for tDP (R) Test Point R to GND for tHZ / tZH / tZHS Datapath Enable Path 10 pF for t / t / t / t ZH ZHS ZL ZLS 5 pF for t / t HZ LZ Figure 2-11 • AC Loading AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table2-87. Table2-87 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) C (pF) LOAD 0 3.3 0.285 * VCCI for t 10 DP(R) 0.615 * VCCI for t DP(F) Note: *Measuring point = V See Table2-22 on page2-22 for a complete table of trip points. trip. Revision 18 2-64
ProASIC3 DC and Switching Characteristics Timing Characteristics Table2-88 • 3.3 V PCI/PCI-X Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Advanced I/O Banks Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS Std. 0.66 2.68 0.04 0.86 0.43 2.73 1.95 3.21 3.58 4.97 4.19 ns –1 0.56 2.28 0.04 0.73 0.36 2.32 1.66 2.73 3.05 4.22 3.56 ns –2 0.49 2.00 0.03 0.65 0.32 2.04 1.46 2.40 2.68 3.71 3.13 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Table2-89 • 3.3 V PCI/PCI-X Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Applicable to Standard Plus I/O Banks Speed Grade t t t t t t t t t t t Units DOUT DP DIN PY EOUT ZL ZH LZ HZ ZLS ZHS Std. 0.66 2.31 0.04 0.85 0.43 2.35 1.70 2.79 3.22 4.59 3.94 ns –1 0.56 1.96 0.04 0.72 0.36 2.00 1.45 2.37 2.74 3.90 3.35 ns –2 0.49 1.72 0.03 0.64 0.32 1.76 1.27 2.08 2.41 3.42 2.94 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Differential I/O Characteristics Physical Implementation Configuration of the I/O modules as a differential pair is handled by Microsemi Designer software when the user instantiates a differential I/O macro in the design. Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards. LVDS Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure2-12. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different. Along with LVDS I/O, ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes). Bourns Part Number: CAT16-LV4F12 FPGA FPGA OUTBUF_LVDS P P 165 Z = 50 0 + INBUF_LVDS 140 100 – 165 Z0 = 50 N N Figure 2-12 • LVDS Circuit Diagram and Board-Level Implementation 2-65 Revision 18
ProASIC3 Flash Family FPGAs Table2-90 • LVDS Minimum and Maximum DC Input and Output Levels DC Parameter Description Min. Typ. Max. Units VCCI Supply Voltage 2.375 2.5 2.625 V VOL Output Low Voltage 0.9 1.075 1.25 V VOH Output High Voltage 1.25 1.425 1.6 V IOL1 Output Lower Current 0.65 0.91 1.16 mA IOH1 Output High Current 0.65 0.91 1.16 mA VI Input Voltage 0 2.925 V IIH2,3 Input High Leakage Current 10 µA IIL2,4 Input Low Leakage Current 10 µA VODIFF Differential Output Voltage 250 350 450 mV VOCM Output Common Mode Voltage 1.125 1.25 1.375 V VICM Input Common Mode Voltage 0.05 1.25 2.35 V VIDIFF Input Differential Voltage 100 350 mV Notes: 1. IOL/IOH defined by VODIFF/(Resistor Network) 2. Currents are measured at 85°C junction temperature. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <VCCI. Input current is larger when operating outside recommended ranges. 4. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3V < VIN <VIL. Table2-91 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) 1.075 1.325 Cross point Note: *Measuring point = V See Table2-22 on page2-22 for a complete table of trip points. trip. Timing Characteristics Table2-92 • LVDS Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V J Speed Grade t t t t Units DOUT DP DIN PY Std. 0.66 1.83 0.04 1.60 ns –1 0.56 1.56 0.04 1.36 ns –2 0.49 1.37 0.03 1.20 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-66
ProASIC3 DC and Switching Characteristics B-LVDS/M-LVDS Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high- performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200MHz with a maximum of 20 loads. A sample application is given in Figure2-13. The input and output buffer delays are available in the LVDS section in Table2-92. Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: R =60 and R =70, given S T Z =50 (2") and Z =50 (~1.5"). 0 stub Receiver Transceiver Driver Receiver Transceiver D EN EN EN EN EN BIBUF_LVDS R T R T + - + - + - + - + - R R R R R R R R R R S S S S S S S S S S Zstub Zstub Zstub Zstub Zstub Zstub Zstub Zstub ... Z Z Z Z Z Z 0 0 0 0 0 0 RTZ0 Z0 Z0 Z0 Z0 Z0 RT Figure 2-13 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers LVPECL Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure2-14. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different. Bourns Part Number: CAT16-PC4F12 FPGA FPGA OUTBUF_LVPECL P P 100 Z = 50 0 + INBUF_LVPECL 187 W 100 – 100 Z0 = 50 N N Figure 2-14 • LVPECL Circuit Diagram and Board-Level Implementation 2-67 Revision 18
ProASIC3 Flash Family FPGAs Table2-93 • Minimum and Maximum DC Input and Output Levels DC Parameter Description Min. Max. Min. Max. Min. Max. Units VCCI Supply Voltage 3.0 3.3 3.6 V VOL Output Low Voltage 0.96 1.27 1.06 1.43 1.30 1.57 V VOH Output High Voltage 1.8 2.11 1.92 2.28 2.13 2.41 V VIL, VIH Input Low, Input High Voltages 0 3.6 0 3.6 0 3.6 V VODIFF Differential Output Voltage 0.625 0.97 0.625 0.97 0.625 0.97 V VOCM Output Common-Mode Voltage 1.762 1.98 1.762 1.98 1.762 1.98 V VICM Input Common-Mode Voltage 1.01 2.57 1.01 2.57 1.01 2.57 V VIDIFF Input Differential Voltage 300 300 300 mV Table2-94 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) 1.64 1.94 Cross point Note: *Measuring point = V See Table2-22 on page2-22 for a complete table of trip points. trip. Timing Characteristics Table2-95 • LVPECL Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V J Speed Grade t t t t Units DOUT DP DIN PY Std. 0.66 1.80 0.04 1.40 ns –1 0.56 1.53 0.04 1.19 ns –2 0.49 1.34 0.03 1.05 ns Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-68
ProASIC3 DC and Switching Characteristics I/O Register Specifications Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset NI Preset B L U F D P a DOUT d O Data_out u NI PRE E Y F PRE RT t Data B D Q Core D Q BI FU C DFN1E1P1 Array G DFN1E1P1 FU NI E E Enable B FU B EOUT H C L CLK BK I U A F J PRE D Q K DFN1E1P1 Data Input I/O Register with: E Active High Enable Active High Preset Positive-Edge Triggered Data Output Register and Enable Output Register with: Active High Enable CLKBUF INBUF INBUF Active High Preset Postive-Edge Triggered K e e CL abl abl n n E E _ D Figure 2-15 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset 2-69 Revision 18
ProASIC3 Flash Family FPGAs Table2-96 • Parameter Definition and Measuring Nodes Measuring Nodes Parameter Name Parameter Definition (from, to)* t Clock-to-Q of the Output Data Register H, DOUT OCLKQ t Data Setup Time for the Output Data Register F, H OSUD t Data Hold Time for the Output Data Register F, H OHD t Enable Setup Time for the Output Data Register G, H OSUE t Enable Hold Time for the Output Data Register G, H OHE t Asynchronous Preset-to-Q of the Output Data Register L, DOUT OPRE2Q t Asynchronous Preset Removal Time for the Output Data Register L, H OREMPRE t Asynchronous Preset Recovery Time for the Output Data Register L, H ORECPRE t Clock-to-Q of the Output Enable Register H, EOUT OECLKQ t Data Setup Time for the Output Enable Register J, H OESUD t Data Hold Time for the Output Enable Register J, H OEHD t Enable Setup Time for the Output Enable Register K, H OESUE t Enable Hold Time for the Output Enable Register K, H OEHE t Asynchronous Preset-to-Q of the Output Enable Register I, EOUT OEPRE2Q t Asynchronous Preset Removal Time for the Output Enable Register I, H OEREMPRE t Asynchronous Preset Recovery Time for the Output Enable Register I, H OERECPRE t Clock-to-Q of the Input Data Register A, E ICLKQ t Data Setup Time for the Input Data Register C, A ISUD t Data Hold Time for the Input Data Register C, A IHD t Enable Setup Time for the Input Data Register B, A ISUE t Enable Hold Time for the Input Data Register B, A IHE t Asynchronous Preset-to-Q of the Input Data Register D, E IPRE2Q t Asynchronous Preset Removal Time for the Input Data Register D, A IREMPRE t Asynchronous Preset Recovery Time for the Input Data Register D, A IRECPRE Note: *See Figure2-15 on page2-69 for more information. Revision 18 2-70
ProASIC3 DC and Switching Characteristics Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear P a d DOUT O u Data FUBNI CC DDFN1E1CQ1 EEY ACrorarey Data_out FF DDFN1E1CQ1 FUBIRT t GG NI E E EOUT B Enable U F BB CLR CLR LL C L HH CLK K B U AA F CLR BNI JJ D Q U DD F DFN1E1C1 KK E Data Input I/O Register with CLR Active High Enable Active High Clear Positive-Edge Triggered Data Output Register and Enable Output Register with Active High Enable Active High Clear INBUF INBUF CLKBUF Positive-Edge Triggered e e K abl abl CL n n E E _ D Figure 2-16 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear 2-71 Revision 18
ProASIC3 Flash Family FPGAs Table2-97 • Parameter Definition and Measuring Nodes Measuring Nodes Parameter Name Parameter Definition (from, to)* t Clock-to-Q of the Output Data Register HH, DOUT OCLKQ t Data Setup Time for the Output Data Register FF, HH OSUD t Data Hold Time for the Output Data Register FF, HH OHD t Enable Setup Time for the Output Data Register GG, HH OSUE t Enable Hold Time for the Output Data Register GG, HH OHE t Asynchronous Clear-to-Q of the Output Data Register LL, DOUT OCLR2Q t Asynchronous Clear Removal Time for the Output Data Register LL, HH OREMCLR t Asynchronous Clear Recovery Time for the Output Data Register LL, HH ORECCLR t Clock-to-Q of the Output Enable Register HH, EOUT OECLKQ t Data Setup Time for the Output Enable Register JJ, HH OESUD t Data Hold Time for the Output Enable Register JJ, HH OEHD t Enable Setup Time for the Output Enable Register KK, HH OESUE t Enable Hold Time for the Output Enable Register KK, HH OEHE t Asynchronous Clear-to-Q of the Output Enable Register II, EOUT OECLR2Q t Asynchronous Clear Removal Time for the Output Enable Register II, HH OEREMCLR t Asynchronous Clear Recovery Time for the Output Enable Register II, HH OERECCLR t Clock-to-Q of the Input Data Register AA, EE ICLKQ t Data Setup Time for the Input Data Register CC, AA ISUD t Data Hold Time for the Input Data Register CC, AA IHD t Enable Setup Time for the Input Data Register BB, AA ISUE t Enable Hold Time for the Input Data Register BB, AA IHE t Asynchronous Clear-to-Q of the Input Data Register DD, EE ICLR2Q t Asynchronous Clear Removal Time for the Input Data Register DD, AA IREMCLR t Asynchronous Clear Recovery Time for the Input Data Register DD, AA IRECCLR Note: *See Figure2-16 on page2-71 for more information. Revision 18 2-72
ProASIC3 DC and Switching Characteristics Input Register t t ICKMPWH ICKMPWL 50% 50% 50% 50% 50% 50% 50% CLK t t IHD ISUD Data 1 50% 0 50% Enable 50% tIWPRE tIRECPRE tIREMPRE t IHE t 50% 50% 50% Preset ISUE t t t IWCLR IRECCLR IREMCLR 50% 50% 50% Clear t IPRE2Q 50% 50% 50% Out_1 t ICLR2Q t ICLKQ Figure 2-17 • Input Register Timing Diagram Timing Characteristics Table2-98 • Input Data Register Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description –2 –1 Std. Units t Clock-to-Q of the Input Data Register 0.24 0.27 0.32 ns ICLKQ t Data Setup Time for the Input Data Register 0.26 0.30 0.35 ns ISUD t Data Hold Time for the Input Data Register 0.00 0.00 0.00 ns IHD t Enable Setup Time for the Input Data Register 0.37 0.42 0.50 ns ISUE t Enable Hold Time for the Input Data Register 0.00 0.00 0.00 ns IHE t Asynchronous Clear-to-Q of the Input Data Register 0.45 0.52 0.61 ns ICLR2Q t Asynchronous Preset-to-Q of the Input Data Register 0.45 0.52 0.61 ns IPRE2Q t Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 0.00 ns IREMCLR t Asynchronous Clear Recovery Time for the Input Data Register 0.22 0.25 0.30 ns IRECCLR t Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 0.00 ns IREMPRE t Asynchronous Preset Recovery Time for the Input Data Register 0.22 0.25 0.30 ns IRECPRE t Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.22 0.25 0.30 ns IWCLR t Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.22 0.25 0.30 ns IWPRE t Clock Minimum Pulse Width High for the Input Data Register 0.36 0.41 0.48 ns ICKMPWH t Clock Minimum Pulse Width Low for the Input Data Register 0.32 0.37 0.43 ns ICKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-73 Revision 18
ProASIC3 Flash Family FPGAs Output Register t t OCKMPWH OCKMPWL 50% 50% 50% 50% 50% 50% 50% CLK t t OSUD OHD Data_out 1 50% 0 50% t Enable 50% OREMPRE t t t OWPRE ORECPRE OHE 50% 50% 50% Preset tOSUE tOWCLR tORECCLR tOREMCLR 50% 50% 50% Clear t OPRE2Q 50% 50% 50% DOUT t OCLR2Q t OCLKQ Figure 2-18 • Output Register Timing Diagram Timing Characteristics Table2-99 • Output Data Register Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description –2 –1 Std. Units t Clock-to-Q of the Output Data Register 0.59 0.67 0.79 ns OCLKQ t Data Setup Time for the Output Data Register 0.31 0.36 0.42 ns OSUD t Data Hold Time for the Output Data Register 0.00 0.00 0.00 ns OHD t Enable Setup Time for the Output Data Register 0.44 0.50 0.59 ns OSUE t Enable Hold Time for the Output Data Register 0.00 0.00 0.00 ns OHE t Asynchronous Clear-to-Q of the Output Data Register 0.80 0.91 1.07 ns OCLR2Q t Asynchronous Preset-to-Q of the Output Data Register 0.80 0.91 1.07 ns OPRE2Q t Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 0.00 ns OREMCLR t Asynchronous Clear Recovery Time for the Output Data Register 0.22 0.25 0.30 ns ORECCLR t Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 0.00 ns OREMPRE t Asynchronous Preset Recovery Time for the Output Data Register 0.22 0.25 0.30 ns ORECPRE t Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.22 0.25 0.30 ns OWCLR t Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.22 0.25 0.30 ns OWPRE t Clock Minimum Pulse Width High for the Output Data Register 0.36 0.41 0.48 ns OCKMPWH t Clock Minimum Pulse Width Low for the Output Data Register 0.32 0.37 0.43 ns OCKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-74
ProASIC3 DC and Switching Characteristics Output Enable Register t t OECKMPWH OECKMPWL 50% 50% 50% 50% 50% 50% 50% CLK t t OESUDOEHD 1 50% 0 50% D_Enable 50% Enable tOEWPRE t tOEREMPRE OERECPRE 50% 50% 50% t t Preset OESUEOEHE t t t OEWCLR OERECCLR OEREMCLR 50% 50% 50% Clear tOEPRE2Q tOECLR2Q 50% 50% 50% EOUT t OECLKQ Figure 2-19 • Output Enable Register Timing Diagram 2-75 Revision 18
ProASIC3 Flash Family FPGAs Timing Characteristics Table2-100 • Output Enable Register Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description –2 –1 Std. Units t Clock-to-Q of the Output Enable Register 0.59 0.67 0.79 ns OECLKQ t Data Setup Time for the Output Enable Register 0.31 0.36 0.42 ns OESUD t Data Hold Time for the Output Enable Register 0.00 0.00 0.00 ns OEHD t Enable Setup Time for the Output Enable Register 0.44 0.50 0.58 ns OESUE t Enable Hold Time for the Output Enable Register 0.00 0.00 0.00 ns OEHE t Asynchronous Clear-to-Q of the Output Enable Register 0.67 0.76 0.89 ns OECLR2Q t Asynchronous Preset-to-Q of the Output Enable Register 0.67 0.76 0.89 ns OEPRE2Q t Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 0.00 ns OEREMCLR t Asynchronous Clear Recovery Time for the Output Enable Register 0.22 0.25 0.30 ns OERECCLR t Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 0.00 ns OEREMPRE t Asynchronous Preset Recovery Time for the Output Enable Register 0.22 0.25 0.30 ns OERECPRE t Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.22 0.25 0.30 ns OEWCLR t Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.22 0.25 0.30 ns OEWPRE t Clock Minimum Pulse Width High for the Output Enable Register 0.36 0.41 0.48 ns OECKMPWH t Clock Minimum Pulse Width Low for the Output Enable Register 0.32 0.37 0.43 ns OECKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-76
ProASIC3 DC and Switching Characteristics DDR Module Specifications Input DDR Module Input DDR INBUF A D Data Out_QF (to core) FF1 B E Out_QR CLK (to core) CLKBUF FF2 C CLR INBUF DDR_IN Figure 2-20 • Input DDR Timing Model Table2-101 • Parameter Definitions Parameter Name Parameter Definition Measuring Nodes (from, to) t Clock-to-Out Out_QR B, D DDRICLKQ1 t Clock-to-Out Out_QF B, E DDRICLKQ2 t Data Setup Time of DDR input A, B DDRISUD t Data Hold Time of DDR input A, B DDRIHD t Clear-to-Out Out_QR C, D DDRICLR2Q1 t Clear-to-Out Out_QF C, E DDRICLR2Q2 t Clear Removal C, B DDRIREMCLR t Clear Recovery C, B DDRIRECCLR 2-77 Revision 18
ProASIC3 Flash Family FPGAs CLK tDDRISUD tDDRIHD Data 1 2 3 4 5 6 7 8 9 t DDRIRECCLR CLR t DDRIREMCLR t DDRICLKQ1 t DDRICLR2Q1 Out_QF 2 4 6 t t DDRICLKQ2 DDRICLR2Q2 Out_QR 3 5 7 Figure 2-21 • Input DDR Timing Diagram Timing Characteristics Table2-102 • Input DDR Propagation Delays Commercial-Case Conditions: T = 70°C, Worst Case VCC = 1.425 V J Parameter Description –2 –1 Std. Units t Clock-to-Out Out_QR for Input DDR 0.27 0.31 0.37 ns DDRICLKQ1 t Clock-to-Out Out_QF for Input DDR 0.39 0.44 0.52 ns DDRICLKQ2 t Data Setup for Input DDR (Fall) 0.25 0.28 0.33 ns DDRISUD Data Setup for Input DDR (Rise) 0.25 0.28 0.33 ns t Data Hold for Input DDR (Fall) 0.00 0.00 0.00 ns DDRIHD Data Hold for Input DDR (Rise) 0.00 0.00 0.00 ns t Asynchronous Clear-to-Out Out_QR for Input DDR 0.46 0.53 0.62 ns DDRICLR2Q1 t Asynchronous Clear-to-Out Out_QF for Input DDR 0.57 0.65 0.76 ns DDRICLR2Q2 t Asynchronous Clear Removal time for Input DDR 0.00 0.00 0.00 ns DDRIREMCLR t Asynchronous Clear Recovery time for Input DDR 0.22 0.25 0.30 ns DDRIRECCLR t Asynchronous Clear Minimum Pulse Width for Input DDR 0.22 0.25 0.30 ns DDRIWCLR t Clock Minimum Pulse Width High for Input DDR 0.36 0.41 0.48 ns DDRICKMPWH t Clock Minimum Pulse Width Low for Input DDR 0.32 0.37 0.43 ns DDRICKMPWL F Maximum Frequency for Input DDR 350 309 263 MHz DDRIMAX Note: For specific junction temperature and voltage-supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-78
ProASIC3 DC and Switching Characteristics Output DDR Module Output DDR A Data_F X (from core) FF1 B Out CLK X 0 E CLKBUF C X X D 1 OUTBUF Data_R X (from core) FF2 B CLR X INBUF C X DDR_OUT Figure 2-22 • Output DDR Timing Model Table2-103 • Parameter Definitions Parameter Name Parameter Definition Measuring Nodes (from, to) t Clock-to-Out B, E DDROCLKQ t Asynchronous Clear-to-Out C, E DDROCLR2Q t Clear Removal C, B DDROREMCLR t Clear Recovery C, B DDRORECCLR t Data Setup Data_F A, B DDROSUD1 t Data Setup Data_R D, B DDROSUD2 t Data Hold Data_F A, B DDROHD1 t Data Hold Data_R D, B DDROHD2 2-79 Revision 18
ProASIC3 Flash Family FPGAs CLK t t DDROSUD2 DDROHD2 Data_F 1 2 3 4 5 tDDROREMCLR tDDROHD1 Data_R 6 7 8 9 10 11 t DDRORECCLR CLR tDDROREMCLR t t DDROCLR2Q DDROCLKQ Out 7 2 8 3 9 4 10 Figure 2-23 • Output DDR Timing Diagram Timing Characteristics Table2-104 • Output DDR Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description –2 –1 Std. Units t Clock-to-Out of DDR for Output DDR 0.70 0.80 0.94 ns DDROCLKQ t Data_F Data Setup for Output DDR 0.38 0.43 0.51 ns DDROSUD1 t Data_R Data Setup for Output DDR 0.38 0.43 0.51 ns DDROSUD2 t Data_F Data Hold for Output DDR 0.00 0.00 0.00 ns DDROHD1 t Data_R Data Hold for Output DDR 0.00 0.00 0.00 ns DDROHD2 t Asynchronous Clear-to-Out for Output DDR 0.80 0.91 1.07 ns DDROCLR2Q t Asynchronous Clear Removal Time for Output DDR 0.00 0.00 0.00 ns DDROREMCLR t Asynchronous Clear Recovery Time for Output DDR 0.22 0.25 0.30 ns DDRORECCLR t Asynchronous Clear Minimum Pulse Width for Output DDR 0.22 0.25 0.30 ns DDROWCLR1 t Clock Minimum Pulse Width High for the Output DDR 0.36 0.41 0.48 ns DDROCKMPWH t Clock Minimum Pulse Width Low for the Output DDR 0.32 0.37 0.43 ns DDROCKMPWL F Maximum Frequency for the Output DDR 350 309 263 MHz DDOMAX Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-80
ProASIC3 DC and Switching Characteristics VersaTile Characteristics VersaTile Specifications as a Combinatorial Module The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the Fusion, IGLOO®/e, and ProASIC3/E Macro Library Guide. A Y INV A A OR2 Y NOR2 Y B B A A AND2 Y Y NAND2 B B A A XOR2 Y B XOR3 Y B C A A MAJ3 0 A MUX2 Y B Y B NAND3 B 1 C C S Figure 2-24 • Sample of Combinatorial Cells 2-81 Revision 18
ProASIC3 Flash Family FPGAs t PD A NAND2 or Y Any Combinatorial Logic B t = MAX(t , t , t , t ) PD PD(RR) PD(RF) PD(FF) PD(FR) where edges are applicable for the particular combinatorial cell VCC 50% 50% A, B, C GND VCC 50% 50% OUT GND tPD tPD (FF) (RR) VCC OUT t PD (FR) 50% 50% t PD GND (RF) Figure 2-25 • Timing Model and Waveforms Revision 18 2-82
ProASIC3 DC and Switching Characteristics Timing Characteristics Table2-105 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Combinatorial Cell Equation Parameter –2 –1 Std. Units INV Y = !A t 0.40 0.46 0.54 ns PD AND2 Y = A · B t 0.47 0.54 0.63 ns PD NAND2 Y = !(A · B) t 0.47 0.54 0.63 ns PD OR2 Y = A + B t 0.49 0.55 0.65 ns PD NOR2 Y = !(A + B) t 0.49 0.55 0.65 ns PD XOR2 Y = A B t 0.74 0.84 0.99 ns PD MAJ3 Y = MAJ(A, B, C) t 0.70 0.79 0.93 ns PD XOR3 Y = A B C t 0.87 1.00 1.17 ns PD MUX2 Y = A !S + B S t 0.51 0.58 0.68 ns PD AND3 Y = A · B · C t 0.56 0.64 0.75 ns PD Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. VersaTile Specifications as a Sequential Module The ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide. Data Out Data Out D Q D Q En DFN1 DFN1E1 CLK CLK PRE Data Out Data Out D Q D Q En DFN1C1 DFI1E1P1 CLK CLK CLR Figure 2-26 • Sample of Sequential Cells 2-83 Revision 18
ProASIC3 Flash Family FPGAs t t CKMPWH CKMPWL 50% 50% 50% 50% 50% 50% 50% CLK t HD t SUD Data 50% 0 50% EN 50% t t WPRE RECPRE t REMPRE t HE 50% 50% 50% PRE tSUE tWCLR tRECCLR tREMCLR 50% 50% 50% CLR t PRE2Q t CLR2Q 50% 50% 50% Out t CLKQ Figure 2-27 • Timing Model and Waveforms Timing Characteristics Table2-106 • Register Delays Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description –2 –1 Std. Units t Clock-to-Q of the Core Register 0.55 0.63 0.74 ns CLKQ t Data Setup Time for the Core Register 0.43 0.49 0.57 ns SUD t Data Hold Time for the Core Register 0.00 0.00 0.00 ns HD t Enable Setup Time for the Core Register 0.45 0.52 0.61 ns SUE t Enable Hold Time for the Core Register 0.00 0.00 0.00 ns HE t Asynchronous Clear-to-Q of the Core Register 0.40 0.45 0.53 ns CLR2Q t Asynchronous Preset-to-Q of the Core Register 0.40 0.45 0.53 ns PRE2Q t Asynchronous Clear Removal Time for the Core Register 0.00 0.00 0.00 ns REMCLR t Asynchronous Clear Recovery Time for the Core Register 0.22 0.25 0.30 ns RECCLR t Asynchronous Preset Removal Time for the Core Register 0.00 0.00 0.00 ns REMPRE t Asynchronous Preset Recovery Time for the Core Register 0.22 0.25 0.30 ns RECPRE t Asynchronous Clear Minimum Pulse Width for the Core Register 0.22 0.25 0.30 ns WCLR t Asynchronous Preset Minimum Pulse Width for the Core Register 0.22 0.25 0.30 ns WPRE t Clock Minimum Pulse Width High for the Core Register 0.32 0.37 0.43 ns CKMPWH t Clock Minimum Pulse Width Low for the Core Register 0.36 0.41 0.48 ns CKMPWL Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-84
ProASIC3 DC and Switching Characteristics Global Resource Characteristics A3P250 Clock Tree Topology Clock delays are device-specific. Figure2-28 is an example of a global tree used for clock routing. The global tree presented in Figure2-28 is driven by a CCC located on the west side of the A3P250 device. It is used to drive all D-flip- flops in the device. Central Global Rib CCC VersaTile Rows Global Spine Figure 2-28 • Example of Global Tree Use in an A3P250 Device for Clock Routing Global Tree Timing Characteristics Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page2-90. Table2-108 to Table2-114 on page2-89 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading. 2-85 Revision 18
ProASIC3 Flash Family FPGAs Timing Characteristics Table2-107 • A3P015 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J –2 –1 Std. Parameter Description Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units t Input Low Delay for Global Clock 0.66 0.81 0.75 0.92 0.88 1.08 ns RCKL t Input High Delay for Global Clock 0.67 0.84 0.76 0.96 0.89 1.13 ns RCKH t Minimum Pulse Width High for Global Clock 0.75 0.85 1.00 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 0.85 0.96 1.13 ns RCKMPWL t Maximum Skew for Global Clock 0.18 0.21 0.25 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage-supply levels, refer to Table2-6 on page2-6 for derating values. Table2-108 • A3P030 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J –2 –1 Std. Parameter Description Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units t Input Low Delay for Global Clock 0.67 0.81 0.76 0.92 0.89 1.09 ns RCKL t Input High Delay for Global Clock 0.68 0.85 0.77 0.97 0.91 1.14 ns RCKH t Minimum Pulse Width High for Global Clock 0.75 0.85 1.00 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 0.85 0.96 1.13 ns RCKMPWL t Maximum Skew for Global Clock 0.18 0.21 0.24 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-86
ProASIC3 DC and Switching Characteristics Table2-109 • A3P060 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J –2 –1 Std. Parameter Description Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units t Input Low Delay for Global Clock 0.71 0.93 0.81 1.05 0.95 1.24 ns RCKL t Input High Delay for Global Clock 0.70 0.96 0.80 1.09 0.94 1.28 ns RCKH t Minimum Pulse Width High for Global Clock 0.75 0.85 1.00 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 0.85 0.96 1.13 ns RCKMPWL t Maximum Skew for Global Clock 0.26 0.29 0.34 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Table2-110 • A3P125 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J –2 –1 Std. Parameter Description Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units t Input Low Delay for Global Clock 0.77 0.99 0.87 1.12 1.03 1.32 ns RCKL t Input High Delay for Global Clock 0.76 1.02 0.87 1.16 1.02 1.37 ns RCKH t Minimum Pulse Width High for Global Clock 0.75 0.85 1.00 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 0.85 0.96 1.13 ns RCKMPWL t Maximum Skew for Global Clock 0.26 0.29 0.34 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-87 Revision 18
ProASIC3 Flash Family FPGAs Table2-111 • A3P250 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J –2 –1 Std. Parameter Description Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units t Input Low Delay for Global Clock 0.80 1.01 0.91 1.15 1.07 1.36 ns RCKL t Input High Delay for Global Clock 0.78 1.04 0.89 1.18 1.04 1.39 ns RCKH t Minimum Pulse Width High for Global Clock 0.75 0.85 1.00 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 0.85 0.96 1.13 ns RCKMPWL t Maximum Skew for Global Clock 0.26 0.29 0.34 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Table2-112 • A3P400 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J –2 –1 Std. Parameter Description Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units t Input Low Delay for Global Clock 0.87 1.09 0.99 1.24 1.17 1.46 ns RCKL t Input High Delay for Global Clock 0.86 1.11 0.98 1.27 1.15 1.49 ns RCKH t Minimum Pulse Width High for Global Clock 0.75 0.85 1.00 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 0.85 0.96 1.13 ns RCKMPWL t Maximum Skew for Global Clock 0.26 0.29 0.34 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-88
ProASIC3 DC and Switching Characteristics Table2-113 • A3P600 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J –2 –1 Std. Parameter Description Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units t Input Low Delay for Global Clock 0.87 1.09 0.99 1.24 1.17 1.46 ns RCKL t Input High Delay for Global Clock 0.86 1.11 0.98 1.27 1.15 1.49 ns RCKH t Minimum Pulse Width High for Global Clock 0.75 0.85 1.00 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 0.85 0.96 1.13 ns RCKMPWL t Maximum Skew for Global Clock 0.26 0.29 0.34 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Table2-114 • A3P1000 Global Resource Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J –2 –1 Std. Parameter Description Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units t Input Low Delay for Global Clock 0.94 1.16 1.07 1.32 1.26 1.55 ns RCKL t Input High Delay for Global Clock 0.93 1.19 1.06 1.35 1.24 1.59 ns RCKH t Minimum Pulse Width High for Global Clock 0.75 0.85 1.00 ns RCKMPWH t Minimum Pulse Width Low for Global Clock 0.85 0.96 1.13 ns RCKMPWL t Maximum Skew for Global Clock 0.26 0.29 0.35 ns RCKSW Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-89 Revision 18
ProASIC3 Flash Family FPGAs Clock Conditioning Circuits CCC Electrical Specifications Timing Characteristics Table2-115 • ProASIC3 CCC/PLL Specification Parameter Minimum Typical Maximum Units Clock Conditioning Circuitry Input Frequency f 1.5 350 MHz IN_CCC Clock Conditioning Circuitry Output Frequency f 0.75 350 MHz OUT_CCC Serial Clock (SCLK) for Dynamic PLL1 125 MHz Delay Increments in Programmable Delay Blocks2, 3 2004 ps Number of Programmable Values in Each Programmable 32 Delay Block Input Period Jitter 1.5 ns CCC Output Peak-to-Peak Period Jitter F Max Peak-to-Peak Period Jitter CCC_OUT 1 Global 3 Global Network Networks Used Used 0.75 MHz to 24 MHz 0.50% 0.70% 24 MHz to 100 MHz 1.00% 1.20% 100 MHz to 250 MHz 1.75% 2.00% 250 MHz to 350 MHz 2.50% 5.60% Acquisition Time (A3P250 and A3P1000 only) LockControl = 0 300 µs LockControl = 1 300 µs (all other dies) LockControl = 0 300 µs LockControl = 1 6.0 ms Tracking Jitter5 (A3P250 and A3P1000 only) LockControl = 0 1.6 ns LockControl = 1 1.6 ns (all other dies) LockControl = 0 1.6 ns LockControl = 1 0.8 ns Output Duty Cycle 48.5 51.5 % Delay Range in Block: Programmable Delay 12, 3 0.6 5.56 ns Delay Range in Block: Programmable Delay 22, 3 0.225 5.56 ns Delay Range in Block: Fixed Delay2, 3 2.2 ns Notes: 1. Maximum value obtained for a –2 speed-grade device in worst-case commercial conditions. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2. This delay is a function of voltage and temperature. See Table2-6 on page2-6 for deratings. 3. T = 25°C, VCC = 1.5 V J 4. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help for more information. 5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter. 6. The A3P030 device does not contain a PLL. Revision 18 2-90
ProASIC3 DC and Switching Characteristics Output Signal T T period_max period_min Note: Peak-to-peak jitter measurements are defined by T = T – T . peak-to-peak period_max period_min Figure 2-29 • Peak-to-Peak Jitter Definition 2-91 Revision 18
ProASIC3 Flash Family FPGAs Embedded SRAM and FIFO Characteristics SRAM RAM4K9 RAM512X18 ADDRA11 DOUTA8 RADDR8 RD17 ADDRA10 DOUTA7 RADDR7 RD16 ADDRA0 DOUTA0 RADDR0 RD0 DINA8 DINA7 DINA0 RW1 RW0 WIDTHA1 WIDTHA0 PIPE PIPEA WMODEA BLKA REN WENA RCLK CLKA ADDRB11 DOUTB8 WADDR8 ADDRB10 DOUTB7 WADDR7 ADDRB0 DOUTB0 WADDR0 WD17 WD16 DINB8 DINB7 WD0 DINB0 WW1 WIDTHB1 WW0 WIDTHB0 PIPEB WMODEB BLKB WEN WENB CLKB WCLK RESET RESET Figure 2-30 • RAM Models Revision 18 2-92
ProASIC3 DC and Switching Characteristics Timing Waveforms t CYC t t CKH CKL CLK tAS tAH [R|W]ADDR A0 A1 A2 t BKS t BKH BLK tENS tENH WEN t CKQ1 DOUT|RD Dn D0 D1 D2 t DOH1 Figure 2-31 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18. t CYC t t CKH CKL CLK t t AS AH [R|W]ADDR A0 A1 A2 t BKS t BKH BLK t t ENS ENH WEN t CKQ2 DOUT|RD D D D n 0 1 t DOH2 Figure 2-32 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18. 2-93 Revision 18
ProASIC3 Flash Family FPGAs t CYC t t CKH CKL CLK t t AS AH [R|W]ADDR A0 A1 A2 t BKS t BKH BLK t t ENS ENH WEN t t DS DH DIN|RD DI0 DI1 DOUT|RD Dn D2 Figure 2-33 • RAM Write, Output Retained. Applicable to Both RAM4K9 and RAM512x18. t CYC t t CKH CKL CLK t t AS AH ADDR A0 A1 A2 t BKS t BKH BLK t ENS WEN t t DS DH DIN DI0 DI1 DI2 DOUT D DI DI n 0 1 (pass-through) DOUT D DI DI n 0 1 (pipelined) Figure 2-34 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only. Revision 18 2-94
ProASIC3 DC and Switching Characteristics t CYC t t CKH CKL CLK RESET t RSTBQ DOUT|RD Dm Dn Figure 2-35 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18. 2-95 Revision 18
ProASIC3 Flash Family FPGAs Timing Characteristics Table2-116 • RAM4K9 Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description –2 –1 Std. Units t Address setup time 0.25 0.28 0.33 ns AS t Address hold time 0.00 0.00 0.00 ns AH t REN, WEN setup time 0.14 0.16 0.19 ns ENS t REN, WEN hold time 0.10 0.11 0.13 ns ENH t BLK setup time 0.23 0.27 0.31 ns BKS t BLK hold time 0.02 0.02 0.02 ns BKH t Input data (DIN) setup time 0.18 0.21 0.25 ns DS t Input data (DIN) hold time 0.00 0.00 0.00 ns DH t Clock High to new data valid on DOUT (output retained, WMODE = 0) 2.36 2.68 3.15 ns CKQ1 Clock High to new data valid on DOUT (flow-through, WMODE = 1) 1.79 2.03 2.39 ns t Clock High to new data valid on DOUT (pipelined) 0.89 1.02 1.20 ns CKQ2 t 1 Address collision clk-to-clk delay for reliable write after write on same 0.33 0.28 0.25 ns C2CWWL address—Applicable to Closing Edge t 1 Address collision clk-to-clk delay for reliable write after write on same 0.30 0.26 0.23 ns C2CWWH address—Applicable to Rising Edge t 1 Address collision clk-to-clk delay for reliable read access after write on same 0.45 0.38 0.34 ns C2CRWH address—Applicable to Opening Edge t 1 Address collision clk-to-clk delay for reliable write access after read on same 0.49 0.42 0.37 ns C2CWRH address— Applicable to Opening Edge t RESET Low to data out Low on DOUT (flow-through) 0.92 1.05 1.23 ns RSTBQ RESET Low to Data Out Low on DOUT (pipelined) 0.92 1.05 1.23 ns t RESET removal 0.29 0.33 0.38 ns REMRSTB t RESET recovery 1.50 1.71 2.01 ns RECRSTB t RESET minimum pulse width 0.21 0.24 0.29 ns MPWRSTB t Clock cycle time 3.23 3.68 4.32 ns CYC F Maximum frequency 310 272 231 MHz MAX Notes: 1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash- Based cSoCs and FPGAs. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-96
ProASIC3 DC and Switching Characteristics Table2-117 • RAM512X18 Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description –2 –1 Std. Units t Address setup time 0.25 0.28 0.33 ns AS t Address hold time 0.00 0.00 0.00 ns AH t REN, WEN setup time 0.13 0.15 0.17 ns ENS t REN, WEN hold time 0.10 0.11 0.13 ns ENH t Input data (WD) setup time 0.18 0.21 0.25 ns DS t Input data (WD) hold time 0.00 0.00 0.00 ns DH t Clock High to new data valid on RD (output retained) 2.16 2.46 2.89 ns CKQ1 t Clock High to new data valid on RD (pipelined) 0.90 1.02 1.20 ns CKQ2 t 1 Address collision clk-to-clk delay for reliable read access after write on same 0.50 0.43 0.38 ns C2CRWH address—Applicable to Opening Edge t 1 Address collision clk-to-clk delay for reliable write access after read on same 0.59 0.50 0.44 ns C2CWRH address—Applicable to Opening Edge t RESET Low to data out Low on RD (flow-through) 0.92 1.05 1.23 ns RSTBQ RESET Low to data out Low on RD (pipelined) 0.92 1.05 1.23 ns t RESET removal 0.29 0.33 0.38 ns REMRSTB t RESET recovery 1.50 1.71 2.01 ns RECRSTB t RESET minimum pulse width 0.21 0.24 0.29 ns MPWRSTB t Clock cycle time 3.23 3.68 4.32 ns CYC F Maximum frequency 310 272 231 MHz MAX Notes: 1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash- Based cSoCs and FPGAs. 2. For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. 2-97 Revision 18
ProASIC3 Flash Family FPGAs FIFO FIFO4K18 RW2 R D 1 7 RW1 R D 1 6 RW0 WW2 WW1 WW0 RD0 ESTOP FSTOP F U L L AFULL EMPTY AEVAL11 AEMPTY AEVAL10 AEVAL0 AFVAL11 AFVAL10 AFVAL0 REN RBLK RCLK WD17 WD16 WD0 WEN WBLK WCLK RPIPE RESET Figure 2-36 • FIFO Model Revision 18 2-98
ProASIC3 DC and Switching Characteristics Timing Waveforms t CYC RCLK t t ENS ENH REN t t BKS BKH RBLK t CKQ1 (flow-througRhD) Dn D0 D1 D2 t CKQ2 RD D D D (pipelined) n 0 1 Figure 2-37 • FIFO Read t CYC WCLK t t ENS ENH WEN t t BKS BKH WBLK t t DS DH WD DI0 DI1 Figure 2-38 • FIFO Write 2-99 Revision 18
ProASIC3 Flash Family FPGAs RCLK/ WCLK t t MPWRSTB RSTCK RESET t RSTFG EMPTY t RSTAF AEMPTY t RSTFG FULL t RSTAF AFULL WA/RA (Address Counter) MATCH (A ) 0 Figure 2-39 • FIFO Reset t CYC RCLK t RCKEF EMPTY t CKAF AEMPTY WA/RA NO MATCH NO MATCH Dist = AEF_TH MATCH (EMPTY) (Address Counter) Figure 2-40 • FIFO EMPTY Flag and AEMPTY Flag Assertion Revision 18 2-100
ProASIC3 DC and Switching Characteristics t CYC WCLK t WCKFF FULL t CKAF AFULL WA/RA NO MATCH NO MATCH Dist = AFF_TH MATCH (FULL) (Address Counter) Figure 2-41 • FIFO FULL Flag and AFULL Flag Assertion WCLK WA/RA MATCH NO MATCH NO MATCH NO MATCH NO MATCH Dist = AEF_TH + 1 (Address Counter) (EMPTY) 1st Rising 2nd Rising Edge Edge After 1st After 1st RCLK Write Write t RCKEF EMPTY t CKAF AEMPTY Figure 2-42 • FIFO EMPTY Flag and AEMPTY Flag Deassertion RCLK WA/RA MATCH (FULL) NO MATCH NO MATCH NO MATCH NO MATCH Dist = AFF_TH – 1 (Address Counter) 1st Rising 1st Rising Edge Edge After 1st After 2nd WCLK Read Read t WCKF FULL t CKAF AFULL Figure 2-43 • FIFO FULL Flag and AFULL Flag Deassertion 2-101 Revision 18
ProASIC3 Flash Family FPGAs Timing Characteristics Table2-118 • FIFO (for all dies except A3P250) Worst Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Parameter Description –2 –1 Std. Units t REN, WEN Setup Time 1.34 1.52 1.79 ns ENS t REN, WEN Hold Time 0.00 0.00 0.00 ns ENH t BLK Setup Time 0.19 0.22 0.26 ns BKS t BLK Hold Time 0.00 0.00 0.00 ns BKH t Input Data (WD) Setup Time 0.18 0.21 0.25 ns DS t Input Data (WD) Hold Time 0.00 0.00 0.00 ns DH t Clock High to New Data Valid on RD (flow-through) 2.17 2.47 2.90 ns CKQ1 t Clock High to New Data Valid on RD (pipelined) 0.94 1.07 1.26 ns CKQ2 t RCLK High to Empty Flag Valid 1.72 1.96 2.30 ns RCKEF t WCLK High to Full Flag Valid 1.63 1.86 2.18 ns WCKFF t Clock High to Almost Empty/Full Flag Valid 6.19 7.05 8.29 ns CKAF t RESET Low to Empty/Full Flag Valid 1.69 1.93 2.27 ns RSTFG t RESET Low to Almost Empty/Full Flag Valid 6.13 6.98 8.20 ns RSTAF t RESET Low to Data Out Low on RD (flow-through) 0.92 1.05 1.23 ns RSTBQ RESET Low to Data Out Low on RD (pipelined) 0.92 1.05 1.23 ns t RESET Removal 0.29 0.33 0.38 ns REMRSTB t RESET Recovery 1.50 1.71 2.01 ns RECRSTB t RESET Minimum Pulse Width 0.21 0.24 0.29 ns MPWRSTB t Clock Cycle Time 3.23 3.68 4.32 ns CYC F Maximum Frequency for FIFO 310 272 231 MHz MAX Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-102
ProASIC3 DC and Switching Characteristics Table2-119 • FIFO (for A3P250 only, aspect-ratio-dependent) Worst Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Parameter Description –2 –1 Std. Units t REN, WEN Setup Time 3.26 3.71 4.36 ns ENS t REN, WEN Hold Time 0.00 0.00 0.00 ns ENH t BLK Setup Time 0.19 0.22 0.26 ns BKS t BLK Hold Time 0.00 0.00 0.00 ns BKH t Input Data (WD) Setup Time 0.18 0.21 0.25 ns DS t Input Data (WD) Hold Time 0.00 0.00 0.00 ns DH t Clock High to New Data Valid on RD (flow-through) 2.17 2.47 2.90 ns CKQ1 t Clock High to New Data Valid on RD (pipelined) 0.94 1.07 1.26 ns CKQ2 t RCLK High to Empty Flag Valid 1.72 1.96 2.30 ns RCKEF t WCLK High to Full Flag Valid 1.63 1.86 2.18 ns WCKFF t Clock High to Almost Empty/Full Flag Valid 6.19 7.05 8.29 ns CKAF t RESET Low to Empty/Full Flag Valid 1.69 1.93 2.27 ns RSTFG t RESET Low to Almost Empty/Full Flag Valid 6.13 6.98 8.20 ns RSTAF t RESET Low to Data Out Low on RD (flow-through) 0.92 1.05 1.23 ns RSTBQ RESET Low to Data Out Low on RD (pipelined) 0.92 1.05 1.23 ns t RESET Removal 0.29 0.33 0.38 ns REMRSTB t RESET Recovery 1.50 1.71 2.01 ns RECRSTB t RESET Minimum Pulse Width 0.21 0.24 0.29 ns MPWRSTB t Clock Cycle Time 3.23 3.68 4.32 ns CYC F Maximum Frequency for FIFO 310 272 231 MHz MAX 2-103 Revision 18
ProASIC3 Flash Family FPGAs Table2-120 • A3P250 FIFO 512×8 Worst Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Parameter Description –2 –1 Std. Units t REN, WEN Setup Time 3.75 4.27 5.02 ns ENS t REN, WEN Hold Time 0.00 0.00 0.00 ns ENH t BLK Setup Time 0.19 0.22 0.26 ns BKS t BLK Hold Time 0.00 0.00 0.00 ns BKH t Input Data (WD) Setup Time 0.18 0.21 0.25 ns DS t Input Data (WD) Hold Time 0.00 0.00 0.00 ns DH t Clock High to New Data Valid on RD (flow-through) 2.17 2.47 2.90 ns CKQ1 t Clock High to New Data Valid on RD (pipelined) 0.94 1.07 1.26 ns CKQ2 t RCLK High to Empty Flag Valid 1.72 1.96 2.30 ns RCKEF t WCLK High to Full Flag Valid 1.63 1.86 2.18 ns WCKFF t Clock High to Almost Empty/Full Flag Valid 6.19 7.05 8.29 ns CKAF t RESET Low to Empty/Full Flag Valid 1.69 1.93 2.27 ns RSTFG t RESET Low to Almost Empty/Full Flag Valid 6.13 6.98 8.20 ns RSTAF t RESET Low to Data Out Low on RD (flow-through) 0.92 1.05 1.23 ns RSTBQ RESET Low to Data Out Low on RD (pipelined) 0.92 1.05 1.23 ns t RESET Removal 0.29 0.33 0.38 ns REMRSTB t RESET Recovery 1.50 1.71 2.01 ns RECRSTB t RESET Minimum Pulse Width 0.21 0.24 0.29 ns MPWRSTB t Clock Cycle Time 3.23 3.68 4.32 ns CYC F Maximum Frequency for FIFO 310 272 231 MHz MAX Revision 18 2-104
ProASIC3 DC and Switching Characteristics Table2-121 • A3P250 FIFO 1k×4 Worst Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Parameter Description –2 –1 Std. Units t REN, WEN Setup Time 4.05 4.61 5.42 ns ENS t REN, WEN Hold Time 0.00 0.00 0.00 ns ENH t BLK Setup Time 0.19 0.22 0.26 ns BKS t BLK Hold Time 0.00 0.00 0.00 ns BKH t Input Data (WD) Setup Time 0.18 0.21 0.25 ns DS t Input Data (WD) Hold Time 0.00 0.00 0.00 ns DH t Clock High to New Data Valid on RD (flow-through) 2.36 2.68 3.15 ns CKQ1 t Clock High to New Data Valid on RD (pipelined) 0.89 1.02 1.20 ns CKQ2 t RCLK High to Empty Flag Valid 1.72 1.96 2.30 ns RCKEF t WCLK High to Full Flag Valid 1.63 1.86 2.18 ns WCKFF t Clock High to Almost Empty/Full Flag Valid 6.19 7.05 8.29 ns CKAF t RESET Low to Empty/Full Flag Valid 1.69 1.93 2.27 ns RSTFG t RESET Low to Almost Empty/Full Flag Valid 6.13 6.98 8.20 ns RSTAF t RESET Low to Data Out Low on RD (flow-through) 0.92 1.05 1.23 ns RSTBQ RESET Low to Data Out Low on RD (pipelined) 0.92 1.05 1.23 ns t RESET Removal 0.29 0.33 0.38 ns REMRSTB t RESET Recovery 1.50 1.71 2.01 ns RECRSTB t RESET Minimum Pulse Width 0.21 0.24 0.29 ns MPWRSTB t Clock Cycle Time 3.23 3.68 4.32 ns CYC F Maximum Frequency for FIFO 310 272 231 MHz MAX 2-105 Revision 18
ProASIC3 Flash Family FPGAs Table2-122 • A3P250 FIFO 2k×2 Worst Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Parameter Description –2 –1 Std. Units t REN, WEN Setup Time 4.39 5.00 5.88 ns ENS t REN, WEN Hold Time 0.00 0.00 0.00 ns ENH t BLK Setup Time 0.19 0.22 0.26 ns BKS t BLK Hold Time 0.00 0.00 0.00 ns BKH t Input Data (WD) Setup Time 0.18 0.21 0.25 ns DS t Input Data (WD) Hold Time 0.00 0.00 0.00 ns DH t Clock High to New Data Valid on RD (flow-through) 2.36 2.68 3.15 ns CKQ1 t Clock High to New Data Valid on RD (pipelined) 0.89 1.02 1.20 ns CKQ2 t RCLK High to Empty Flag Valid 1.72 1.96 2.30 ns RCKEF t WCLK High to Full Flag Valid 1.63 1.86 2.18 ns WCKFF t Clock High to Almost Empty/Full Flag Valid 6.19 7.05 8.29 ns CKAF t RESET Low to Empty/Full Flag Valid 1.69 1.93 2.27 ns RSTFG t RESET Low to Almost Empty/Full Flag Valid 6.13 6.98 8.20 ns RSTAF t RESET Low to Data Out Low on RD (flow-through) 0.92 1.05 1.23 ns RSTBQ RESET Low to Data Out Low on RD (pipelined) 0.92 1.05 1.23 ns t RESET Removal 0.29 0.33 0.38 ns REMRSTB t RESET Recovery 1.50 1.71 2.01 ns RECRSTB t RESET Minimum Pulse Width 0.21 0.24 0.29 ns MPWRSTB t Clock Cycle Time 3.23 3.68 4.32 ns CYC F Maximum Frequency for FIFO 310 272 231 MHz MAX Table2-123 • A3P250 FIFO 4k×1 Worst Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Parameter Description –2 –1 Std. Units t REN, WEN Setup Time 4.86 5.53 6.50 ns ENS t REN, WEN Hold Time 0.00 0.00 0.00 ns ENH t BLK Setup Time 0.19 0.22 0.26 ns BKS t BLK Hold Time 0.00 0.00 0.00 ns BKH t Input Data (WD) Setup Time 0.18 0.21 0.25 ns DS t Input Data (WD) Hold Time 0.00 0.00 0.00 ns DH t Clock High to New Data Valid on RD (flow-through) 2.36 2.68 3.15 ns CKQ1 t Clock High to New Data Valid on RD (pipelined) 0.89 1.02 1.20 ns CKQ2 t RCLK High to Empty Flag Valid 1.72 1.96 2.30 ns RCKEF t WCLK High to Full Flag Valid 1.63 1.86 2.18 ns WCKFF t Clock High to Almost Empty/Full Flag Valid 6.19 7.05 8.29 ns CKAF t RESET Low to Empty/Full Flag Valid 1.69 1.93 2.27 ns RSTFG Revision 18 2-106
ProASIC3 DC and Switching Characteristics Table2-123 • A3P250 FIFO 4k×1 (continued) Worst Commercial-Case Conditions: T = 70°C, VCC = 1.425 V J Parameter Description –2 –1 Std. Units t RESET Low to Almost Empty/Full Flag Valid 6.13 6.98 8.20 ns RSTAF t RESET Low to Data Out Low on DO (pass-through) 0.92 1.05 1.23 ns RSTBQ RESET Low to Data Out Low on DO (pipelined) 0.92 1.05 1.23 ns t RESET Removal 0.29 0.33 0.38 ns REMRSTB t RESET Recovery 1.50 1.71 2.01 ns RECRSTB t RESET Minimum Pulse Width 0.21 0.24 0.29 ns MPWRSTB t Clock Cycle Time 3.23 3.68 4.32 ns CYC F Maximum Frequency 310 272 231 MHz MAX Embedded FlashROM Characteristics t t t SU SU SU CLK t t t HOLD HOLD HOLD Address A A 0 1 t t t CKQ2 CKQ2 CKQ2 Data D D D 0 0 1 Figure 2-44 • Timing Diagram Timing Characteristics Table2-124 • Embedded FlashROM Access Time Parameter Description –2 –1 Std. Units t Address Setup Time 0.53 0.61 0.71 ns SU t Address Hold Time 0.00 0.00 0.00 ns HOLD t Clock to Out 21.42 24.40 28.68 ns CK2Q F Maximum Clock Frequency 15 15 15 MHz MAX 2-107 Revision 18
ProASIC3 Flash Family FPGAs JTAG 1532 Characteristics JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page2-15 for more details. Timing Characteristics Table2-125 • JTAG 1532 Commercial-Case Conditions: T = 70°C, Worst-Case VCC = 1.425 V J Parameter Description –2 –1 Std. Units t Test Data Input Setup Time 0.50 0.57 0.67 ns DISU t Test Data Input Hold Time 1.00 1.13 1.33 ns DIHD t Test Mode Select Setup Time 0.50 0.57 0.67 ns TMSSU t Test Mode Select Hold Time 1.00 1.13 1.33 ns TMDHD t Clock to Q (data out) 6.00 6.80 8.00 ns TCK2Q t Reset to Q (data out) 20.00 22.67 26.67 ns RSTB2Q F TCK Maximum Frequency 25.00 22.00 19.00 MHz TCKMAX t ResetB Removal Time 0.00 0.00 0.00 ns TRSTREM t ResetB Recovery Time 0.20 0.23 0.27 ns TRSTREC t ResetB Minimum Pulse TBD TBD TBD ns TRSTMPW Note: For specific junction temperature and voltage supply levels, refer to Table2-6 on page2-6 for derating values. Revision 18 2-108
3 – Pin Descriptions Supply Pins GND Ground Ground supply voltage to the core, I/O outputs, and I/O logic. GNDQ Ground (quiet) Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board. VCC Core Supply Voltage Supply voltage to the FPGA core, nominally 1.5V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device. VCCIBx I/O Supply Voltage Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5V, 1.8V, 2.5V, or 3.3V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground through any resistor and the corresponding VCCIX grounded, then the leakage current to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it’s better to float VCCIX of unused bank or tie it to GND. VMVx I/O Supply Voltage (quiet) Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5V, 1.8V, 2.5V, or 3.3V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.). VCCPLA/B/C/D/E/F PLL Supply Voltage Supply voltage to analog PLL, nominally 1.5 V. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the ProASIC3 FPGA Fabric User’s Guide for a complete board solution for the PLL analog power supply and ground. There is one VCCPLF pin on ProASIC3 devices. VCOMPLA/B/C/D/E/FPLL Ground Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. There is one VCOMPLF pin on ProASIC3 devices. Revision 18 3-1
ProASIC3 Flash Family FPGAs VJTAG JTAG Supply Voltage Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5V to 3.3V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode. Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. VPUMP Programming Supply Voltage ProASIC3 devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in Table2-2 on page2-2. When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry. For proper programming, 0.01µF and 0.33µF capacitors (both rated at 16V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible. Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. User Pins I/O User Input/Output The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected. During programming, I/Os become tristated and weakly pulled up to V . With V , VMV, and V supplies CCI CCI CC continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration. Unused I/Os are configured as follows: • Output buffer is disabled (with tristate value of high impedance) • Input buffer is disabled (with tristate value of high impedance) • Weak pull-up is programmed GL Globals GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the ProASIC3 FPGA Fabric User’s Guide. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input. Refer to the I/O Structure section of the handbook for the device you are using for an explanation of the naming of global pins. FF Flash*Freeze Mode Activation Pin Flash*Freeze is available on IGLOO, ProASIC3L, and RT ProASIC3 devices. It is not supported on ProASIC3/E devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active-low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze Revision 18 3-2
Pin Descriptions mode is not used in the design, the FF pin is available as a regular I/O. For IGLOOe, ProASIC3EL, and RT ProASIC3 only, the FF pin can be configured as a Schmitt trigger input. When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted. The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered. Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required. JTAG Pins Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5V to 3.3V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. TCK Test Clock Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state. Note that to operate at all VJTAG voltages, 500 to 1k will satisfy the requirements. Refer to Table1 for more information. Table 1 • Recommended Tie-Off Values for the TCK and TRST Pins VJTAG Tie-Off Resistance 3.3 V 200 –1 k 2.5 V 200 –1 k 1.8 V 500 –1 k 1.5 V 500 –1 k Notes: 1. Equivalent parallel resistance if more than one device is on the JTAG chain 2. The TCK pin can be pulled up/down. 3. The TRST pin is pulled down. TDI Test Data Input Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin. TDO Test Data Output Serial output for JTAG boundary scan, ISP, and UJTAG usage. TMS Test Mode Select The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin. TRST Boundary Scan Reset Pin The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table1 and must satisfy the parallel resistance value requirement. The values in Table1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain. 3-3 Revision 18
ProASIC3 Flash Family FPGAs In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin. Note that to operate at all VJTAG voltages, 500 to 1k will satisfy the requirements. Special Function Pins NC No Connect This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device. DC Do Not Connect This pin should not be connected to any signals on the PCB. These pins should be left unconnected. Related Documents User’s Guides ProASIC FPGA Fabric User’s Guide http://www.microsemi.com/soc/documents/PA3_UG.pdf Packaging The following documents provide packaging information and device selection for low power flash devices. Product Catalog http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use. Package Mechanical Drawings http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf This document contains the package mechanical drawings for all packages currently or previously supplied by Actel. Use the bookmarks to navigate to the package mechanical drawings. Additional packaging materials are at http://www.microsemi.com/products/solutions/package/docs.aspx. Revision 18 3-4
4 – Package Pin Assignments QN48 – Bottom View Pin 1 48 1 Note: The die attach paddle center of the package is tied to ground (GND). Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 18 4-1
Package Pin Assignments QN48 QN48 Pin Number A3P030 Function Pin Number A3P030 Function 1 IO82RSB1 37 IO24RSB0 2 GEC0/IO73RSB1 38 IO22RSB0 3 GEA0/IO72RSB1 39 IO20RSB0 4 GEB0/IO71RSB1 40 IO18RSB0 5 GND 41 IO16RSB0 6 VCCIB1 42 IO14RSB0 7 IO68RSB1 43 IO10RSB0 8 IO67RSB1 44 IO08RSB0 9 IO66RSB1 45 IO06RSB0 10 IO65RSB1 46 IO04RSB0 11 IO64RSB1 47 IO02RSB0 12 IO62RSB1 48 IO00RSB0 13 IO61RSB1 14 IO60RSB1 15 IO57RSB1 16 IO55RSB1 17 IO53RSB1 18 VCC 19 VCCIB1 20 IO46RSB1 21 IO42RSB1 22 TCK 23 TDI 24 TMS 25 VPUMP 26 TDO 27 TRST 28 VJTAG 29 IO38RSB0 30 GDB0/IO34RSB0 31 GDA0/IO33RSB0 32 GDC0/IO32RSB0 33 VCCIB0 34 GND 35 VCC 36 IO25RSB0 4-2 Revision 18
ProASIC3 Flash Family FPGAs QN68 – Bottom View Pin A1 Mark 68 1 Note: The die attach paddle center of the package is tied to ground (GND). Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 18 4-3
Package Pin Assignments QN68 QN68 Pin Number A3P015 Function Pin Number A3P015 Function 1 IO82RSB1 37 TRST 2 IO80RSB1 38 VJTAG 3 IO78RSB1 39 IO40RSB0 4 IO76RSB1 40 IO37RSB0 5 GEC0/IO73RSB1 41 GDB0/IO34RSB0 6 GEA0/IO72RSB1 42 GDA0/IO33RSB0 7 GEB0/IO71RSB1 43 GDC0/IO32RSB0 8 VCC 44 VCCIB0 9 GND 45 GND 10 VCCIB1 46 VCC 11 IO68RSB1 47 IO31RSB0 12 IO67RSB1 48 IO29RSB0 13 IO66RSB1 49 IO28RSB0 14 IO65RSB1 50 IO27RSB0 15 IO64RSB1 51 IO25RSB0 16 IO63RSB1 52 IO24RSB0 17 IO62RSB1 53 IO22RSB0 18 IO60RSB1 54 IO21RSB0 19 IO58RSB1 55 IO19RSB0 20 IO56RSB1 56 IO17RSB0 21 IO54RSB1 57 IO15RSB0 22 IO52RSB1 58 IO14RSB0 23 IO51RSB1 59 VCCIB0 24 VCC 60 GND 25 GND 61 VCC 26 VCCIB1 62 IO12RSB0 27 IO50RSB1 63 IO10RSB0 28 IO48RSB1 64 IO08RSB0 29 IO46RSB1 65 IO06RSB0 30 IO44RSB1 66 IO04RSB0 31 IO42RSB1 67 IO02RSB0 32 TCK 68 IO00RSB0 33 TDI 34 TMS 35 VPUMP 36 TDO 4-4 Revision 18
ProASIC3 Flash Family FPGAs QN68 QN68 Pin Number A3P030 Function Pin Number A3P030 Function 1 IO82RSB1 37 TRST 2 IO80RSB1 38 VJTAG 3 IO78RSB1 39 IO40RSB0 4 IO76RSB1 40 IO37RSB0 5 GEC0/IO73RSB1 41 GDB0/IO34RSB0 6 GEA0/IO72RSB1 42 GDA0/IO33RSB0 7 GEB0/IO71RSB1 43 GDC0/IO32RSB0 8 VCC 44 VCCIB0 9 GND 45 GND 10 VCCIB1 46 VCC 11 IO68RSB1 47 IO31RSB0 12 IO67RSB1 48 IO29RSB0 13 IO66RSB1 49 IO28RSB0 14 IO65RSB1 50 IO27RSB0 15 IO64RSB1 51 IO25RSB0 16 IO63RSB1 52 IO24RSB0 17 IO62RSB1 53 IO22RSB0 18 IO60RSB1 54 IO21RSB0 19 IO58RSB1 55 IO19RSB0 20 IO56RSB1 56 IO17RSB0 21 IO54RSB1 57 IO15RSB0 22 IO52RSB1 58 IO14RSB0 23 IO51RSB1 59 VCCIB0 24 VCC 60 GND 25 GND 61 VCC 26 VCCIB1 62 IO12RSB0 27 IO50RSB1 63 IO10RSB0 28 IO48RSB1 64 IO08RSB0 29 IO46RSB1 65 IO06RSB0 30 IO44RSB1 66 IO04RSB0 31 IO42RSB1 67 IO02RSB0 32 TCK 68 IO00RSB0 33 TDI 34 TMS 35 VPUMP 36 TDO Revision 18 4-5
Package Pin Assignments QN132 – Bottom View A37 A48 B34 B44 C31 C40 Pin A1Mark D4 D1 A36 A1 B33 B1 C30 C1 C21 C10 B23 B11 A25 A12 D3 D2 Optional Corner Pad (4x) C20 C11 B22 B12 A24 A13 Notes: 1. The die attach paddle center of the package is tied to ground (GND). 2. Option corner pads come with this device and package combination. It is optional to tie them to ground or leave them floating. 3. The QN132 package is discontinued and is not available for ProASIC3 devices. 4. For more information on package drawings, see PD3068: Package Mechanical Drawings. 4-6 Revision 18
ProASIC3 Flash Family FPGAs QN132 QN132 QN132 Pin Number A3P030 Function Pin Number A3P030 Function Pin Number A3P030 Function A1 IO01RSB1 A37 IO26RSB0 B25 GND A2 IO81RSB1 A38 IO23RSB0 B26 NC A3 NC A39 NC B27 IO41RSB0 A4 IO80RSB1 A40 IO22RSB0 B28 GND A5 GEC0/IO77RSB1 A41 IO20RSB0 B29 GDA0/IO37RSB0 A6 NC A42 IO18RSB0 B30 NC A7 GEB0/IO75RSB1 A43 VCC B31 GND A8 IO73RSB1 A44 IO15RSB0 B32 IO33RSB0 A9 NC A45 IO12RSB0 B33 IO30RSB0 A10 VCC A46 IO10RSB0 B34 IO27RSB0 A11 IO71RSB1 A47 IO09RSB0 B35 IO24RSB0 A12 IO68RSB1 A48 IO06RSB0 B36 GND A13 IO63RSB1 B1 IO02RSB1 B37 IO21RSB0 A14 IO60RSB1 B2 IO82RSB1 B38 IO19RSB0 A15 NC B3 GND B39 GND A16 IO59RSB1 B4 IO79RSB1 B40 IO16RSB0 A17 IO57RSB1 B5 NC B41 IO13RSB0 A18 VCC B6 GND B42 GND A19 IO54RSB1 B7 IO74RSB1 B43 IO08RSB0 A20 IO52RSB1 B8 NC B44 IO05RSB0 A21 IO49RSB1 B9 GND C1 IO03RSB1 A22 IO48RSB1 B10 IO70RSB1 C2 IO00RSB1 A23 IO47RSB1 B11 IO67RSB1 C3 NC A24 TDI B12 IO64RSB1 C4 IO78RSB1 A25 TRST B13 IO61RSB1 C5 GEA0/IO76RSB1 A26 IO44RSB0 B14 GND C6 NC A27 NC B15 IO58RSB1 C7 NC A28 IO43RSB0 B16 IO56RSB1 C8 VCCIB1 A29 IO42RSB0 B17 GND C9 IO69RSB1 A30 IO40RSB0 B18 IO53RSB1 C10 IO66RSB1 A31 IO39RSB0 B19 IO50RSB1 C11 IO65RSB1 A32 GDC0/IO36RSB0 B20 GND C12 IO62RSB1 A33 NC B21 IO46RSB1 C13 NC A34 VCC B22 TMS C14 NC A35 IO34RSB0 B23 TDO C15 IO55RSB1 A36 IO31RSB0 B24 IO45RSB0 C16 VCCIB1 Revision 18 4-7
Package Pin Assignments QN132 Pin Number A3P030 Function C17 IO51RSB1 C18 NC C19 TCK C20 NC C21 VPUMP C22 VJTAG C23 NC C24 NC C25 NC C26 GDB0/IO38RSB0 C27 NC C28 VCCIB0 C29 IO32RSB0 C30 IO29RSB0 C31 IO28RSB0 C32 IO25RSB0 C33 NC C34 NC C35 VCCIB0 C36 IO17RSB0 C37 IO14RSB0 C38 IO11RSB0 C39 IO07RSB0 C40 IO04RSB0 D1 GND D2 GND D3 GND D4 GND 4-8 Revision 18
ProASIC3 Flash Family FPGAs QN132 QN132 QN132 Pin Number A3P060 Function Pin Number A3P060 Function Pin Number A3P060 Function A1 GAB2/IO00RSB1 A37 GBB1/IO25RSB0 B25 GND A2 IO93RSB1 A38 GBC0/IO22RSB0 B26 NC A3 VCCIB1 A39 VCCIB0 B27 GCB2/IO45RSB0 A4 GFC1/IO89RSB1 A40 IO21RSB0 B28 GND A5 GFB0/IO86RSB1 A41 IO18RSB0 B29 GCB0/IO41RSB0 A6 VCCPLF A42 IO15RSB0 B30 GCC1/IO38RSB0 A7 GFA1/IO84RSB1 A43 IO14RSB0 B31 GND A8 GFC2/IO81RSB1 A44 IO11RSB0 B32 GBB2/IO30RSB0 A9 IO78RSB1 A45 GAB1/IO08RSB0 B33 VMV0 A10 VCC A46 NC B34 GBA0/IO26RSB0 A11 GEB1/IO75RSB1 A47 GAB0/IO07RSB0 B35 GBC1/IO23RSB0 A12 GEA0/IO72RSB1 A48 IO04RSB0 B36 GND A13 GEC2/IO69RSB1 B1 IO01RSB1 B37 IO20RSB0 A14 IO65RSB1 B2 GAC2/IO94RSB1 B38 IO17RSB0 A15 VCC B3 GND B39 GND A16 IO64RSB1 B4 GFC0/IO88RSB1 B40 IO12RSB0 A17 IO63RSB1 B5 VCOMPLF B41 GAC0/IO09RSB0 A18 IO62RSB1 B6 GND B42 GND A19 IO61RSB1 B7 GFB2/IO82RSB1 B43 GAA1/IO06RSB0 A20 IO58RSB1 B8 IO79RSB1 B44 GNDQ A21 GDB2/IO55RSB1 B9 GND C1 GAA2/IO02RSB1 A22 NC B10 GEB0/IO74RSB1 C2 IO95RSB1 A23 GDA2/IO54RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO70RSB1 C4 GFB1/IO87RSB1 A25 TRST B13 IO67RSB1 C5 GFA0/IO85RSB1 A26 GDC1/IO48RSB0 B14 GND C6 GFA2/IO83RSB1 A27 VCC B15 NC C7 IO80RSB1 A28 IO47RSB0 B16 NC C8 VCCIB1 A29 GCC2/IO46RSB0 B17 GND C9 GEA1/IO73RSB1 A30 GCA2/IO44RSB0 B18 IO59RSB1 C10 GNDQ A31 GCA0/IO43RSB0 B19 GDC2/IO56RSB1 C11 GEA2/IO71RSB1 A32 GCB1/IO40RSB0 B20 GND C12 IO68RSB1 A33 IO36RSB0 B21 GNDQ C13 VCCIB1 A34 VCC B22 TMS C14 NC A35 IO31RSB0 B23 TDO C15 NC A36 GBA2/IO28RSB0 B24 GDC0/IO49RSB0 C16 IO60RSB1 Revision 18 4-9
Package Pin Assignments QN132 Pin Number A3P060 Function C17 IO57RSB1 C18 NC C19 TCK C20 VMV1 C21 VPUMP C22 VJTAG C23 VCCIB0 C24 NC C25 NC C26 GCA1/IO42RSB0 C27 GCC0/IO39RSB0 C28 VCCIB0 C29 IO29RSB0 C30 GNDQ C31 GBA1/IO27RSB0 C32 GBB0/IO24RSB0 C33 VCC C34 IO19RSB0 C35 IO16RSB0 C36 IO13RSB0 C37 GAC1/IO10RSB0 C38 NC C39 GAA0/IO05RSB0 C40 VMV0 D1 GND D2 GND D3 GND D4 GND 4-10 Revision 18
ProASIC3 Flash Family FPGAs QN132 QN132 QN132 Pin Number A3P125 Function Pin Number A3P125 Function Pin Number A3P125 Function A1 GAB2/IO69RSB1 A37 GBB1/IO38RSB0 B25 GND A2 IO130RSB1 A38 GBC0/IO35RSB0 B26 NC A3 VCCIB1 A39 VCCIB0 B27 GCB2/IO58RSB0 A4 GFC1/IO126RSB1 A40 IO28RSB0 B28 GND A5 GFB0/IO123RSB1 A41 IO22RSB0 B29 GCB0/IO54RSB0 A6 VCCPLF A42 IO18RSB0 B30 GCC1/IO51RSB0 A7 GFA1/IO121RSB1 A43 IO14RSB0 B31 GND A8 GFC2/IO118RSB1 A44 IO11RSB0 B32 GBB2/IO43RSB0 A9 IO115RSB1 A45 IO07RSB0 B33 VMV0 A10 VCC A46 VCC B34 GBA0/IO39RSB0 A11 GEB1/IO110RSB1 A47 GAC1/IO05RSB0 B35 GBC1/IO36RSB0 A12 GEA0/IO107RSB1 A48 GAB0/IO02RSB0 B36 GND A13 GEC2/IO104RSB1 B1 IO68RSB1 B37 IO26RSB0 A14 IO100RSB1 B2 GAC2/IO131RSB1 B38 IO21RSB0 A15 VCC B3 GND B39 GND A16 IO99RSB1 B4 GFC0/IO125RSB1 B40 IO13RSB0 A17 IO96RSB1 B5 VCOMPLF B41 IO08RSB0 A18 IO94RSB1 B6 GND B42 GND A19 IO91RSB1 B7 GFB2/IO119RSB1 B43 GAC0/IO04RSB0 A20 IO85RSB1 B8 IO116RSB1 B44 GNDQ A21 IO79RSB1 B9 GND C1 GAA2/IO67RSB1 A22 VCC B10 GEB0/IO109RSB1 C2 IO132RSB1 A23 GDB2/IO71RSB1 B11 VMV1 C3 VCC A24 TDI B12 GEB2/IO105RSB1 C4 GFB1/IO124RSB1 A25 TRST B13 IO101RSB1 C5 GFA0/IO122RSB1 A26 GDC1/IO61RSB0 B14 GND C6 GFA2/IO120RSB1 A27 VCC B15 IO98RSB1 C7 IO117RSB1 A28 IO60RSB0 B16 IO95RSB1 C8 VCCIB1 A29 GCC2/IO59RSB0 B17 GND C9 GEA1/IO108RSB1 A30 GCA2/IO57RSB0 B18 IO87RSB1 C10 GNDQ A31 GCA0/IO56RSB0 B19 IO81RSB1 C11 GEA2/IO106RSB1 A32 GCB1/IO53RSB0 B20 GND C12 IO103RSB1 A33 IO49RSB0 B21 GNDQ C13 VCCIB1 A34 VCC B22 TMS C14 IO97RSB1 A35 IO44RSB0 B23 TDO C15 IO93RSB1 A36 GBA2/IO41RSB0 B24 GDC0/IO62RSB0 C16 IO89RSB1 Revision 18 4-11
Package Pin Assignments QN132 Pin Number A3P125 Function C17 IO83RSB1 C18 VCCIB1 C19 TCK C20 VMV1 C21 VPUMP C22 VJTAG C23 VCCIB0 C24 NC C25 NC C26 GCA1/IO55RSB0 C27 GCC0/IO52RSB0 C28 VCCIB0 C29 IO42RSB0 C30 GNDQ C31 GBA1/IO40RSB0 C32 GBB0/IO37RSB0 C33 VCC C34 IO24RSB0 C35 IO19RSB0 C36 IO16RSB0 C37 IO10RSB0 C38 VCCIB0 C39 GAB1/IO03RSB0 C40 VMV0 D1 GND D2 GND D3 GND D4 GND 4-12 Revision 18
ProASIC3 Flash Family FPGAs QN132 QN132 QN132 Pin Number A3P250 Function Pin Number A3P250 Function Pin Number A3P250 Function A1 GAB2/IO117UPB3 A37 GBB1/IO38RSB0 B25 GND A2 IO117VPB3 A38 GBC0/IO35RSB0 B26 IO54PDB1 A3 VCCIB3 A39 VCCIB0 B27 GCB2/IO52PDB1 A4 GFC1/IO110PDB3 A40 IO28RSB0 B28 GND A5 GFB0/IO109NPB3 A41 IO22RSB0 B29 GCB0/IO49NDB1 A6 VCCPLF A42 IO18RSB0 B30 GCC1/IO48PDB1 A7 GFA1/IO108PPB3 A43 IO14RSB0 B31 GND A8 GFC2/IO105PPB3 A44 IO11RSB0 B32 GBB2/IO42PDB1 A9 IO103NDB3 A45 IO07RSB0 B33 VMV1 A10 VCC A46 VCC B34 GBA0/IO39RSB0 A11 GEA1/IO98PPB3 A47 GAC1/IO05RSB0 B35 GBC1/IO36RSB0 A12 GEA0/IO98NPB3 A48 GAB0/IO02RSB0 B36 GND A13 GEC2/IO95RSB2 B1 IO118VDB3 B37 IO26RSB0 A14 IO91RSB2 B2 GAC2/IO116UDB3 B38 IO21RSB0 A15 VCC B3 GND B39 GND A16 IO90RSB2 B4 GFC0/IO110NDB3 B40 IO13RSB0 A17 IO87RSB2 B5 VCOMPLF B41 IO08RSB0 A18 IO85RSB2 B6 GND B42 GND A19 IO82RSB2 B7 GFB2/IO106PSB3 B43 GAC0/IO04RSB0 A20 IO76RSB2 B8 IO103PDB3 B44 GNDQ A21 IO70RSB2 B9 GND C1 GAA2/IO118UDB3 A22 VCC B10 GEB0/IO99NDB3 C2 IO116VDB3 A23 GDB2/IO62RSB2 B11 VMV3 C3 VCC A24 TDI B12 GEB2/IO96RSB2 C4 GFB1/IO109PPB3 A25 TRST B13 IO92RSB2 C5 GFA0/IO108NPB3 A26 GDC1/IO58UDB1 B14 GND C6 GFA2/IO107PSB3 A27 VCC B15 IO89RSB2 C7 IO105NPB3 A28 IO54NDB1 B16 IO86RSB2 C8 VCCIB3 A29 IO52NDB1 B17 GND C9 GEB1/IO99PDB3 A30 GCA2/IO51PPB1 B18 IO78RSB2 C10 GNDQ A31 GCA0/IO50NPB1 B19 IO72RSB2 C11 GEA2/IO97RSB2 A32 GCB1/IO49PDB1 B20 GND C12 IO94RSB2 A33 IO47NSB1 B21 GNDQ C13 VCCIB2 A34 VCC B22 TMS C14 IO88RSB2 A35 IO41NPB1 B23 TDO C15 IO84RSB2 A36 GBA2/IO41PPB1 B24 GDC0/IO58VDB1 C16 IO80RSB2 Revision 18 4-13
Package Pin Assignments QN132 Pin Number A3P250 Function C17 IO74RSB2 C18 VCCIB2 C19 TCK C20 VMV2 C21 VPUMP C22 VJTAG C23 VCCIB1 C24 IO53NSB1 C25 IO51NPB1 C26 GCA1/IO50PPB1 C27 GCC0/IO48NDB1 C28 VCCIB1 C29 IO42NDB1 C30 GNDQ C31 GBA1/IO40RSB0 C32 GBB0/IO37RSB0 C33 VCC C34 IO24RSB0 C35 IO19RSB0 C36 IO16RSB0 C37 IO10RSB0 C38 VCCIB0 C39 GAB1/IO03RSB0 C40 VMV0 D1 GND D2 GND D3 GND D4 GND 4-14 Revision 18
ProASIC3 Flash Family FPGAs CS121 – Bottom View 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L Note: The die attach paddle center of the package is tied to ground (GND). Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 18 4-15
Package Pin Assignments CS121 CS121 CS121 Pin Number A3P060 Function Pin Number A3P060 Function Pin Number A3P060 Function A1 GNDQ D4 IO10RSB0 G7 VCC A2 IO01RSB0 D5 IO11RSB0 G8 GDC0/IO46RSB0 A3 GAA1/IO03RSB0 D6 IO18RSB0 G9 GDA1/IO49RSB0 A4 GAC1/IO07RSB0 D7 IO32RSB0 G10 GDB0/IO48RSB0 A5 IO15RSB0 D8 IO31RSB0 G11 GCA0/IO40RSB0 A6 IO13RSB0 D9 GCA2/IO41RSB0 H1 IO75RSB1 A7 IO17RSB0 D10 IO30RSB0 H2 IO76RSB1 A8 GBB1/IO22RSB0 D11 IO33RSB0 H3 GFC2/IO78RSB1 A9 GBA1/IO24RSB0 E1 IO87RSB1 H4 GFA2/IO80RSB1 A10 GNDQ E2 GFC0/IO85RSB1 H5 IO77RSB1 A11 VMV0 E3 IO92RSB1 H6 GEC2/IO66RSB1 B1 GAA2/IO95RSB1 E4 IO94RSB1 H7 IO54RSB1 B2 IO00RSB0 E5 VCC H8 GDC2/IO53RSB1 B3 GAA0/IO02RSB0 E6 VCCIB0 H9 VJTAG B4 GAC0/IO06RSB0 E7 GND H10 TRST B5 IO08RSB0 E8 GCC0/IO36RSB0 H11 IO44RSB0 B6 IO12RSB0 E9 IO34RSB0 J1 GEC1/IO74RSB1 B7 IO16RSB0 E10 GCB1/IO37RSB0 J2 GEC0/IO73RSB1 B8 GBC1/IO20RSB0 E11 GCC1/IO35RSB0 J3 GEB1/IO72RSB1 B9 GBB0/IO21RSB0 F1 VCOMPLF J4 GEA0/IO69RSB1 B10 GBB2/IO27RSB0 F2 GFB0/IO83RSB1 J5 GEB2/IO67RSB1 B11 GBA2/IO25RSB0 F3 GFA0/IO82RSB1 J6 IO62RSB1 C1 IO89RSB1 F4 GFC1/IO86RSB1 J7 GDA2/IO51RSB1 C2 GAC2/IO91RSB1 F5 VCCIB1 J8 GDB2/IO52RSB1 C3 GAB1/IO05RSB0 F6 VCC J9 TDI C4 GAB0/IO04RSB0 F7 VCCIB0 J10 TDO C5 IO09RSB0 F8 GCB2/IO42RSB0 J11 GDC1/IO45RSB0 C6 IO14RSB0 F9 GCC2/IO43RSB0 K1 GEB0/IO71RSB1 C7 GBA0/IO23RSB0 F10 GCB0/IO38RSB0 K2 GEA1/IO70RSB1 C8 GBC0/IO19RSB0 F11 GCA1/IO39RSB0 K3 GEA2/IO68RSB1 C9 IO26RSB0 G1 VCCPLF K4 IO64RSB1 C10 IO28RSB0 G2 GFB2/IO79RSB1 K5 IO60RSB1 C11 GBC2/IO29RSB0 G3 GFA1/IO81RSB1 K6 IO59RSB1 D1 IO88RSB1 G4 GFB1/IO84RSB1 K7 IO56RSB1 D2 IO90RSB1 G5 GND K8 TCK D3 GAB2/IO93RSB1 G6 VCCIB1 K9 TMS 4-16 Revision 18
ProASIC3 Flash Family FPGAs CS121 Pin Number A3P060 Function K10 VPUMP K11 GDB1/IO47RSB0 L1 VMV1 L2 GNDQ L3 IO65RSB1 L4 IO63RSB1 L5 IO61RSB1 L6 IO58RSB1 L7 IO57RSB1 L8 IO55RSB1 L9 GNDQ L10 GDA0/IO50RSB0 L11 VMV1 Revision 18 4-17
Package Pin Assignments VQ100 – Top View 100 1 Note For more information on package drawings, see PD3068: Package Mechanical Drawings. 4-18 Revision 18
ProASIC3 Flash Family FPGAs VQ100 VQ100 VQ100 Pin Number A3P030 Function Pin Number A3P030 Function Pin Number A3P030 Function 1 GND 37 VCC 73 IO27RSB0 2 IO82RSB1 38 GND 74 IO26RSB0 3 IO81RSB1 39 VCCIB1 75 IO25RSB0 4 IO80RSB1 40 IO49RSB1 76 IO24RSB0 5 IO79RSB1 41 IO47RSB1 77 IO23RSB0 6 IO78RSB1 42 IO46RSB1 78 IO22RSB0 7 IO77RSB1 43 IO45RSB1 79 IO21RSB0 8 IO76RSB1 44 IO44RSB1 80 IO20RSB0 9 GND 45 IO43RSB1 81 IO19RSB0 10 IO75RSB1 46 IO42RSB1 82 IO18RSB0 11 IO74RSB1 47 TCK 83 IO17RSB0 12 GEC0/IO73RSB1 48 TDI 84 IO16RSB0 13 GEA0/IO72RSB1 49 TMS 85 IO15RSB0 14 GEB0/IO71RSB1 50 NC 86 IO14RSB0 15 IO70RSB1 51 GND 87 VCCIB0 16 IO69RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 IO12RSB0 19 IO68RSB1 55 TRST 91 IO10RSB0 20 IO67RSB1 56 VJTAG 92 IO08RSB0 21 IO66RSB1 57 IO41RSB0 93 IO07RSB0 22 IO65RSB1 58 IO40RSB0 94 IO06RSB0 23 IO64RSB1 59 IO39RSB0 95 IO05RSB0 24 IO63RSB1 60 IO38RSB0 96 IO04RSB0 25 IO62RSB1 61 IO37RSB0 97 IO03RSB0 26 IO61RSB1 62 IO36RSB0 98 IO02RSB0 27 IO60RSB1 63 GDB0/IO34RSB0 99 IO01RSB0 28 IO59RSB1 64 GDA0/IO33RSB0 100 IO00RSB0 29 IO58RSB1 65 GDC0/IO32RSB0 30 IO57RSB1 66 VCCIB0 31 IO56RSB1 67 GND 32 IO55RSB1 68 VCC 33 IO54RSB1 69 IO31RSB0 34 IO53RSB1 70 IO30RSB0 35 IO52RSB1 71 IO29RSB0 36 IO51RSB1 72 IO28RSB0 Revision 18 4-19
Package Pin Assignments VQ100 VQ100 VQ100 Pin Number A3P060 Function Pin Number A3P060 Function Pin Number A3P060 Function 1 GND 37 VCC 73 GBA2/IO25RSB0 2 GAA2/IO51RSB1 38 GND 74 VMV0 3 IO52RSB1 39 VCCIB1 75 GNDQ 4 GAB2/IO53RSB1 40 IO60RSB1 76 GBA1/IO24RSB0 5 IO95RSB1 41 IO59RSB1 77 GBA0/IO23RSB0 6 GAC2/IO94RSB1 42 IO58RSB1 78 GBB1/IO22RSB0 7 IO93RSB1 43 IO57RSB1 79 GBB0/IO21RSB0 8 IO92RSB1 44 GDC2/IO56RSB1 80 GBC1/IO20RSB0 9 GND 45 GDB2/IO55RSB1 81 GBC0/IO19RSB0 10 GFB1/IO87RSB1 46 GDA2/IO54RSB1 82 IO18RSB0 11 GFB0/IO86RSB1 47 TCK 83 IO17RSB0 12 VCOMPLF 48 TDI 84 IO15RSB0 13 GFA0/IO85RSB1 49 TMS 85 IO13RSB0 14 VCCPLF 50 VMV1 86 IO11RSB0 15 GFA1/IO84RSB1 51 GND 87 VCCIB0 16 GFA2/IO83RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 IO10RSB0 19 GEC1/IO77RSB1 55 TRST 91 IO09RSB0 20 GEB1/IO75RSB1 56 VJTAG 92 IO08RSB0 21 GEB0/IO74RSB1 57 GDA1/IO49RSB0 93 GAC1/IO07RSB0 22 GEA1/IO73RSB1 58 GDC0/IO46RSB0 94 GAC0/IO06RSB0 23 GEA0/IO72RSB1 59 GDC1/IO45RSB0 95 GAB1/IO05RSB0 24 VMV1 60 GCC2/IO43RSB0 96 GAB0/IO04RSB0 25 GNDQ 61 GCB2/IO42RSB0 97 GAA1/IO03RSB0 26 GEA2/IO71RSB1 62 GCA0/IO40RSB0 98 GAA0/IO02RSB0 27 GEB2/IO70RSB1 63 GCA1/IO39RSB0 99 IO01RSB0 28 GEC2/IO69RSB1 64 GCC0/IO36RSB0 100 IO00RSB0 29 IO68RSB1 65 GCC1/IO35RSB0 30 IO67RSB1 66 VCCIB0 31 IO66RSB1 67 GND 32 IO65RSB1 68 VCC 33 IO64RSB1 69 IO31RSB0 34 IO63RSB1 70 GBC2/IO29RSB0 35 IO62RSB1 71 GBB2/IO27RSB0 36 IO61RSB1 72 IO26RSB0 4-20 Revision 18
ProASIC3 Flash Family FPGAs VQ100 VQ100 VQ100 Pin Number A3P125 Function Pin Number A3P125 Function Pin Number A3P125 Function 1 GND 37 VCC 73 GBA2/IO41RSB0 2 GAA2/IO67RSB1 38 GND 74 VMV0 3 IO68RSB1 39 VCCIB1 75 GNDQ 4 GAB2/IO69RSB1 40 IO87RSB1 76 GBA1/IO40RSB0 5 IO132RSB1 41 IO84RSB1 77 GBA0/IO39RSB0 6 GAC2/IO131RSB1 42 IO81RSB1 78 GBB1/IO38RSB0 7 IO130RSB1 43 IO75RSB1 79 GBB0/IO37RSB0 8 IO129RSB1 44 GDC2/IO72RSB1 80 GBC1/IO36RSB0 9 GND 45 GDB2/IO71RSB1 81 GBC0/IO35RSB0 10 GFB1/IO124RSB1 46 GDA2/IO70RSB1 82 IO32RSB0 11 GFB0/IO123RSB1 47 TCK 83 IO28RSB0 12 VCOMPLF 48 TDI 84 IO25RSB0 13 GFA0/IO122RSB1 49 TMS 85 IO22RSB0 14 VCCPLF 50 VMV1 86 IO19RSB0 15 GFA1/IO121RSB1 51 GND 87 VCCIB0 16 GFA2/IO120RSB1 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB1 54 TDO 90 IO15RSB0 19 GEC0/IO111RSB1 55 TRST 91 IO13RSB0 20 GEB1/IO110RSB1 56 VJTAG 92 IO11RSB0 21 GEB0/IO109RSB1 57 GDA1/IO65RSB0 93 IO09RSB0 22 GEA1/IO108RSB1 58 GDC0/IO62RSB0 94 IO07RSB0 23 GEA0/IO107RSB1 59 GDC1/IO61RSB0 95 GAC1/IO05RSB0 24 VMV1 60 GCC2/IO59RSB0 96 GAC0/IO04RSB0 25 GNDQ 61 GCB2/IO58RSB0 97 GAB1/IO03RSB0 26 GEA2/IO106RSB1 62 GCA0/IO56RSB0 98 GAB0/IO02RSB0 27 GEB2/IO105RSB1 63 GCA1/IO55RSB0 99 GAA1/IO01RSB0 28 GEC2/IO104RSB1 64 GCC0/IO52RSB0 100 GAA0/IO00RSB0 29 IO102RSB1 65 GCC1/IO51RSB0 30 IO100RSB1 66 VCCIB0 31 IO99RSB1 67 GND 32 IO97RSB1 68 VCC 33 IO96RSB1 69 IO47RSB0 34 IO95RSB1 70 GBC2/IO45RSB0 35 IO94RSB1 71 GBB2/IO43RSB0 36 IO93RSB1 72 IO42RSB0 Revision 18 4-21
Package Pin Assignments VQ100 VQ100 VQ100 Pin Number A3P250 Function Pin Number A3P250 Function Pin Number A3P250 Function 1 GND 37 VCC 73 GBA2/IO41PDB1 2 GAA2/IO118UDB3 38 GND 74 VMV1 3 IO118VDB3 39 VCCIB2 75 GNDQ 4 GAB2/IO117UDB3 40 IO77RSB2 76 GBA1/IO40RSB0 5 IO117VDB3 41 IO74RSB2 77 GBA0/IO39RSB0 6 GAC2/IO116UDB3 42 IO71RSB2 78 GBB1/IO38RSB0 7 IO116VDB3 43 GDC2/IO63RSB2 79 GBB0/IO37RSB0 8 IO112PSB3 44 GDB2/IO62RSB2 80 GBC1/IO36RSB0 9 GND 45 GDA2/IO61RSB2 81 GBC0/IO35RSB0 10 GFB1/IO109PDB3 46 GNDQ 82 IO29RSB0 11 GFB0/IO109NDB3 47 TCK 83 IO27RSB0 12 VCOMPLF 48 TDI 84 IO25RSB0 13 GFA0/IO108NPB3 49 TMS 85 IO23RSB0 14 VCCPLF 50 VMV2 86 IO21RSB0 15 GFA1/IO108PPB3 51 GND 87 VCCIB0 16 GFA2/IO107PSB3 52 VPUMP 88 GND 17 VCC 53 NC 89 VCC 18 VCCIB3 54 TDO 90 IO15RSB0 19 GFC2/IO105PSB3 55 TRST 91 IO13RSB0 20 GEC1/IO100PDB3 56 VJTAG 92 IO11RSB0 21 GEC0/IO100NDB3 57 GDA1/IO60USB1 93 GAC1/IO05RSB0 22 GEA1/IO98PDB3 58 GDC0/IO58VDB1 94 GAC0/IO04RSB0 23 GEA0/IO98NDB3 59 GDC1/IO58UDB1 95 GAB1/IO03RSB0 24 VMV3 60 IO52NDB1 96 GAB0/IO02RSB0 25 GNDQ 61 GCB2/IO52PDB1 97 GAA1/IO01RSB0 26 GEA2/IO97RSB2 62 GCA1/IO50PDB1 98 GAA0/IO00RSB0 27 GEB2/IO96RSB2 63 GCA0/IO50NDB1 99 GNDQ 28 GEC2/IO95RSB2 64 GCC0/IO48NDB1 100 VMV0 29 IO93RSB2 65 GCC1/IO48PDB1 30 IO92RSB2 66 VCCIB1 31 IO91RSB2 67 GND 32 IO90RSB2 68 VCC 33 IO88RSB2 69 IO43NDB1 34 IO86RSB2 70 GBC2/IO43PDB1 35 IO85RSB2 71 GBB2/IO42PSB1 36 IO84RSB2 72 IO41NDB1 4-22 Revision 18
ProASIC3 Flash Family FPGAs TQ144 – Top View 144 1 144-Pin TQFP Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 18 4-23
Package Pin Assignments TQ144 TQ144 TQ144 Pin Number A3P060 Function Pin Number A3P060 Function Pin Number A3P060 Function 1 GAA2/IO51RSB1 37 NC 73 VPUMP 2 IO52RSB1 38 GEA2/IO71RSB1 74 NC 3 GAB2/IO53RSB1 39 GEB2/IO70RSB1 75 TDO 4 IO95RSB1 40 GEC2/IO69RSB1 76 TRST 5 GAC2/IO94RSB1 41 IO68RSB1 77 VJTAG 6 IO93RSB1 42 IO67RSB1 78 GDA0/IO50RSB0 7 IO92RSB1 43 IO66RSB1 79 GDB0/IO48RSB0 8 IO91RSB1 44 IO65RSB1 80 GDB1/IO47RSB0 9 VCC 45 VCC 81 VCCIB0 10 GND 46 GND 82 GND 11 VCCIB1 47 VCCIB1 83 IO44RSB0 12 IO90RSB1 48 NC 84 GCC2/IO43RSB0 13 GFC1/IO89RSB1 49 IO64RSB1 85 GCB2/IO42RSB0 14 GFC0/IO88RSB1 50 NC 86 GCA2/IO41RSB0 15 GFB1/IO87RSB1 51 IO63RSB1 87 GCA0/IO40RSB0 16 GFB0/IO86RSB1 52 NC 88 GCA1/IO39RSB0 17 VCOMPLF 53 IO62RSB1 89 GCB0/IO38RSB0 18 GFA0/IO85RSB1 54 NC 90 GCB1/IO37RSB0 19 VCCPLF 55 IO61RSB1 91 GCC0/IO36RSB0 20 GFA1/IO84RSB1 56 NC 92 GCC1/IO35RSB0 21 GFA2/IO83RSB1 57 NC 93 IO34RSB0 22 GFB2/IO82RSB1 58 IO60RSB1 94 IO33RSB0 23 GFC2/IO81RSB1 59 IO59RSB1 95 NC 24 IO80RSB1 60 IO58RSB1 96 NC 25 IO79RSB1 61 IO57RSB1 97 NC 26 IO78RSB1 62 NC 98 VCCIB0 27 GND 63 GND 99 GND 28 VCCIB1 64 NC 100 VCC 29 GEC1/IO77RSB1 65 GDC2/IO56RSB1 101 IO30RSB0 30 GEC0/IO76RSB1 66 GDB2/IO55RSB1 102 GBC2/IO29RSB0 31 GEB1/IO75RSB1 67 GDA2/IO54RSB1 103 IO28RSB0 32 GEB0/IO74RSB1 68 GNDQ 104 GBB2/IO27RSB0 33 GEA1/IO73RSB1 69 TCK 105 IO26RSB0 34 GEA0/IO72RSB1 70 TDI 106 GBA2/IO25RSB0 35 VMV1 71 TMS 107 VMV0 36 GNDQ 72 VMV1 108 GNDQ 4-24 Revision 18
ProASIC3 Flash Family FPGAs TQ144 Pin Number A3P060 Function 109 NC 110 NC 111 GBA1/IO24RSB0 112 GBA0/IO23RSB0 113 GBB1/IO22RSB0 114 GBB0/IO21RSB0 115 GBC1/IO20RSB0 116 GBC0/IO19RSB0 117 VCCIB0 118 GND 119 VCC 120 IO18RSB0 121 IO17RSB0 122 IO16RSB0 123 IO15RSB0 124 IO14RSB0 125 IO13RSB0 126 IO12RSB0 127 IO11RSB0 128 NC 129 IO10RSB0 130 IO09RSB0 131 IO08RSB0 132 GAC1/IO07RSB0 133 GAC0/IO06RSB0 134 NC 135 GND 136 NC 137 GAB1/IO05RSB0 138 GAB0/IO04RSB0 139 GAA1/IO03RSB0 140 GAA0/IO02RSB0 141 IO01RSB0 142 IO00RSB0 143 GNDQ 144 VMV0 Revision 18 4-25
Package Pin Assignments TQ144 TQ144 TQ144 Pin Number A3P125 Function Pin Number A3P125 Function Pin Number A3P125 Function 1 GAA2/IO67RSB1 37 NC 73 VPUMP 2 IO68RSB1 38 GEA2/IO106RSB1 74 NC 3 GAB2/IO69RSB1 39 GEB2/IO105RSB1 75 TDO 4 IO132RSB1 40 GEC2/IO104RSB1 76 TRST 5 GAC2/IO131RSB1 41 IO103RSB1 77 VJTAG 6 IO130RSB1 42 IO102RSB1 78 GDA0/IO66RSB0 7 IO129RSB1 43 IO101RSB1 79 GDB0/IO64RSB0 8 IO128RSB1 44 IO100RSB1 80 GDB1/IO63RSB0 9 VCC 45 VCC 81 VCCIB0 10 GND 46 GND 82 GND 11 VCCIB1 47 VCCIB1 83 IO60RSB0 12 IO127RSB1 48 IO99RSB1 84 GCC2/IO59RSB0 13 GFC1/IO126RSB1 49 IO97RSB1 85 GCB2/IO58RSB0 14 GFC0/IO125RSB1 50 IO95RSB1 86 GCA2/IO57RSB0 15 GFB1/IO124RSB1 51 IO93RSB1 87 GCA0/IO56RSB0 16 GFB0/IO123RSB1 52 IO92RSB1 88 GCA1/IO55RSB0 17 VCOMPLF 53 IO90RSB1 89 GCB0/IO54RSB0 18 GFA0/IO122RSB1 54 IO88RSB1 90 GCB1/IO53RSB0 19 VCCPLF 55 IO86RSB1 91 GCC0/IO52RSB0 20 GFA1/IO121RSB1 56 IO84RSB1 92 GCC1/IO51RSB0 21 GFA2/IO120RSB1 57 IO83RSB1 93 IO50RSB0 22 GFB2/IO119RSB1 58 IO82RSB1 94 IO49RSB0 23 GFC2/IO118RSB1 59 IO81RSB1 95 NC 24 IO117RSB1 60 IO80RSB1 96 NC 25 IO116RSB1 61 IO79RSB1 97 NC 26 IO115RSB1 62 VCC 98 VCCIB0 27 GND 63 GND 99 GND 28 VCCIB1 64 VCCIB1 100 VCC 29 GEC1/IO112RSB1 65 GDC2/IO72RSB1 101 IO47RSB0 30 GEC0/IO111RSB1 66 GDB2/IO71RSB1 102 GBC2/IO45RSB0 31 GEB1/IO110RSB1 67 GDA2/IO70RSB1 103 IO44RSB0 32 GEB0/IO109RSB1 68 GNDQ 104 GBB2/IO43RSB0 33 GEA1/IO108RSB1 69 TCK 105 IO42RSB0 34 GEA0/IO107RSB1 70 TDI 106 GBA2/IO41RSB0 35 VMV1 71 TMS 107 VMV0 36 GNDQ 72 VMV1 108 GNDQ 4-26 Revision 18
ProASIC3 Flash Family FPGAs TQ144 Pin Number A3P125 Function 109 GBA1/IO40RSB0 110 GBA0/IO39RSB0 111 GBB1/IO38RSB0 112 GBB0/IO37RSB0 113 GBC1/IO36RSB0 114 GBC0/IO35RSB0 115 IO34RSB0 116 IO33RSB0 117 VCCIB0 118 GND 119 VCC 120 IO29RSB0 121 IO28RSB0 122 IO27RSB0 123 IO25RSB0 124 IO23RSB0 125 IO21RSB0 126 IO19RSB0 127 IO17RSB0 128 IO16RSB0 129 IO14RSB0 130 IO12RSB0 131 IO10RSB0 132 IO08RSB0 133 IO06RSB0 134 VCCIB0 135 GND 136 VCC 137 GAC1/IO05RSB0 138 GAC0/IO04RSB0 139 GAB1/IO03RSB0 140 GAB0/IO02RSB0 141 GAA1/IO01RSB0 142 GAA0/IO00RSB0 143 GNDQ 144 VMV0 Revision 18 4-27
Package Pin Assignments PQ208 – Top View 208 1 208-Pin PQFP Note For more information on package drawings, see PD3068: Package Mechanical Drawings. 4-28 Revision 18
ProASIC3 Flash Family FPGAs PQ208 PQ208 PQ208 Pin Number A3P125 Function Pin Number A3P125 Function Pin Number A3P125 Function 1 GND 37 IO116RSB1 73 IO92RSB1 2 GAA2/IO67RSB1 38 IO115RSB1 74 IO91RSB1 3 IO68RSB1 39 NC 75 IO90RSB1 4 GAB2/IO69RSB1 40 VCCIB1 76 IO89RSB1 5 IO132RSB1 41 GND 77 IO88RSB1 6 GAC2/IO131RSB1 42 IO114RSB1 78 IO87RSB1 7 NC 43 IO113RSB1 79 IO86RSB1 8 NC 44 GEC1/IO112RSB1 80 IO85RSB1 9 IO130RSB1 45 GEC0/IO111RSB1 81 GND 10 IO129RSB1 46 GEB1/IO110RSB1 82 IO84RSB1 11 NC 47 GEB0/IO109RSB1 83 IO83RSB1 12 IO128RSB1 48 GEA1/IO108RSB1 84 IO82RSB1 13 NC 49 GEA0/IO107RSB1 85 IO81RSB1 14 NC 50 VMV1 86 IO80RSB1 15 NC 51 GNDQ 87 IO79RSB1 16 VCC 52 GND 88 VCC 17 GND 53 NC 89 VCCIB1 18 VCCIB1 54 NC 90 IO78RSB1 19 IO127RSB1 55 GEA2/IO106RSB1 91 IO77RSB1 20 NC 56 GEB2/IO105RSB1 92 IO76RSB1 21 GFC1/IO126RSB1 57 GEC2/IO104RSB1 93 IO75RSB1 22 GFC0/IO125RSB1 58 IO103RSB1 94 IO74RSB1 23 GFB1/IO124RSB1 59 IO102RSB1 95 IO73RSB1 24 GFB0/IO123RSB1 60 IO101RSB1 96 GDC2/IO72RSB1 25 VCOMPLF 61 IO100RSB1 97 GND 26 GFA0/IO122RSB1 62 VCCIB1 98 GDB2/IO71RSB1 27 VCCPLF 63 IO99RSB1 99 GDA2/IO70RSB1 28 GFA1/IO121RSB1 64 IO98RSB1 100 GNDQ 29 GND 65 GND 101 TCK 30 GFA2/IO120RSB1 66 IO97RSB1 102 TDI 31 NC 67 IO96RSB1 103 TMS 32 GFB2/IO119RSB1 68 IO95RSB1 104 VMV1 33 NC 69 IO94RSB1 105 GND 34 GFC2/IO118RSB1 70 IO93RSB1 106 VPUMP 35 IO117RSB1 71 VCC 107 NC 36 NC 72 VCCIB1 108 TDO Revision 18 4-29
Package Pin Assignments PQ208 PQ208 PQ208 Pin Number A3P125 Function Pin Number A3P125 Function Pin Number A3P125 Function 109 TRST 145 IO46RSB0 181 IO21RSB0 110 VJTAG 146 NC 182 IO20RSB0 111 GDA0/IO66RSB0 147 NC 183 IO19RSB0 112 GDA1/IO65RSB0 148 NC 184 IO18RSB0 113 GDB0/IO64RSB0 149 GBC2/IO45RSB0 185 IO17RSB0 114 GDB1/IO63RSB0 150 IO44RSB0 186 VCCIB0 115 GDC0/IO62RSB0 151 GBB2/IO43RSB0 187 VCC 116 GDC1/IO61RSB0 152 IO42RSB0 188 IO16RSB0 117 NC 153 GBA2/IO41RSB0 189 IO15RSB0 118 NC 154 VMV0 190 IO14RSB0 119 NC 155 GNDQ 191 IO13RSB0 120 NC 156 GND 192 IO12RSB0 121 NC 157 NC 193 IO11RSB0 122 GND 158 GBA1/IO40RSB0 194 IO10RSB0 123 VCCIB0 159 GBA0/IO39RSB0 195 GND 124 NC 160 GBB1/IO38RSB0 196 IO09RSB0 125 NC 161 GBB0/IO37RSB0 197 IO08RSB0 126 VCC 162 GND 198 IO07RSB0 127 IO60RSB0 163 GBC1/IO36RSB0 199 IO06RSB0 128 GCC2/IO59RSB0 164 GBC0/IO35RSB0 200 VCCIB0 129 GCB2/IO58RSB0 165 IO34RSB0 201 GAC1/IO05RSB0 130 GND 166 IO33RSB0 202 GAC0/IO04RSB0 131 GCA2/IO57RSB0 167 IO32RSB0 203 GAB1/IO03RSB0 132 GCA0/IO56RSB0 168 IO31RSB0 204 GAB0/IO02RSB0 133 GCA1/IO55RSB0 169 IO30RSB0 205 GAA1/IO01RSB0 134 GCB0/IO54RSB0 170 VCCIB0 206 GAA0/IO00RSB0 135 GCB1/IO53RSB0 171 VCC 207 GNDQ 136 GCC0/IO52RSB0 172 IO29RSB0 208 VMV0 137 GCC1/IO51RSB0 173 IO28RSB0 138 IO50RSB0 174 IO27RSB0 139 IO49RSB0 175 IO26RSB0 140 VCCIB0 176 IO25RSB0 141 GND 177 IO24RSB0 142 VCC 178 GND 143 IO48RSB0 179 IO23RSB0 144 IO47RSB0 180 IO22RSB0 4-30 Revision 18
ProASIC3 Flash Family FPGAs PQ208 PQ208 PQ208 Pin Number A3P250 Function Pin Number A3P250 Function Pin Number A3P250 Function 1 GND 37 IO104PDB3 73 IO83RSB2 2 GAA2/IO118UDB3 38 IO104NDB3 74 IO82RSB2 3 IO118VDB3 39 IO103PSB3 75 IO81RSB2 4 GAB2/IO117UDB3 40 VCCIB3 76 IO80RSB2 5 IO117VDB3 41 GND 77 IO79RSB2 6 GAC2/IO116UDB3 42 IO101PDB3 78 IO78RSB2 7 IO116VDB3 43 IO101NDB3 79 IO77RSB2 8 IO115UDB3 44 GEC1/IO100PDB3 80 IO76RSB2 9 IO115VDB3 45 GEC0/IO100NDB3 81 GND 10 IO114UDB3 46 GEB1/IO99PDB3 82 IO75RSB2 11 IO114VDB3 47 GEB0/IO99NDB3 83 IO74RSB2 12 IO113PDB3 48 GEA1/IO98PDB3 84 IO73RSB2 13 IO113NDB3 49 GEA0/IO98NDB3 85 IO72RSB2 14 IO112PDB3 50 VMV3 86 IO71RSB2 15 IO112NDB3 51 GNDQ 87 IO70RSB2 16 VCC 52 GND 88 VCC 17 GND 53 NC 89 VCCIB2 18 VCCIB3 54 NC 90 IO69RSB2 19 IO111PDB3 55 GEA2/IO97RSB2 91 IO68RSB2 20 IO111NDB3 56 GEB2/IO96RSB2 92 IO67RSB2 21 GFC1/IO110PDB3 57 GEC2/IO95RSB2 93 IO66RSB2 22 GFC0/IO110NDB3 58 IO94RSB2 94 IO65RSB2 23 GFB1/IO109PDB3 59 IO93RSB2 95 IO64RSB2 24 GFB0/IO109NDB3 60 IO92RSB2 96 GDC2/IO63RSB2 25 VCOMPLF 61 IO91RSB2 97 GND 26 GFA0/IO108NPB3 62 VCCIB2 98 GDB2/IO62RSB2 27 VCCPLF 63 IO90RSB2 99 GDA2/IO61RSB2 28 GFA1/IO108PPB3 64 IO89RSB2 100 GNDQ 29 GND 65 GND 101 TCK 30 GFA2/IO107PDB3 66 IO88RSB2 102 TDI 31 IO107NDB3 67 IO87RSB2 103 TMS 32 GFB2/IO106PDB3 68 IO86RSB2 104 VMV2 33 IO106NDB3 69 IO85RSB2 105 GND 34 GFC2/IO105PDB3 70 IO84RSB2 106 VPUMP 35 IO105NDB3 71 VCC 107 NC 36 NC 72 VCCIB2 108 TDO Revision 18 4-31
Package Pin Assignments PQ208 PQ208 PQ208 Pin Number A3P250 Function Pin Number A3P250 Function Pin Number A3P250 Function 109 TRST 145 IO45PDB1 181 IO21RSB0 110 VJTAG 146 IO44NDB1 182 IO20RSB0 111 GDA0/IO60VDB1 147 IO44PDB1 183 IO19RSB0 112 GDA1/IO60UDB1 148 IO43NDB1 184 IO18RSB0 113 GDB0/IO59VDB1 149 GBC2/IO43PDB1 185 IO17RSB0 114 GDB1/IO59UDB1 150 IO42NDB1 186 VCCIB0 115 GDC0/IO58VDB1 151 GBB2/IO42PDB1 187 VCC 116 GDC1/IO58UDB1 152 IO41NDB1 188 IO16RSB0 117 IO57VDB1 153 GBA2/IO41PDB1 189 IO15RSB0 118 IO57UDB1 154 VMV1 190 IO14RSB0 119 IO56NDB1 155 GNDQ 191 IO13RSB0 120 IO56PDB1 156 GND 192 IO12RSB0 121 IO55RSB1 157 NC 193 IO11RSB0 122 GND 158 GBA1/IO40RSB0 194 IO10RSB0 123 VCCIB1 159 GBA0/IO39RSB0 195 GND 124 NC 160 GBB1/IO38RSB0 196 IO09RSB0 125 NC 161 GBB0/IO37RSB0 197 IO08RSB0 126 VCC 162 GND 198 IO07RSB0 127 IO53NDB1 163 GBC1/IO36RSB0 199 IO06RSB0 128 GCC2/IO53PDB1 164 GBC0/IO35RSB0 200 VCCIB0 129 GCB2/IO52PSB1 165 IO34RSB0 201 GAC1/IO05RSB0 130 GND 166 IO33RSB0 202 GAC0/IO04RSB0 131 GCA2/IO51PSB1 167 IO32RSB0 203 GAB1/IO03RSB0 132 GCA1/IO50PDB1 168 IO31RSB0 204 GAB0/IO02RSB0 133 GCA0/IO50NDB1 169 IO30RSB0 205 GAA1/IO01RSB0 134 GCB0/IO49NDB1 170 VCCIB0 206 GAA0/IO00RSB0 135 GCB1/IO49PDB1 171 VCC 207 GNDQ 136 GCC0/IO48NDB1 172 IO29RSB0 208 VMV0 137 GCC1/IO48PDB1 173 IO28RSB0 138 IO47NDB1 174 IO27RSB0 139 IO47PDB1 175 IO26RSB0 140 VCCIB1 176 IO25RSB0 141 GND 177 IO24RSB0 142 VCC 178 GND 143 IO46RSB1 179 IO23RSB0 144 IO45NDB1 180 IO22RSB0 4-32 Revision 18
ProASIC3 Flash Family FPGAs PQ208 PQ208 PQ208 Pin Number A3P400 Function Pin Number A3P400 Function Pin Number A3P400 Function 1 GND 37 IO141PSB3 73 IO112RSB2 2 GAA2/IO155UDB3 38 IO140PDB3 74 IO111RSB2 3 IO155VDB3 39 IO140NDB3 75 IO110RSB2 4 GAB2/IO154UDB3 40 VCCIB3 76 IO109RSB2 5 IO154VDB3 41 GND 77 IO108RSB2 6 GAC2/IO153UDB3 42 IO138PDB3 78 IO107RSB2 7 IO153VDB3 43 IO138NDB3 79 IO106RSB2 8 IO152UDB3 44 GEC1/IO137PDB3 80 IO104RSB2 9 IO152VDB3 45 GEC0/IO137NDB3 81 GND 10 IO151UDB3 46 GEB1/IO136PDB3 82 IO102RSB2 11 IO151VDB3 47 GEB0/IO136NDB3 83 IO101RSB2 12 IO150PDB3 48 GEA1/IO135PDB3 84 IO100RSB2 13 IO150NDB3 49 GEA0/IO135NDB3 85 IO99RSB2 14 IO149PDB3 50 VMV3 86 IO98RSB2 15 IO149NDB3 51 GNDQ 87 IO97RSB2 16 VCC 52 GND 88 VCC 17 GND 53 VMV2 89 VCCIB2 18 VCCIB3 54 NC 90 IO94RSB2 19 IO148PDB3 55 GEA2/IO134RSB2 91 IO92RSB2 20 IO148NDB3 56 GEB2/IO133RSB2 92 IO90RSB2 21 GFC1/IO147PDB3 57 GEC2/IO132RSB2 93 IO88RSB2 22 GFC0/IO147NDB3 58 IO131RSB2 94 IO86RSB2 23 GFB1/IO146PDB3 59 IO130RSB2 95 IO84RSB2 24 GFB0/IO146NDB3 60 IO129RSB2 96 GDC2/IO82RSB2 25 VCOMPLF 61 IO128RSB2 97 GND 26 GFA0/IO145NPB3 62 VCCIB2 98 GDB2/IO81RSB2 27 VCCPLF 63 IO125RSB2 99 GDA2/IO80RSB2 28 GFA1/IO145PPB3 64 IO123RSB2 100 GNDQ 29 GND 65 GND 101 TCK 30 GFA2/IO144PDB3 66 IO121RSB2 102 TDI 31 IO144NDB3 67 IO119RSB2 103 TMS 32 GFB2/IO143PDB3 68 IO117RSB2 104 VMV2 33 IO143NDB3 69 IO115RSB2 105 GND 34 GFC2/IO142PDB3 70 IO113RSB2 106 VPUMP 35 IO142NDB3 71 VCC 107 NC 36 NC 72 VCCIB2 108 TDO Revision 18 4-33
Package Pin Assignments PQ208 PQ208 PQ208 Pin Number A3P400 Function Pin Number A3P400 Function Pin Number A3P400 Function 109 TRST 145 IO64PDB1 181 IO27RSB0 110 VJTAG 146 IO63NDB1 182 IO26RSB0 111 GDA0/IO79VDB1 147 IO63PDB1 183 IO25RSB0 112 GDA1/IO79UDB1 148 IO62NDB1 184 IO24RSB0 113 GDB0/IO78VDB1 149 GBC2/IO62PDB1 185 IO23RSB0 114 GDB1/IO78UDB1 150 IO61NDB1 186 VCCIB0 115 GDC0/IO77VDB1 151 GBB2/IO61PDB1 187 VCC 116 GDC1/IO77UDB1 152 IO60NDB1 188 IO21RSB0 117 IO76VDB1 153 GBA2/IO60PDB1 189 IO20RSB0 118 IO76UDB1 154 VMV1 190 IO19RSB0 119 IO75NDB1 155 GNDQ 191 IO18RSB0 120 IO75PDB1 156 GND 192 IO17RSB0 121 IO74RSB1 157 VMV0 193 IO16RSB0 122 GND 158 GBA1/IO59RSB0 194 IO15RSB0 123 VCCIB1 159 GBA0/IO58RSB0 195 GND 124 NC 160 GBB1/IO57RSB0 196 IO13RSB0 125 NC 161 GBB0/IO56RSB0 197 IO11RSB0 126 VCC 162 GND 198 IO09RSB0 127 IO72NDB1 163 GBC1/IO55RSB0 199 IO07RSB0 128 GCC2/IO72PDB1 164 GBC0/IO54RSB0 200 VCCIB0 129 GCB2/IO71PSB1 165 IO52RSB0 201 GAC1/IO05RSB0 130 GND 166 IO49RSB0 202 GAC0/IO04RSB0 131 GCA2/IO70PSB1 167 IO46RSB0 203 GAB1/IO03RSB0 132 GCA1/IO69PDB1 168 IO43RSB0 204 GAB0/IO02RSB0 133 GCA0/IO69NDB1 169 IO40RSB0 205 GAA1/IO01RSB0 134 GCB0/IO68NDB1 170 VCCIB0 206 GAA0/IO00RSB0 135 GCB1/IO68PDB1 171 VCC 207 GNDQ 136 GCC0/IO67NDB1 172 IO36RSB0 208 VMV0 137 GCC1/IO67PDB1 173 IO35RSB0 138 IO66NDB1 174 IO34RSB0 139 IO66PDB1 175 IO33RSB0 140 VCCIB1 176 IO32RSB0 141 GND 177 IO31RSB0 142 VCC 178 GND 143 IO65RSB1 179 IO29RSB0 144 IO64NDB1 180 IO28RSB0 4-34 Revision 18
ProASIC3 Flash Family FPGAs PQ208 PQ208 PQ208 Pin Number A3P600 Function Pin Number A3P600 Function Pin Number A3P600 Function 1 GND 37 IO152PDB3 73 IO120RSB2 2 GAA2/IO174PDB3 38 IO152NDB3 74 IO119RSB2 3 IO174NDB3 39 IO150PSB3 75 IO118RSB2 4 GAB2/IO173PDB3 40 VCCIB3 76 IO117RSB2 5 IO173NDB3 41 GND 77 IO116RSB2 6 GAC2/IO172PDB3 42 IO147PDB3 78 IO115RSB2 7 IO172NDB3 43 IO147NDB3 79 IO114RSB2 8 IO171PDB3 44 GEC1/IO146PDB3 80 IO112RSB2 9 IO171NDB3 45 GEC0/IO146NDB3 81 GND 10 IO170PDB3 46 GEB1/IO145PDB3 82 IO111RSB2 11 IO170NDB3 47 GEB0/IO145NDB3 83 IO110RSB2 12 IO169PDB3 48 GEA1/IO144PDB3 84 IO109RSB2 13 IO169NDB3 49 GEA0/IO144NDB3 85 IO108RSB2 14 IO168PDB3 50 VMV3 86 IO107RSB2 15 IO168NDB3 51 GNDQ 87 IO106RSB2 16 VCC 52 GND 88 VCC 17 GND 53 VMV2 89 VCCIB2 18 VCCIB3 54 GEA2/IO143RSB2 90 IO104RSB2 19 IO166PDB3 55 GEB2/IO142RSB2 91 IO102RSB2 20 IO166NDB3 56 GEC2/IO141RSB2 92 IO100RSB2 21 GFC1/IO164PDB3 57 IO140RSB2 93 IO98RSB2 22 GFC0/IO164NDB3 58 IO139RSB2 94 IO96RSB2 23 GFB1/IO163PDB3 59 IO138RSB2 95 IO92RSB2 24 GFB0/IO163NDB3 60 IO137RSB2 96 GDC2/IO91RSB2 25 VCOMPLF 61 IO136RSB2 97 GND 26 GFA0/IO162NPB3 62 VCCIB2 98 GDB2/IO90RSB2 27 VCCPLF 63 IO135RSB2 99 GDA2/IO89RSB2 28 GFA1/IO162PPB3 64 IO133RSB2 100 GNDQ 29 GND 65 GND 101 TCK 30 GFA2/IO161PDB3 66 IO131RSB2 102 TDI 31 IO161NDB3 67 IO129RSB2 103 TMS 32 GFB2/IO160PDB3 68 IO127RSB2 104 VMV2 33 IO160NDB3 69 IO125RSB2 105 GND 34 GFC2/IO159PDB3 70 IO123RSB2 106 VPUMP 35 IO159NDB3 71 VCC 107 GNDQ 36 VCC 72 VCCIB2 108 TDO Revision 18 4-35
Package Pin Assignments PQ208 PQ208 PQ208 Pin Number A3P600 Function Pin Number A3P600 Function Pin Number A3P600 Function 109 TRST 145 IO64PDB1 181 IO27RSB0 110 VJTAG 146 IO63NDB1 182 IO26RSB0 111 GDA0/IO88NDB1 147 IO63PDB1 183 IO25RSB0 112 GDA1/IO88PDB1 148 IO62NDB1 184 IO24RSB0 113 GDB0/IO87NDB1 149 GBC2/IO62PDB1 185 IO23RSB0 114 GDB1/IO87PDB1 150 IO61NDB1 186 VCCIB0 115 GDC0/IO86NDB1 151 GBB2/IO61PDB1 187 VCC 116 GDC1/IO86PDB1 152 IO60NDB1 188 IO20RSB0 117 IO84NDB1 153 GBA2/IO60PDB1 189 IO19RSB0 118 IO84PDB1 154 VMV1 190 IO18RSB0 119 IO82NDB1 155 GNDQ 191 IO17RSB0 120 IO82PDB1 156 GND 192 IO16RSB0 121 IO81PSB1 157 VMV0 193 IO14RSB0 122 GND 158 GBA1/IO59RSB0 194 IO12RSB0 123 VCCIB1 159 GBA0/IO58RSB0 195 GND 124 IO77NDB1 160 GBB1/IO57RSB0 196 IO10RSB0 125 IO77PDB1 161 GBB0/IO56RSB0 197 IO09RSB0 126 NC 162 GND 198 IO08RSB0 127 IO74NDB1 163 GBC1/IO55RSB0 199 IO07RSB0 128 GCC2/IO74PDB1 164 GBC0/IO54RSB0 200 VCCIB0 129 GCB2/IO73PSB1 165 IO52RSB0 201 GAC1/IO05RSB0 130 GND 166 IO50RSB0 202 GAC0/IO04RSB0 131 GCA2/IO72PSB1 167 IO48RSB0 203 GAB1/IO03RSB0 132 GCA1/IO71PDB1 168 IO46RSB0 204 GAB0/IO02RSB0 133 GCA0/IO71NDB1 169 IO44RSB0 205 GAA1/IO01RSB0 134 GCB0/IO70NDB1 170 VCCIB0 206 GAA0/IO00RSB0 135 GCB1/IO70PDB1 171 VCC 207 GNDQ 136 GCC0/IO69NDB1 172 IO36RSB0 208 VMV0 137 GCC1/IO69PDB1 173 IO35RSB0 138 IO67NDB1 174 IO34RSB0 139 IO67PDB1 175 IO33RSB0 140 VCCIB1 176 IO32RSB0 141 GND 177 IO31RSB0 142 VCC 178 GND 143 IO65PSB1 179 IO29RSB0 144 IO64NDB1 180 IO28RSB0 4-36 Revision 18
ProASIC3 Flash Family FPGAs PQ208 PQ208 PQ208 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function 1 GND 37 IO199PDB3 73 IO162RSB2 2 GAA2/IO225PDB3 38 IO199NDB3 74 IO160RSB2 3 IO225NDB3 39 IO197PSB3 75 IO158RSB2 4 GAB2/IO224PDB3 40 VCCIB3 76 IO156RSB2 5 IO224NDB3 41 GND 77 IO154RSB2 6 GAC2/IO223PDB3 42 IO191PDB3 78 IO152RSB2 7 IO223NDB3 43 IO191NDB3 79 IO150RSB2 8 IO222PDB3 44 GEC1/IO190PDB3 80 IO148RSB2 9 IO222NDB3 45 GEC0/IO190NDB3 81 GND 10 IO220PDB3 46 GEB1/IO189PDB3 82 IO143RSB2 11 IO220NDB3 47 GEB0/IO189NDB3 83 IO141RSB2 12 IO218PDB3 48 GEA1/IO188PDB3 84 IO139RSB2 13 IO218NDB3 49 GEA0/IO188NDB3 85 IO137RSB2 14 IO216PDB3 50 VMV3 86 IO135RSB2 15 IO216NDB3 51 GNDQ 87 IO133RSB2 16 VCC 52 GND 88 VCC 17 GND 53 VMV2 89 VCCIB2 18 VCCIB3 54 GEA2/IO187RSB2 90 IO128RSB2 19 IO212PDB3 55 GEB2/IO186RSB2 91 IO126RSB2 20 IO212NDB3 56 GEC2/IO185RSB2 92 IO124RSB2 21 GFC1/IO209PDB3 57 IO184RSB2 93 IO122RSB2 22 GFC0/IO209NDB3 58 IO183RSB2 94 IO120RSB2 23 GFB1/IO208PDB3 59 IO182RSB2 95 IO118RSB2 24 GFB0/IO208NDB3 60 IO181RSB2 96 GDC2/IO116RSB2 25 VCOMPLF 61 IO180RSB2 97 GND 26 GFA0/IO207NPB3 62 VCCIB2 98 GDB2/IO115RSB2 27 VCCPLF 63 IO178RSB2 99 GDA2/IO114RSB2 28 GFA1/IO207PPB3 64 IO176RSB2 100 GNDQ 29 GND 65 GND 101 TCK 30 GFA2/IO206PDB3 66 IO174RSB2 102 TDI 31 IO206NDB3 67 IO172RSB2 103 TMS 32 GFB2/IO205PDB3 68 IO170RSB2 104 VMV2 33 IO205NDB3 69 IO168RSB2 105 GND 34 GFC2/IO204PDB3 70 IO166RSB2 106 VPUMP 35 IO204NDB3 71 VCC 107 GNDQ 36 VCC 72 VCCIB2 108 TDO Revision 18 4-37
Package Pin Assignments PQ208 PQ208 PQ208 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function 109 TRST 145 IO84PDB1 181 IO33RSB0 110 VJTAG 146 IO82NDB1 182 IO31RSB0 111 GDA0/IO113NDB1 147 IO82PDB1 183 IO29RSB0 112 GDA1/IO113PDB1 148 IO80NDB1 184 IO27RSB0 113 GDB0/IO112NDB1 149 GBC2/IO80PDB1 185 IO25RSB0 114 GDB1/IO112PDB1 150 IO79NDB1 186 VCCIB0 115 GDC0/IO111NDB1 151 GBB2/IO79PDB1 187 VCC 116 GDC1/IO111PDB1 152 IO78NDB1 188 IO22RSB0 117 IO109NDB1 153 GBA2/IO78PDB1 189 IO20RSB0 118 IO109PDB1 154 VMV1 190 IO18RSB0 119 IO106NDB1 155 GNDQ 191 IO16RSB0 120 IO106PDB1 156 GND 192 IO15RSB0 121 IO104PSB1 157 VMV0 193 IO14RSB0 122 GND 158 GBA1/IO77RSB0 194 IO13RSB0 123 VCCIB1 159 GBA0/IO76RSB0 195 GND 124 IO99NDB1 160 GBB1/IO75RSB0 196 IO12RSB0 125 IO99PDB1 161 GBB0/IO74RSB0 197 IO11RSB0 126 NC 162 GND 198 IO10RSB0 127 IO96NDB1 163 GBC1/IO73RSB0 199 IO09RSB0 128 GCC2/IO96PDB1 164 GBC0/IO72RSB0 200 VCCIB0 129 GCB2/IO95PSB1 165 IO70RSB0 201 GAC1/IO05RSB0 130 GND 166 IO67RSB0 202 GAC0/IO04RSB0 131 GCA2/IO94PSB1 167 IO63RSB0 203 GAB1/IO03RSB0 132 GCA1/IO93PDB1 168 IO60RSB0 204 GAB0/IO02RSB0 133 GCA0/IO93NDB1 169 IO57RSB0 205 GAA1/IO01RSB0 134 GCB0/IO92NDB1 170 VCCIB0 206 GAA0/IO00RSB0 135 GCB1/IO92PDB1 171 VCC 207 GNDQ 136 GCC0/IO91NDB1 172 IO54RSB0 208 VMV0 137 GCC1/IO91PDB1 173 IO51RSB0 138 IO88NDB1 174 IO48RSB0 139 IO88PDB1 175 IO45RSB0 140 VCCIB1 176 IO42RSB0 141 GND 177 IO40RSB0 142 VCC 178 GND 143 IO86PSB1 179 IO38RSB0 144 IO84NDB1 180 IO35RSB0 4-38 Revision 18
ProASIC3 Flash Family FPGAs FG144 – Bottom View A1 Ball Pad Corner 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 18 4-39
Package Pin Assignments FG144 FG144 FG144 Pin Number A3P060 Function Pin Number A3P060 Function Pin Number A3P060 Function A1 GNDQ D1 IO91RSB1 G1 GFA1/IO84RSB1 A2 VMV0 D2 IO92RSB1 G2 GND A3 GAB0/IO04RSB0 D3 IO93RSB1 G3 VCCPLF A4 GAB1/IO05RSB0 D4 GAA2/IO51RSB1 G4 GFA0/IO85RSB1 A5 IO08RSB0 D5 GAC0/IO06RSB0 G5 GND A6 GND D6 GAC1/IO07RSB0 G6 GND A7 IO11RSB0 D7 GBC0/IO19RSB0 G7 GND A8 VCC D8 GBC1/IO20RSB0 G8 GDC1/IO45RSB0 A9 IO16RSB0 D9 GBB2/IO27RSB0 G9 IO32RSB0 A10 GBA0/IO23RSB0 D10 IO18RSB0 G10 GCC2/IO43RSB0 A11 GBA1/IO24RSB0 D11 IO28RSB0 G11 IO31RSB0 A12 GNDQ D12 GCB1/IO37RSB0 G12 GCB2/IO42RSB0 B1 GAB2/IO53RSB1 E1 VCC H1 VCC B2 GND E2 GFC0/IO88RSB1 H2 GFB2/IO82RSB1 B3 GAA0/IO02RSB0 E3 GFC1/IO89RSB1 H3 GFC2/IO81RSB1 B4 GAA1/IO03RSB0 E4 VCCIB1 H4 GEC1/IO77RSB1 B5 IO00RSB0 E5 IO52RSB1 H5 VCC B6 IO10RSB0 E6 VCCIB0 H6 IO34RSB0 B7 IO12RSB0 E7 VCCIB0 H7 IO44RSB0 B8 IO14RSB0 E8 GCC1/IO35RSB0 H8 GDB2/IO55RSB1 B9 GBB0/IO21RSB0 E9 VCCIB0 H9 GDC0/IO46RSB0 B10 GBB1/IO22RSB0 E10 VCC H10 VCCIB0 B11 GND E11 GCA0/IO40RSB0 H11 IO33RSB0 B12 VMV0 E12 IO30RSB0 H12 VCC C1 IO95RSB1 F1 GFB0/IO86RSB1 J1 GEB1/IO75RSB1 C2 GFA2/IO83RSB1 F2 VCOMPLF J2 IO78RSB1 C3 GAC2/IO94RSB1 F3 GFB1/IO87RSB1 J3 VCCIB1 C4 VCC F4 IO90RSB1 J4 GEC0/IO76RSB1 C5 IO01RSB0 F5 GND J5 IO79RSB1 C6 IO09RSB0 F6 GND J6 IO80RSB1 C7 IO13RSB0 F7 GND J7 VCC C8 IO15RSB0 F8 GCC0/IO36RSB0 J8 TCK C9 IO17RSB0 F9 GCB0/IO38RSB0 J9 GDA2/IO54RSB1 C10 GBA2/IO25RSB0 F10 GND J10 TDO C11 IO26RSB0 F11 GCA1/IO39RSB0 J11 GDA1/IO49RSB0 C12 GBC2/IO29RSB0 F12 GCA2/IO41RSB0 J12 GDB1/IO47RSB0 4-40 Revision 18
ProASIC3 Flash Family FPGAs FG144 Pin Number A3P060 Function K1 GEB0/IO74RSB1 K2 GEA1/IO73RSB1 K3 GEA0/IO72RSB1 K4 GEA2/IO71RSB1 K5 IO65RSB1 K6 IO64RSB1 K7 GND K8 IO57RSB1 K9 GDC2/IO56RSB1 K10 GND K11 GDA0/IO50RSB0 K12 GDB0/IO48RSB0 L1 GND L2 VMV1 L3 GEB2/IO70RSB1 L4 IO67RSB1 L5 VCCIB1 L6 IO62RSB1 L7 IO59RSB1 L8 IO58RSB1 L9 TMS L10 VJTAG L11 VMV1 L12 TRST M1 GNDQ M2 GEC2/IO69RSB1 M3 IO68RSB1 M4 IO66RSB1 M5 IO63RSB1 M6 IO61RSB1 M7 IO60RSB1 M8 NC M9 TDI M10 VCCIB1 M11 VPUMP M12 GNDQ Revision 18 4-41
Package Pin Assignments FG144 FG144 FG144 Pin Number A3P125 Function Pin Number A3P125 Function Pin Number A3P125 Function A1 GNDQ D1 IO128RSB1 G1 GFA1/IO121RSB1 A2 VMV0 D2 IO129RSB1 G2 GND A3 GAB0/IO02RSB0 D3 IO130RSB1 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO67RSB1 G4 GFA0/IO122RSB1 A5 IO11RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO18RSB0 D7 GBC0/IO35RSB0 G7 GND A8 VCC D8 GBC1/IO36RSB0 G8 GDC1/IO61RSB0 A9 IO25RSB0 D9 GBB2/IO43RSB0 G9 IO48RSB0 A10 GBA0/IO39RSB0 D10 IO28RSB0 G10 GCC2/IO59RSB0 A11 GBA1/IO40RSB0 D11 IO44RSB0 G11 IO47RSB0 A12 GNDQ D12 GCB1/IO53RSB0 G12 GCB2/IO58RSB0 B1 GAB2/IO69RSB1 E1 VCC H1 VCC B2 GND E2 GFC0/IO125RSB1 H2 GFB2/IO119RSB1 B3 GAA0/IO00RSB0 E3 GFC1/IO126RSB1 H3 GFC2/IO118RSB1 B4 GAA1/IO01RSB0 E4 VCCIB1 H4 GEC1/IO112RSB1 B5 IO08RSB0 E5 IO68RSB1 H5 VCC B6 IO14RSB0 E6 VCCIB0 H6 IO50RSB0 B7 IO19RSB0 E7 VCCIB0 H7 IO60RSB0 B8 IO22RSB0 E8 GCC1/IO51RSB0 H8 GDB2/IO71RSB1 B9 GBB0/IO37RSB0 E9 VCCIB0 H9 GDC0/IO62RSB0 B10 GBB1/IO38RSB0 E10 VCC H10 VCCIB0 B11 GND E11 GCA0/IO56RSB0 H11 IO49RSB0 B12 VMV0 E12 IO46RSB0 H12 VCC C1 IO132RSB1 F1 GFB0/IO123RSB1 J1 GEB1/IO110RSB1 C2 GFA2/IO120RSB1 F2 VCOMPLF J2 IO115RSB1 C3 GAC2/IO131RSB1 F3 GFB1/IO124RSB1 J3 VCCIB1 C4 VCC F4 IO127RSB1 J4 GEC0/IO111RSB1 C5 IO10RSB0 F5 GND J5 IO116RSB1 C6 IO12RSB0 F6 GND J6 IO117RSB1 C7 IO21RSB0 F7 GND J7 VCC C8 IO24RSB0 F8 GCC0/IO52RSB0 J8 TCK C9 IO27RSB0 F9 GCB0/IO54RSB0 J9 GDA2/IO70RSB1 C10 GBA2/IO41RSB0 F10 GND J10 TDO C11 IO42RSB0 F11 GCA1/IO55RSB0 J11 GDA1/IO65RSB0 C12 GBC2/IO45RSB0 F12 GCA2/IO57RSB0 J12 GDB1/IO63RSB0 4-42 Revision 18
ProASIC3 Flash Family FPGAs FG144 Pin Number A3P125 Function K1 GEB0/IO109RSB1 K2 GEA1/IO108RSB1 K3 GEA0/IO107RSB1 K4 GEA2/IO106RSB1 K5 IO100RSB1 K6 IO98RSB1 K7 GND K8 IO73RSB1 K9 GDC2/IO72RSB1 K10 GND K11 GDA0/IO66RSB0 K12 GDB0/IO64RSB0 L1 GND L2 VMV1 L3 GEB2/IO105RSB1 L4 IO102RSB1 L5 VCCIB1 L6 IO95RSB1 L7 IO85RSB1 L8 IO74RSB1 L9 TMS L10 VJTAG L11 VMV1 L12 TRST M1 GNDQ M2 GEC2/IO104RSB1 M3 IO103RSB1 M4 IO101RSB1 M5 IO97RSB1 M6 IO94RSB1 M7 IO86RSB1 M8 IO75RSB1 M9 TDI M10 VCCIB1 M11 VPUMP M12 GNDQ Revision 18 4-43
Package Pin Assignments FG144 FG144 FG144 Pin Number A3P250 Function Pin Number A3P250 Function Pin Number A3P250 Function A1 GNDQ D1 IO112NDB3 G1 GFA1/IO108PPB3 A2 VMV0 D2 IO112PDB3 G2 GND A3 GAB0/IO02RSB0 D3 IO116VDB3 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO118UPB3 G4 GFA0/IO108NPB3 A5 IO16RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO29RSB0 D7 GBC0/IO35RSB0 G7 GND A8 VCC D8 GBC1/IO36RSB0 G8 GDC1/IO58UPB1 A9 IO33RSB0 D9 GBB2/IO42PDB1 G9 IO53NDB1 A10 GBA0/IO39RSB0 D10 IO42NDB1 G10 GCC2/IO53PDB1 A11 GBA1/IO40RSB0 D11 IO43NPB1 G11 IO52NDB1 A12 GNDQ D12 GCB1/IO49PPB1 G12 GCB2/IO52PDB1 B1 GAB2/IO117UDB3 E1 VCC H1 VCC B2 GND E2 GFC0/IO110NDB3 H2 GFB2/IO106PDB3 B3 GAA0/IO00RSB0 E3 GFC1/IO110PDB3 H3 GFC2/IO105PSB3 B4 GAA1/IO01RSB0 E4 VCCIB3 H4 GEC1/IO100PDB3 B5 IO14RSB0 E5 IO118VPB3 H5 VCC B6 IO19RSB0 E6 VCCIB0 H6 IO79RSB2 B7 IO22RSB0 E7 VCCIB0 H7 IO65RSB2 B8 IO30RSB0 E8 GCC1/IO48PDB1 H8 GDB2/IO62RSB2 B9 GBB0/IO37RSB0 E9 VCCIB1 H9 GDC0/IO58VPB1 B10 GBB1/IO38RSB0 E10 VCC H10 VCCIB1 B11 GND E11 GCA0/IO50NDB1 H11 IO54PSB1 B12 VMV1 E12 IO51NDB1 H12 VCC C1 IO117VDB3 F1 GFB0/IO109NPB3 J1 GEB1/IO99PDB3 C2 GFA2/IO107PPB3 F2 VCOMPLF J2 IO106NDB3 C3 GAC2/IO116UDB3 F3 GFB1/IO109PPB3 J3 VCCIB3 C4 VCC F4 IO107NPB3 J4 GEC0/IO100NDB3 C5 IO12RSB0 F5 GND J5 IO88RSB2 C6 IO17RSB0 F6 GND J6 IO81RSB2 C7 IO24RSB0 F7 GND J7 VCC C8 IO31RSB0 F8 GCC0/IO48NDB1 J8 TCK C9 IO34RSB0 F9 GCB0/IO49NPB1 J9 GDA2/IO61RSB2 C10 GBA2/IO41PDB1 F10 GND J10 TDO C11 IO41NDB1 F11 GCA1/IO50PDB1 J11 GDA1/IO60UDB1 C12 GBC2/IO43PPB1 F12 GCA2/IO51PDB1 J12 GDB1/IO59UDB1 4-44 Revision 18
ProASIC3 Flash Family FPGAs FG144 Pin Number A3P250 Function K1 GEB0/IO99NDB3 K2 GEA1/IO98PDB3 K3 GEA0/IO98NDB3 K4 GEA2/IO97RSB2 K5 IO90RSB2 K6 IO84RSB2 K7 GND K8 IO66RSB2 K9 GDC2/IO63RSB2 K10 GND K11 GDA0/IO60VDB1 K12 GDB0/IO59VDB1 L1 GND L2 VMV3 L3 GEB2/IO96RSB2 L4 IO91RSB2 L5 VCCIB2 L6 IO82RSB2 L7 IO80RSB2 L8 IO72RSB2 L9 TMS L10 VJTAG L11 VMV2 L12 TRST M1 GNDQ M2 GEC2/IO95RSB2 M3 IO92RSB2 M4 IO89RSB2 M5 IO87RSB2 M6 IO85RSB2 M7 IO78RSB2 M8 IO76RSB2 M9 TDI M10 VCCIB2 M11 VPUMP M12 GNDQ Revision 18 4-45
Package Pin Assignments FG144 FG144 FG144 Pin Number A3P400 Function Pin Number A3P400 Function Pin Number A3P400 Function A1 GNDQ D1 IO149NDB3 G1 GFA1/IO145PPB3 A2 VMV0 D2 IO149PDB3 G2 GND A3 GAB0/IO02RSB0 D3 IO153VDB3 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO155UPB3 G4 GFA0/IO145NPB3 A5 IO16RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO30RSB0 D7 GBC0/IO54RSB0 G7 GND A8 VCC D8 GBC1/IO55RSB0 G8 GDC1/IO77UPB1 A9 IO34RSB0 D9 GBB2/IO61PDB1 G9 IO72NDB1 A10 GBA0/IO58RSB0 D10 IO61NDB1 G10 GCC2/IO72PDB1 A11 GBA1/IO59RSB0 D11 IO62NPB1 G11 IO71NDB1 A12 GNDQ D12 GCB1/IO68PPB1 G12 GCB2/IO71PDB1 B1 GAB2/IO154UDB3 E1 VCC H1 VCC B2 GND E2 GFC0/IO147NDB3 H2 GFB2/IO143PDB3 B3 GAA0/IO00RSB0 E3 GFC1/IO147PDB3 H3 GFC2/IO142PSB3 B4 GAA1/IO01RSB0 E4 VCCIB3 H4 GEC1/IO137PDB3 B5 IO14RSB0 E5 IO155VPB3 H5 VCC B6 IO19RSB0 E6 VCCIB0 H6 IO75PDB1 B7 IO23RSB0 E7 VCCIB0 H7 IO75NDB1 B8 IO31RSB0 E8 GCC1/IO67PDB1 H8 GDB2/IO81RSB2 B9 GBB0/IO56RSB0 E9 VCCIB1 H9 GDC0/IO77VPB1 B10 GBB1/IO57RSB0 E10 VCC H10 VCCIB1 B11 GND E11 GCA0/IO69NDB1 H11 IO73PSB1 B12 VMV1 E12 IO70NDB1 H12 VCC C1 IO154VDB3 F1 GFB0/IO146NPB3 J1 GEB1/IO136PDB3 C2 GFA2/IO144PPB3 F2 VCOMPLF J2 IO143NDB3 C3 GAC2/IO153UDB3 F3 GFB1/IO146PPB3 J3 VCCIB3 C4 VCC F4 IO144NPB3 J4 GEC0/IO137NDB3 C5 IO12RSB0 F5 GND J5 IO125RSB2 C6 IO17RSB0 F6 GND J6 IO116RSB2 C7 IO25RSB0 F7 GND J7 VCC C8 IO32RSB0 F8 GCC0/IO67NDB1 J8 TCK C9 IO53RSB0 F9 GCB0/IO68NPB1 J9 GDA2/IO80RSB2 C10 GBA2/IO60PDB1 F10 GND J10 TDO C11 IO60NDB1 F11 GCA1/IO69PDB1 J11 GDA1/IO79UDB1 C12 GBC2/IO62PPB1 F12 GCA2/IO70PDB1 J12 GDB1/IO78UDB1 4-46 Revision 18
ProASIC3 Flash Family FPGAs FG144 Pin Number A3P400 Function K1 GEB0/IO136NDB3 K2 GEA1/IO135PDB3 K3 GEA0/IO135NDB3 K4 GEA2/IO134RSB2 K5 IO127RSB2 K6 IO121RSB2 K7 GND K8 IO104RSB2 K9 GDC2/IO82RSB2 K10 GND K11 GDA0/IO79VDB1 K12 GDB0/IO78VDB1 L1 GND L2 VMV3 L3 GEB2/IO133RSB2 L4 IO128RSB2 L5 VCCIB2 L6 IO119RSB2 L7 IO114RSB2 L8 IO110RSB2 L9 TMS L10 VJTAG L11 VMV2 L12 TRST M1 GNDQ M2 GEC2/IO132RSB2 M3 IO129RSB2 M4 IO126RSB2 M5 IO124RSB2 M6 IO122RSB2 M7 IO117RSB2 M8 IO115RSB2 M9 TDI M10 VCCIB2 M11 VPUMP M12 GNDQ Revision 18 4-47
Package Pin Assignments FG144 FG144 FG144 Pin Number A3P600 Function Pin Number A3P600 Function Pin Number A3P600 Function A1 GNDQ D1 IO169PDB3 G1 GFA1/IO162PPB3 A2 VMV0 D2 IO169NDB3 G2 GND A3 GAB0/IO02RSB0 D3 IO172NDB3 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO174PPB3 G4 GFA0/IO162NPB3 A5 IO10RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO34RSB0 D7 GBC0/IO54RSB0 G7 GND A8 VCC D8 GBC1/IO55RSB0 G8 GDC1/IO86PPB1 A9 IO50RSB0 D9 GBB2/IO61PDB1 G9 IO74NDB1 A10 GBA0/IO58RSB0 D10 IO61NDB1 G10 GCC2/IO74PDB1 A11 GBA1/IO59RSB0 D11 IO62NPB1 G11 IO73NDB1 A12 GNDQ D12 GCB1/IO70PPB1 G12 GCB2/IO73PDB1 B1 GAB2/IO173PDB3 E1 VCC H1 VCC B2 GND E2 GFC0/IO164NDB3 H2 GFB2/IO160PDB3 B3 GAA0/IO00RSB0 E3 GFC1/IO164PDB3 H3 GFC2/IO159PSB3 B4 GAA1/IO01RSB0 E4 VCCIB3 H4 GEC1/IO146PDB3 B5 IO13RSB0 E5 IO174NPB3 H5 VCC B6 IO19RSB0 E6 VCCIB0 H6 IO80PDB1 B7 IO31RSB0 E7 VCCIB0 H7 IO80NDB1 B8 IO39RSB0 E8 GCC1/IO69PDB1 H8 GDB2/IO90RSB2 B9 GBB0/IO56RSB0 E9 VCCIB1 H9 GDC0/IO86NPB1 B10 GBB1/IO57RSB0 E10 VCC H10 VCCIB1 B11 GND E11 GCA0/IO71NDB1 H11 IO84PSB1 B12 VMV1 E12 IO72NDB1 H12 VCC C1 IO173NDB3 F1 GFB0/IO163NPB3 J1 GEB1/IO145PDB3 C2 GFA2/IO161PPB3 F2 VCOMPLF J2 IO160NDB3 C3 GAC2/IO172PDB3 F3 GFB1/IO163PPB3 J3 VCCIB3 C4 VCC F4 IO161NPB3 J4 GEC0/IO146NDB3 C5 IO16RSB0 F5 GND J5 IO129RSB2 C6 IO25RSB0 F6 GND J6 IO131RSB2 C7 IO28RSB0 F7 GND J7 VCC C8 IO42RSB0 F8 GCC0/IO69NDB1 J8 TCK C9 IO45RSB0 F9 GCB0/IO70NPB1 J9 GDA2/IO89RSB2 C10 GBA2/IO60PDB1 F10 GND J10 TDO C11 IO60NDB1 F11 GCA1/IO71PDB1 J11 GDA1/IO88PDB1 C12 GBC2/IO62PPB1 F12 GCA2/IO72PDB1 J12 GDB1/IO87PDB1 4-48 Revision 18
ProASIC3 Flash Family FPGAs FG144 Pin Number A3P600 Function K1 GEB0/IO145NDB3 K2 GEA1/IO144PDB3 K3 GEA0/IO144NDB3 K4 GEA2/IO143RSB2 K5 IO119RSB2 K6 IO111RSB2 K7 GND K8 IO94RSB2 K9 GDC2/IO91RSB2 K10 GND K11 GDA0/IO88NDB1 K12 GDB0/IO87NDB1 L1 GND L2 VMV3 L3 GEB2/IO142RSB2 L4 IO136RSB2 L5 VCCIB2 L6 IO115RSB2 L7 IO103RSB2 L8 IO97RSB2 L9 TMS L10 VJTAG L11 VMV2 L12 TRST M1 GNDQ M2 GEC2/IO141RSB2 M3 IO138RSB2 M4 IO123RSB2 M5 IO126RSB2 M6 IO134RSB2 M7 IO108RSB2 M8 IO99RSB2 M9 TDI M10 VCCIB2 M11 VPUMP M12 GNDQ Revision 18 4-49
Package Pin Assignments FG144 FG144 FG144 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function A1 GNDQ D1 IO213PDB3 G1 GFA1/IO207PPB3 A2 VMV0 D2 IO213NDB3 G2 GND A3 GAB0/IO02RSB0 D3 IO223NDB3 G3 VCCPLF A4 GAB1/IO03RSB0 D4 GAA2/IO225PPB3 G4 GFA0/IO207NPB3 A5 IO10RSB0 D5 GAC0/IO04RSB0 G5 GND A6 GND D6 GAC1/IO05RSB0 G6 GND A7 IO44RSB0 D7 GBC0/IO72RSB0 G7 GND A8 VCC D8 GBC1/IO73RSB0 G8 GDC1/IO111PPB1 A9 IO69RSB0 D9 GBB2/IO79PDB1 G9 IO96NDB1 A10 GBA0/IO76RSB0 D10 IO79NDB1 G10 GCC2/IO96PDB1 A11 GBA1/IO77RSB0 D11 IO80NPB1 G11 IO95NDB1 A12 GNDQ D12 GCB1/IO92PPB1 G12 GCB2/IO95PDB1 B1 GAB2/IO224PDB3 E1 VCC H1 VCC B2 GND E2 GFC0/IO209NDB3 H2 GFB2/IO205PDB3 B3 GAA0/IO00RSB0 E3 GFC1/IO209PDB3 H3 GFC2/IO204PSB3 B4 GAA1/IO01RSB0 E4 VCCIB3 H4 GEC1/IO190PDB3 B5 IO13RSB0 E5 IO225NPB3 H5 VCC B6 IO26RSB0 E6 VCCIB0 H6 IO105PDB1 B7 IO35RSB0 E7 VCCIB0 H7 IO105NDB1 B8 IO60RSB0 E8 GCC1/IO91PDB1 H8 GDB2/IO115RSB2 B9 GBB0/IO74RSB0 E9 VCCIB1 H9 GDC0/IO111NPB1 B10 GBB1/IO75RSB0 E10 VCC H10 VCCIB1 B11 GND E11 GCA0/IO93NDB1 H11 IO101PSB1 B12 VMV1 E12 IO94NDB1 H12 VCC C1 IO224NDB3 F1 GFB0/IO208NPB3 J1 GEB1/IO189PDB3 C2 GFA2/IO206PPB3 F2 VCOMPLF J2 IO205NDB3 C3 GAC2/IO223PDB3 F3 GFB1/IO208PPB3 J3 VCCIB3 C4 VCC F4 IO206NPB3 J4 GEC0/IO190NDB3 C5 IO16RSB0 F5 GND J5 IO160RSB2 C6 IO29RSB0 F6 GND J6 IO157RSB2 C7 IO32RSB0 F7 GND J7 VCC C8 IO63RSB0 F8 GCC0/IO91NDB1 J8 TCK C9 IO66RSB0 F9 GCB0/IO92NPB1 J9 GDA2/IO114RSB2 C10 GBA2/IO78PDB1 F10 GND J10 TDO C11 IO78NDB1 F11 GCA1/IO93PDB1 J11 GDA1/IO113PDB1 C12 GBC2/IO80PPB1 F12 GCA2/IO94PDB1 J12 GDB1/IO112PDB1 4-50 Revision 18
ProASIC3 Flash Family FPGAs FG144 Pin Number A3P1000 Function K1 GEB0/IO189NDB3 K2 GEA1/IO188PDB3 K3 GEA0/IO188NDB3 K4 GEA2/IO187RSB2 K5 IO169RSB2 K6 IO152RSB2 K7 GND K8 IO117RSB2 K9 GDC2/IO116RSB2 K10 GND K11 GDA0/IO113NDB1 K12 GDB0/IO112NDB1 L1 GND L2 VMV3 L3 GEB2/IO186RSB2 L4 IO172RSB2 L5 VCCIB2 L6 IO153RSB2 L7 IO144RSB2 L8 IO140RSB2 L9 TMS L10 VJTAG L11 VMV2 L12 TRST M1 GNDQ M2 GEC2/IO185RSB2 M3 IO173RSB2 M4 IO168RSB2 M5 IO161RSB2 M6 IO156RSB2 M7 IO145RSB2 M8 IO141RSB2 M9 TDI M10 VCCIB2 M11 VPUMP M12 GNDQ Revision 18 4-51
Package Pin Assignments FG256 – Bottom View A1 Ball Pad Corner 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T Note For more information on package drawings, see PD3068: Package Mechanical Drawings. 4-52 Revision 18
ProASIC3 Flash Family FPGAs FG256 FG256 FG256 Pin Number A3P250 Function Pin Number A3P250 Function Pin Number A3P250 Function A1 GND C5 GAC0/IO04RSB0 E9 IO24RSB0 A2 GAA0/IO00RSB0 C6 GAC1/IO05RSB0 E10 VCCIB0 A3 GAA1/IO01RSB0 C7 IO13RSB0 E11 VCCIB0 A4 GAB0/IO02RSB0 C8 IO17RSB0 E12 VMV1 A5 IO07RSB0 C9 IO22RSB0 E13 GBC2/IO43PDB1 A6 IO10RSB0 C10 IO27RSB0 E14 IO46RSB1 A7 IO11RSB0 C11 IO31RSB0 E15 NC A8 IO15RSB0 C12 GBC0/IO35RSB0 E16 IO45PDB1 A9 IO20RSB0 C13 IO34RSB0 F1 IO113NDB3 A10 IO25RSB0 C14 NC F2 IO112PPB3 A11 IO29RSB0 C15 IO42NPB1 F3 NC A12 IO33RSB0 C16 IO44PDB1 F4 IO115VDB3 A13 GBB1/IO38RSB0 D1 IO114VDB3 F5 VCCIB3 A14 GBA0/IO39RSB0 D2 IO114UDB3 F6 GND A15 GBA1/IO40RSB0 D3 GAC2/IO116UDB3 F7 VCC A16 GND D4 NC F8 VCC B1 GAB2/IO117UDB3 D5 GNDQ F9 VCC B2 GAA2/IO118UDB3 D6 IO08RSB0 F10 VCC B3 NC D7 IO14RSB0 F11 GND B4 GAB1/IO03RSB0 D8 IO18RSB0 F12 VCCIB1 B5 IO06RSB0 D9 IO23RSB0 F13 IO43NDB1 B6 IO09RSB0 D10 IO28RSB0 F14 NC B7 IO12RSB0 D11 IO32RSB0 F15 IO47PPB1 B8 IO16RSB0 D12 GNDQ F16 IO45NDB1 B9 IO21RSB0 D13 NC G1 IO111NDB3 B10 IO26RSB0 D14 GBB2/IO42PPB1 G2 IO111PDB3 B11 IO30RSB0 D15 NC G3 IO112NPB3 B12 GBC1/IO36RSB0 D16 IO44NDB1 G4 GFC1/IO110PPB3 B13 GBB0/IO37RSB0 E1 IO113PDB3 G5 VCCIB3 B14 NC E2 NC G6 VCC B15 GBA2/IO41PDB1 E3 IO116VDB3 G7 GND B16 IO41NDB1 E4 IO115UDB3 G8 GND C1 IO117VDB3 E5 VMV0 G9 GND C2 IO118VDB3 E6 VCCIB0 G10 GND C3 NC E7 VCCIB0 G11 VCC C4 NC E8 IO19RSB0 G12 VCCIB1 Revision 18 4-53
Package Pin Assignments FG256 FG256 FG256 Pin Number A3P250 Function Pin Number A3P250 Function Pin Number A3P250 Function G13 GCC1/IO48PPB1 K1 GFC2/IO105PDB3 M5 VMV3 G14 IO47NPB1 K2 IO107NPB3 M6 VCCIB2 G15 IO54PDB1 K3 IO104PPB3 M7 VCCIB2 G16 IO54NDB1 K4 NC M8 NC H1 GFB0/IO109NPB3 K5 VCCIB3 M9 IO74RSB2 H2 GFA0/IO108NDB3 K6 VCC M10 VCCIB2 H3 GFB1/IO109PPB3 K7 GND M11 VCCIB2 H4 VCOMPLF K8 GND M12 VMV2 H5 GFC0/IO110NPB3 K9 GND M13 NC H6 VCC K10 GND M14 GDB1/IO59UPB1 H7 GND K11 VCC M15 GDC1/IO58UDB1 H8 GND K12 VCCIB1 M16 IO56NDB1 H9 GND K13 IO52NPB1 N1 IO103NDB3 H10 GND K14 IO55RSB1 N2 IO101PPB3 H11 VCC K15 IO53NPB1 N3 GEC1/IO100PPB3 H12 GCC0/IO48NPB1 K16 IO51NDB1 N4 NC H13 GCB1/IO49PPB1 L1 IO105NDB3 N5 GNDQ H14 GCA0/IO50NPB1 L2 IO104NPB3 N6 GEA2/IO97RSB2 H15 NC L3 NC N7 IO86RSB2 H16 GCB0/IO49NPB1 L4 IO102RSB3 N8 IO82RSB2 J1 GFA2/IO107PPB3 L5 VCCIB3 N9 IO75RSB2 J2 GFA1/IO108PDB3 L6 GND N10 IO69RSB2 J3 VCCPLF L7 VCC N11 IO64RSB2 J4 IO106NDB3 L8 VCC N12 GNDQ J5 GFB2/IO106PDB3 L9 VCC N13 NC J6 VCC L10 VCC N14 VJTAG J7 GND L11 GND N15 GDC0/IO58VDB1 J8 GND L12 VCCIB1 N16 GDA1/IO60UDB1 J9 GND L13 GDB0/IO59VPB1 P1 GEB1/IO99PDB3 J10 GND L14 IO57VDB1 P2 GEB0/IO99NDB3 J11 VCC L15 IO57UDB1 P3 NC J12 GCB2/IO52PPB1 L16 IO56PDB1 P4 NC J13 GCA1/IO50PPB1 M1 IO103PDB3 P5 IO92RSB2 J14 GCC2/IO53PPB1 M2 NC P6 IO89RSB2 J15 NC M3 IO101NPB3 P7 IO85RSB2 J16 GCA2/IO51PDB1 M4 GEC0/IO100NPB3 P8 IO81RSB2 4-54 Revision 18
ProASIC3 Flash Family FPGAs FG256 FG256 Pin Number A3P250 Function Pin Number A3P250 Function P9 IO76RSB2 T13 IO67RSB2 P10 IO71RSB2 T14 GDA2/IO61RSB2 P11 IO66RSB2 T15 TMS P12 NC T16 GND P13 TCK P14 VPUMP P15 TRST P16 GDA0/IO60VDB1 R1 GEA1/IO98PDB3 R2 GEA0/IO98NDB3 R3 NC R4 GEC2/IO95RSB2 R5 IO91RSB2 R6 IO88RSB2 R7 IO84RSB2 R8 IO80RSB2 R9 IO77RSB2 R10 IO72RSB2 R11 IO68RSB2 R12 IO65RSB2 R13 GDB2/IO62RSB2 R14 TDI R15 NC R16 TDO T1 GND T2 IO94RSB2 T3 GEB2/IO96RSB2 T4 IO93RSB2 T5 IO90RSB2 T6 IO87RSB2 T7 IO83RSB2 T8 IO79RSB2 T9 IO78RSB2 T10 IO73RSB2 T11 IO70RSB2 T12 GDC2/IO63RSB2 Revision 18 4-55
Package Pin Assignments FG256 FG256 FG256 Pin Number A3P400 Function Pin Number A3P400 Function Pin Number A3P400 Function A1 GND C5 GAC0/IO04RSB0 E9 IO31RSB0 A2 GAA0/IO00RSB0 C6 GAC1/IO05RSB0 E10 VCCIB0 A3 GAA1/IO01RSB0 C7 IO20RSB0 E11 VCCIB0 A4 GAB0/IO02RSB0 C8 IO24RSB0 E12 VMV1 A5 IO16RSB0 C9 IO33RSB0 E13 GBC2/IO62PDB1 A6 IO17RSB0 C10 IO39RSB0 E14 IO65RSB1 A7 IO22RSB0 C11 IO45RSB0 E15 IO52RSB0 A8 IO28RSB0 C12 GBC0/IO54RSB0 E16 IO66PDB1 A9 IO34RSB0 C13 IO48RSB0 F1 IO150NDB3 A10 IO37RSB0 C14 VMV0 F2 IO149NPB3 A11 IO41RSB0 C15 IO61NPB1 F3 IO09RSB0 A12 IO43RSB0 C16 IO63PDB1 F4 IO152UDB3 A13 GBB1/IO57RSB0 D1 IO151VDB3 F5 VCCIB3 A14 GBA0/IO58RSB0 D2 IO151UDB3 F6 GND A15 GBA1/IO59RSB0 D3 GAC2/IO153UDB3 F7 VCC A16 GND D4 IO06RSB0 F8 VCC B1 GAB2/IO154UDB3 D5 GNDQ F9 VCC B2 GAA2/IO155UDB3 D6 IO10RSB0 F10 VCC B3 IO12RSB0 D7 IO19RSB0 F11 GND B4 GAB1/IO03RSB0 D8 IO26RSB0 F12 VCCIB1 B5 IO13RSB0 D9 IO30RSB0 F13 IO62NDB1 B6 IO14RSB0 D10 IO40RSB0 F14 IO49RSB0 B7 IO21RSB0 D11 IO46RSB0 F15 IO64PPB1 B8 IO27RSB0 D12 GNDQ F16 IO66NDB1 B9 IO32RSB0 D13 IO47RSB0 G1 IO148NDB3 B10 IO38RSB0 D14 GBB2/IO61PPB1 G2 IO148PDB3 B11 IO42RSB0 D15 IO53RSB0 G3 IO149PPB3 B12 GBC1/IO55RSB0 D16 IO63NDB1 G4 GFC1/IO147PPB3 B13 GBB0/IO56RSB0 E1 IO150PDB3 G5 VCCIB3 B14 IO44RSB0 E2 IO08RSB0 G6 VCC B15 GBA2/IO60PDB1 E3 IO153VDB3 G7 GND B16 IO60NDB1 E4 IO152VDB3 G8 GND C1 IO154VDB3 E5 VMV0 G9 GND C2 IO155VDB3 E6 VCCIB0 G10 GND C3 IO11RSB0 E7 VCCIB0 G11 VCC C4 IO07RSB0 E8 IO25RSB0 G12 VCCIB1 4-56 Revision 18
ProASIC3 Flash Family FPGAs FG256 FG256 FG256 Pin Number A3P400 Function Pin Number A3P400 Function Pin Number A3P400 Function G13 GCC1/IO67PPB1 K1 GFC2/IO142PDB3 M5 VMV3 G14 IO64NPB1 K2 IO144NPB3 M6 VCCIB2 G15 IO73PDB1 K3 IO141PPB3 M7 VCCIB2 G16 IO73NDB1 K4 IO120RSB2 M8 IO108RSB2 H1 GFB0/IO146NPB3 K5 VCCIB3 M9 IO101RSB2 H2 GFA0/IO145NDB3 K6 VCC M10 VCCIB2 H3 GFB1/IO146PPB3 K7 GND M11 VCCIB2 H4 VCOMPLF K8 GND M12 VMV2 H5 GFC0/IO147NPB3 K9 GND M13 IO83RSB2 H6 VCC K10 GND M14 GDB1/IO78UPB1 H7 GND K11 VCC M15 GDC1/IO77UDB1 H8 GND K12 VCCIB1 M16 IO75NDB1 H9 GND K13 IO71NPB1 N1 IO140NDB3 H10 GND K14 IO74RSB1 N2 IO138PPB3 H11 VCC K15 IO72NPB1 N3 GEC1/IO137PPB3 H12 GCC0/IO67NPB1 K16 IO70NDB1 N4 IO131RSB2 H13 GCB1/IO68PPB1 L1 IO142NDB3 N5 GNDQ H14 GCA0/IO69NPB1 L2 IO141NPB3 N6 GEA2/IO134RSB2 H15 NC L3 IO125RSB2 N7 IO117RSB2 H16 GCB0/IO68NPB1 L4 IO139RSB3 N8 IO111RSB2 J1 GFA2/IO144PPB3 L5 VCCIB3 N9 IO99RSB2 J2 GFA1/IO145PDB3 L6 GND N10 IO94RSB2 J3 VCCPLF L7 VCC N11 IO87RSB2 J4 IO143NDB3 L8 VCC N12 GNDQ J5 GFB2/IO143PDB3 L9 VCC N13 IO93RSB2 J6 VCC L10 VCC N14 VJTAG J7 GND L11 GND N15 GDC0/IO77VDB1 J8 GND L12 VCCIB1 N16 GDA1/IO79UDB1 J9 GND L13 GDB0/IO78VPB1 P1 GEB1/IO136PDB3 J10 GND L14 IO76VDB1 P2 GEB0/IO136NDB3 J11 VCC L15 IO76UDB1 P3 VMV2 J12 GCB2/IO71PPB1 L16 IO75PDB1 P4 IO129RSB2 J13 GCA1/IO69PPB1 M1 IO140PDB3 P5 IO128RSB2 J14 GCC2/IO72PPB1 M2 IO130RSB2 P6 IO122RSB2 J15 NC M3 IO138NPB3 P7 IO115RSB2 J16 GCA2/IO70PDB1 M4 GEC0/IO137NPB3 P8 IO110RSB2 Revision 18 4-57
Package Pin Assignments FG256 FG256 Pin Number A3P400 Function Pin Number A3P400 Function P9 IO98RSB2 T13 IO86RSB2 P10 IO95RSB2 T14 GDA2/IO80RSB2 P11 IO88RSB2 T15 TMS P12 IO84RSB2 T16 GND P13 TCK P14 VPUMP P15 TRST P16 GDA0/IO79VDB1 R1 GEA1/IO135PDB3 R2 GEA0/IO135NDB3 R3 IO127RSB2 R4 GEC2/IO132RSB2 R5 IO123RSB2 R6 IO118RSB2 R7 IO112RSB2 R8 IO106RSB2 R9 IO100RSB2 R10 IO96RSB2 R11 IO89RSB2 R12 IO85RSB2 R13 GDB2/IO81RSB2 R14 TDI R15 NC R16 TDO T1 GND T2 IO126RSB2 T3 GEB2/IO133RSB2 T4 IO124RSB2 T5 IO116RSB2 T6 IO113RSB2 T7 IO107RSB2 T8 IO105RSB2 T9 IO102RSB2 T10 IO97RSB2 T11 IO92RSB2 T12 GDC2/IO82RSB2 4-58 Revision 18
ProASIC3 Flash Family FPGAs FG256 FG256 FG256 Pin Number A3P600 Function Pin Number A3P600 Function Pin Number A3P600 Function A1 GND C5 GAC0/IO04RSB0 E9 IO31RSB0 A2 GAA0/IO00RSB0 C6 GAC1/IO05RSB0 E10 VCCIB0 A3 GAA1/IO01RSB0 C7 IO20RSB0 E11 VCCIB0 A4 GAB0/IO02RSB0 C8 IO24RSB0 E12 VMV1 A5 IO11RSB0 C9 IO33RSB0 E13 GBC2/IO62PDB1 A6 IO16RSB0 C10 IO39RSB0 E14 IO67PPB1 A7 IO18RSB0 C11 IO44RSB0 E15 IO64PPB1 A8 IO28RSB0 C12 GBC0/IO54RSB0 E16 IO66PDB1 A9 IO34RSB0 C13 IO51RSB0 F1 IO166NDB3 A10 IO37RSB0 C14 VMV0 F2 IO168NPB3 A11 IO41RSB0 C15 IO61NPB1 F3 IO167PPB3 A12 IO43RSB0 C16 IO63PDB1 F4 IO169PDB3 A13 GBB1/IO57RSB0 D1 IO171NDB3 F5 VCCIB3 A14 GBA0/IO58RSB0 D2 IO171PDB3 F6 GND A15 GBA1/IO59RSB0 D3 GAC2/IO172PDB3 F7 VCC A16 GND D4 IO06RSB0 F8 VCC B1 GAB2/IO173PDB3 D5 GNDQ F9 VCC B2 GAA2/IO174PDB3 D6 IO10RSB0 F10 VCC B3 GNDQ D7 IO19RSB0 F11 GND B4 GAB1/IO03RSB0 D8 IO26RSB0 F12 VCCIB1 B5 IO13RSB0 D9 IO30RSB0 F13 IO62NDB1 B6 IO14RSB0 D10 IO40RSB0 F14 IO64NPB1 B7 IO21RSB0 D11 IO45RSB0 F15 IO65PPB1 B8 IO27RSB0 D12 GNDQ F16 IO66NDB1 B9 IO32RSB0 D13 IO50RSB0 G1 IO165NDB3 B10 IO38RSB0 D14 GBB2/IO61PPB1 G2 IO165PDB3 B11 IO42RSB0 D15 IO53RSB0 G3 IO168PPB3 B12 GBC1/IO55RSB0 D16 IO63NDB1 G4 GFC1/IO164PPB3 B13 GBB0/IO56RSB0 E1 IO166PDB3 G5 VCCIB3 B14 IO52RSB0 E2 IO167NPB3 G6 VCC B15 GBA2/IO60PDB1 E3 IO172NDB3 G7 GND B16 IO60NDB1 E4 IO169NDB3 G8 GND C1 IO173NDB3 E5 VMV0 G9 GND C2 IO174NDB3 E6 VCCIB0 G10 GND C3 VMV3 E7 VCCIB0 G11 VCC C4 IO07RSB0 E8 IO25RSB0 G12 VCCIB1 Revision 18 4-59
Package Pin Assignments FG256 FG256 FG256 Pin Number A3P600 Function Pin Number A3P600 Function Pin Number A3P600 Function G13 GCC1/IO69PPB1 K1 GFC2/IO159PDB3 M5 VMV3 G14 IO65NPB1 K2 IO161NPB3 M6 VCCIB2 G15 IO75PDB1 K3 IO156PPB3 M7 VCCIB2 G16 IO75NDB1 K4 IO129RSB2 M8 IO117RSB2 H1 GFB0/IO163NPB3 K5 VCCIB3 M9 IO110RSB2 H2 GFA0/IO162NDB3 K6 VCC M10 VCCIB2 H3 GFB1/IO163PPB3 K7 GND M11 VCCIB2 H4 VCOMPLF K8 GND M12 VMV2 H5 GFC0/IO164NPB3 K9 GND M13 IO94RSB2 H6 VCC K10 GND M14 GDB1/IO87PPB1 H7 GND K11 VCC M15 GDC1/IO86PDB1 H8 GND K12 VCCIB1 M16 IO84NDB1 H9 GND K13 IO73NPB1 N1 IO150NDB3 H10 GND K14 IO80NPB1 N2 IO147PPB3 H11 VCC K15 IO74NPB1 N3 GEC1/IO146PPB3 H12 GCC0/IO69NPB1 K16 IO72NDB1 N4 IO140RSB2 H13 GCB1/IO70PPB1 L1 IO159NDB3 N5 GNDQ H14 GCA0/IO71NPB1 L2 IO156NPB3 N6 GEA2/IO143RSB2 H15 IO67NPB1 L3 IO151PPB3 N7 IO126RSB2 H16 GCB0/IO70NPB1 L4 IO158PSB3 N8 IO120RSB2 J1 GFA2/IO161PPB3 L5 VCCIB3 N9 IO108RSB2 J2 GFA1/IO162PDB3 L6 GND N10 IO103RSB2 J3 VCCPLF L7 VCC N11 IO99RSB2 J4 IO160NDB3 L8 VCC N12 GNDQ J5 GFB2/IO160PDB3 L9 VCC N13 IO92RSB2 J6 VCC L10 VCC N14 VJTAG J7 GND L11 GND N15 GDC0/IO86NDB1 J8 GND L12 VCCIB1 N16 GDA1/IO88PDB1 J9 GND L13 GDB0/IO87NPB1 P1 GEB1/IO145PDB3 J10 GND L14 IO85NDB1 P2 GEB0/IO145NDB3 J11 VCC L15 IO85PDB1 P3 VMV2 J12 GCB2/IO73PPB1 L16 IO84PDB1 P4 IO138RSB2 J13 GCA1/IO71PPB1 M1 IO150PDB3 P5 IO136RSB2 J14 GCC2/IO74PPB1 M2 IO151NPB3 P6 IO131RSB2 J15 IO80PPB1 M3 IO147NPB3 P7 IO124RSB2 J16 GCA2/IO72PDB1 M4 GEC0/IO146NPB3 P8 IO119RSB2 4-60 Revision 18
ProASIC3 Flash Family FPGAs FG256 FG256 Pin Number A3P600 Function Pin Number A3P600 Function P9 IO107RSB2 T13 IO93RSB2 P10 IO104RSB2 T14 GDA2/IO89RSB2 P11 IO97RSB2 T15 TMS P12 VMV1 T16 GND P13 TCK P14 VPUMP P15 TRST P16 GDA0/IO88NDB1 R1 GEA1/IO144PDB3 R2 GEA0/IO144NDB3 R3 IO139RSB2 R4 GEC2/IO141RSB2 R5 IO132RSB2 R6 IO127RSB2 R7 IO121RSB2 R8 IO114RSB2 R9 IO109RSB2 R10 IO105RSB2 R11 IO98RSB2 R12 IO96RSB2 R13 GDB2/IO90RSB2 R14 TDI R15 GNDQ R16 TDO T1 GND T2 IO137RSB2 T3 GEB2/IO142RSB2 T4 IO134RSB2 T5 IO125RSB2 T6 IO123RSB2 T7 IO118RSB2 T8 IO115RSB2 T9 IO111RSB2 T10 IO106RSB2 T11 IO102RSB2 T12 GDC2/IO91RSB2 Revision 18 4-61
Package Pin Assignments FG256 FG256 FG256 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function A1 GND C7 IO25RSB0 E13 GBC2/IO80PDB1 A2 GAA0/IO00RSB0 C8 IO36RSB0 E14 IO83PPB1 A3 GAA1/IO01RSB0 C9 IO42RSB0 E15 IO86PPB1 A4 GAB0/IO02RSB0 C10 IO49RSB0 E16 IO87PDB1 A5 IO16RSB0 C11 IO56RSB0 F1 IO217NDB3 A6 IO22RSB0 C12 GBC0/IO72RSB0 F2 IO218NDB3 A7 IO28RSB0 C13 IO62RSB0 F3 IO216PDB3 A8 IO35RSB0 C14 VMV0 F4 IO216NDB3 A9 IO45RSB0 C15 IO78NDB1 F5 VCCIB3 A10 IO50RSB0 C16 IO81NDB1 F6 GND A11 IO55RSB0 D1 IO222NDB3 F7 VCC A12 IO61RSB0 D2 IO222PDB3 F8 VCC A13 GBB1/IO75RSB0 D3 GAC2/IO223PDB3 F9 VCC A14 GBA0/IO76RSB0 D4 IO223NDB3 F10 VCC A15 GBA1/IO77RSB0 D5 GNDQ F11 GND A16 GND D6 IO23RSB0 F12 VCCIB1 B1 GAB2/IO224PDB3 D7 IO29RSB0 F13 IO83NPB1 B2 GAA2/IO225PDB3 D8 IO33RSB0 F14 IO86NPB1 B3 GNDQ D9 IO46RSB0 F15 IO90PPB1 B4 GAB1/IO03RSB0 D10 IO52RSB0 F16 IO87NDB1 B5 IO17RSB0 D11 IO60RSB0 G1 IO210PSB3 B6 IO21RSB0 D12 GNDQ G2 IO213NDB3 B7 IO27RSB0 D13 IO80NDB1 G3 IO213PDB3 B8 IO34RSB0 D14 GBB2/IO79PDB1 G4 GFC1/IO209PPB3 B9 IO44RSB0 D15 IO79NDB1 G5 VCCIB3 B10 IO51RSB0 D16 IO82NSB1 G6 VCC B11 IO57RSB0 E1 IO217PDB3 G7 GND B12 GBC1/IO73RSB0 E2 IO218PDB3 G8 GND B13 GBB0/IO74RSB0 E3 IO221NDB3 G9 GND B14 IO71RSB0 E4 IO221PDB3 G10 GND B15 GBA2/IO78PDB1 E5 VMV0 G11 VCC B16 IO81PDB1 E6 VCCIB0 G12 VCCIB1 C1 IO224NDB3 E7 VCCIB0 G13 GCC1/IO91PPB1 C2 IO225NDB3 E8 IO38RSB0 G14 IO90NPB1 C3 VMV3 E9 IO47RSB0 G15 IO88PDB1 C4 IO11RSB0 E10 VCCIB0 G16 IO88NDB1 C5 GAC0/IO04RSB0 E11 VCCIB0 H1 GFB0/IO208NPB3 C6 GAC1/IO05RSB0 E12 VMV1 H2 GFA0/IO207NDB3 4-62 Revision 18
ProASIC3 Flash Family FPGAs FG256 FG256 FG256 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function H3 GFB1/IO208PPB3 K9 GND M15 GDC1/IO111PDB1 H4 VCOMPLF K10 GND M16 IO107NDB1 H5 GFC0/IO209NPB3 K11 VCC N1 IO194PSB3 H6 VCC K12 VCCIB1 N2 IO192PPB3 H7 GND K13 IO95NPB1 N3 GEC1/IO190PPB3 H8 GND K14 IO100NPB1 N4 IO192NPB3 H9 GND K15 IO102NDB1 N5 GNDQ H10 GND K16 IO102PDB1 N6 GEA2/IO187RSB2 H11 VCC L1 IO202NDB3 N7 IO161RSB2 H12 GCC0/IO91NPB1 L2 IO202PDB3 N8 IO155RSB2 H13 GCB1/IO92PPB1 L3 IO196PPB3 N9 IO141RSB2 H14 GCA0/IO93NPB1 L4 IO193PPB3 N10 IO129RSB2 H15 IO96NPB1 L5 VCCIB3 N11 IO124RSB2 H16 GCB0/IO92NPB1 L6 GND N12 GNDQ J1 GFA2/IO206PSB3 L7 VCC N13 IO110PDB1 J2 GFA1/IO207PDB3 L8 VCC N14 VJTAG J3 VCCPLF L9 VCC N15 GDC0/IO111NDB1 J4 IO205NDB3 L10 VCC N16 GDA1/IO113PDB1 J5 GFB2/IO205PDB3 L11 GND P1 GEB1/IO189PDB3 J6 VCC L12 VCCIB1 P2 GEB0/IO189NDB3 J7 GND L13 GDB0/IO112NPB1 P3 VMV2 J8 GND L14 IO106NDB1 P4 IO179RSB2 J9 GND L15 IO106PDB1 P5 IO171RSB2 J10 GND L16 IO107PDB1 P6 IO165RSB2 J11 VCC M1 IO197NSB3 P7 IO159RSB2 J12 GCB2/IO95PPB1 M2 IO196NPB3 P8 IO151RSB2 J13 GCA1/IO93PPB1 M3 IO193NPB3 P9 IO137RSB2 J14 GCC2/IO96PPB1 M4 GEC0/IO190NPB3 P10 IO134RSB2 J15 IO100PPB1 M5 VMV3 P11 IO128RSB2 J16 GCA2/IO94PSB1 M6 VCCIB2 P12 VMV1 K1 GFC2/IO204PDB3 M7 VCCIB2 P13 TCK K2 IO204NDB3 M8 IO147RSB2 P14 VPUMP K3 IO203NDB3 M9 IO136RSB2 P15 TRST K4 IO203PDB3 M10 VCCIB2 P16 GDA0/IO113NDB1 K5 VCCIB3 M11 VCCIB2 R1 GEA1/IO188PDB3 K6 VCC M12 VMV2 R2 GEA0/IO188NDB3 K7 GND M13 IO110NDB1 R3 IO184RSB2 K8 GND M14 GDB1/IO112PPB1 R4 GEC2/IO185RSB2 Revision 18 4-63
Package Pin Assignments FG256 Pin Number A3P1000 Function R5 IO168RSB2 R6 IO163RSB2 R7 IO157RSB2 R8 IO149RSB2 R9 IO143RSB2 R10 IO138RSB2 R11 IO131RSB2 R12 IO125RSB2 R13 GDB2/IO115RSB2 R14 TDI R15 GNDQ R16 TDO T1 GND T2 IO183RSB2 T3 GEB2/IO186RSB2 T4 IO172RSB2 T5 IO170RSB2 T6 IO164RSB2 T7 IO158RSB2 T8 IO153RSB2 T9 IO142RSB2 T10 IO135RSB2 T11 IO130RSB2 T12 GDC2/IO116RSB2 T13 IO120RSB2 T14 GDA2/IO114RSB2 T15 TMS T16 GND 4-64 Revision 18
ProASIC3 Flash Family FPGAs FG484 – Bottom View A1 Ball Pad Corner 22 21 201918 1716 151413 1211 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB Note For more information on package drawings, see PD3068: Package Mechanical Drawings. Revision 18 4-65
Package Pin Assignments FG484 FG484 FG484 Pin Number A3P400 Function Pin Number A3P400 Function Pin Number A3P400 Function A1 GND B15 NC D7 GAB0/IO02RSB0 A2 GND B16 NC D8 IO16RSB0 A3 VCCIB0 B17 NC D9 IO17RSB0 A4 NC B18 NC D10 IO22RSB0 A5 NC B19 NC D11 IO28RSB0 A6 IO15RSB0 B20 NC D12 IO34RSB0 A7 IO18RSB0 B21 VCCIB1 D13 IO37RSB0 A8 NC B22 GND D14 IO41RSB0 A9 NC C1 VCCIB3 D15 IO43RSB0 A10 IO23RSB0 C2 NC D16 GBB1/IO57RSB0 A11 IO29RSB0 C3 NC D17 GBA0/IO58RSB0 A12 IO35RSB0 C4 NC D18 GBA1/IO59RSB0 A13 IO36RSB0 C5 GND D19 GND A14 NC C6 NC D20 NC A15 NC C7 NC D21 NC A16 IO50RSB0 C8 VCC D22 NC A17 IO51RSB0 C9 VCC E1 NC A18 NC C10 NC E2 NC A19 NC C11 NC E3 GND A20 VCCIB0 C12 NC E4 GAB2/IO154UDB3 A21 GND C13 NC E5 GAA2/IO155UDB3 A22 GND C14 VCC E6 IO12RSB0 B1 GND C15 VCC E7 GAB1/IO03RSB0 B2 VCCIB3 C16 NC E8 IO13RSB0 B3 NC C17 NC E9 IO14RSB0 B4 NC C18 GND E10 IO21RSB0 B5 NC C19 NC E11 IO27RSB0 B6 NC C20 NC E12 IO32RSB0 B7 NC C21 NC E13 IO38RSB0 B8 NC C22 VCCIB1 E14 IO42RSB0 B9 NC D1 NC E15 GBC1/IO55RSB0 B10 NC D2 NC E16 GBB0/IO56RSB0 B11 NC D3 NC E17 IO44RSB0 B12 NC D4 GND E18 GBA2/IO60PDB1 B13 NC D5 GAA0/IO00RSB0 E19 IO60NDB1 B14 NC D6 GAA1/IO01RSB0 E20 GND 4-66 Revision 18
ProASIC3 Flash Family FPGAs FG484 FG484 FG484 Pin Number A3P400 Function Pin Number A3P400 Function Pin Number A3P400 Function E21 NC G13 IO40RSB0 J5 IO149NPB3 E22 NC G14 IO46RSB0 J6 IO09RSB0 F1 NC G15 GNDQ J7 IO152UDB3 F2 NC G16 IO47RSB0 J8 VCCIB3 F3 NC G17 GBB2/IO61PPB1 J9 GND F4 IO154VDB3 G18 IO53RSB0 J10 VCC F5 IO155VDB3 G19 IO63NDB1 J11 VCC F6 IO11RSB0 G20 NC J12 VCC F7 IO07RSB0 G21 NC J13 VCC F8 GAC0/IO04RSB0 G22 NC J14 GND F9 GAC1/IO05RSB0 H1 NC J15 VCCIB1 F10 IO20RSB0 H2 NC J16 IO62NDB1 F11 IO24RSB0 H3 VCC J17 IO49RSB0 F12 IO33RSB0 H4 IO150PDB3 J18 IO64PPB1 F13 IO39RSB0 H5 IO08RSB0 J19 IO66NDB1 F14 IO45RSB0 H6 IO153VDB3 J20 NC F15 GBC0/IO54RSB0 H7 IO152VDB3 J21 NC F16 IO48RSB0 H8 VMV0 J22 NC F17 VMV0 H9 VCCIB0 K1 NC F18 IO61NPB1 H10 VCCIB0 K2 NC F19 IO63PDB1 H11 IO25RSB0 K3 NC F20 NC H12 IO31RSB0 K4 IO148NDB3 F21 NC H13 VCCIB0 K5 IO148PDB3 F22 NC H14 VCCIB0 K6 IO149PPB3 G1 NC H15 VMV1 K7 GFC1/IO147PPB3 G2 NC H16 GBC2/IO62PDB1 K8 VCCIB3 G3 NC H17 IO65RSB1 K9 VCC G4 IO151VDB3 H18 IO52RSB0 K10 GND G5 IO151UDB3 H19 IO66PDB1 K11 GND G6 GAC2/IO153UDB3 H20 VCC K12 GND G7 IO06RSB0 H21 NC K13 GND G8 GNDQ H22 NC K14 VCC G9 IO10RSB0 J1 NC K15 VCCIB1 G10 IO19RSB0 J2 NC K16 GCC1/IO67PPB1 G11 IO26RSB0 J3 NC K17 IO64NPB1 G12 IO30RSB0 J4 IO150NDB3 K18 IO73PDB1 Revision 18 4-67
Package Pin Assignments FG484 FG484 FG484 Pin Number A3P400 Function Pin Number A3P400 Function Pin Number A3P400 Function K19 IO73NDB1 M11 GND P3 NC K20 NC M12 GND P4 IO142NDB3 K21 NC M13 GND P5 IO141NPB3 K22 NC M14 VCC P6 IO125RSB2 L1 NC M15 GCB2/IO71PPB1 P7 IO139RSB3 L2 NC M16 GCA1/IO69PPB1 P8 VCCIB3 L3 NC M17 GCC2/IO72PPB1 P9 GND L4 GFB0/IO146NPB3 M18 NC P10 VCC L5 GFA0/IO145NDB3 M19 GCA2/IO70PDB1 P11 VCC L6 GFB1/IO146PPB3 M20 NC P12 VCC L7 VCOMPLF M21 NC P13 VCC L8 GFC0/IO147NPB3 M22 NC P14 GND L9 VCC N1 NC P15 VCCIB1 L10 GND N2 NC P16 GDB0/IO78VPB1 L11 GND N3 NC P17 IO76VDB1 L12 GND N4 GFC2/IO142PDB3 P18 IO76UDB1 L13 GND N5 IO144NPB3 P19 IO75PDB1 L14 VCC N6 IO141PPB3 P20 NC L15 GCC0/IO67NPB1 N7 IO120RSB2 P21 NC L16 GCB1/IO68PPB1 N8 VCCIB3 P22 NC L17 GCA0/IO69NPB1 N9 VCC R1 NC L18 NC N10 GND R2 NC L19 GCB0/IO68NPB1 N11 GND R3 VCC L20 NC N12 GND R4 IO140PDB3 L21 NC N13 GND R5 IO130RSB2 L22 NC N14 VCC R6 IO138NPB3 M1 NC N15 VCCIB1 R7 GEC0/IO137NPB3 M2 NC N16 IO71NPB1 R8 VMV3 M3 NC N17 IO74RSB1 R9 VCCIB2 M4 GFA2/IO144PPB3 N18 IO72NPB1 R10 VCCIB2 M5 GFA1/IO145PDB3 N19 IO70NDB1 R11 IO108RSB2 M6 VCCPLF N20 NC R12 IO101RSB2 M7 IO143NDB3 N21 NC R13 VCCIB2 M8 GFB2/IO143PDB3 N22 NC R14 VCCIB2 M9 VCC P1 NC R15 VMV2 M10 GND P2 NC R16 IO83RSB2 4-68 Revision 18
ProASIC3 Flash Family FPGAs FG484 FG484 FG484 Pin Number A3P400 Function Pin Number A3P400 Function Pin Number A3P400 Function R17 GDB1/IO78UPB1 U9 IO122RSB2 W1 NC R18 GDC1/IO77UDB1 U10 IO115RSB2 W2 NC R19 IO75NDB1 U11 IO110RSB2 W3 NC R20 VCC U12 IO98RSB2 W4 GND R21 NC U13 IO95RSB2 W5 IO126RSB2 R22 NC U14 IO88RSB2 W6 GEB2/IO133RSB2 T1 NC U15 IO84RSB2 W7 IO124RSB2 T2 NC U16 TCK W8 IO116RSB2 T3 NC U17 VPUMP W9 IO113RSB2 T4 IO140NDB3 U18 TRST W10 IO107RSB2 T5 IO138PPB3 U19 GDA0/IO79VDB1 W11 IO105RSB2 T6 GEC1/IO137PPB3 U20 NC W12 IO102RSB2 T7 IO131RSB2 U21 NC W13 IO97RSB2 T8 GNDQ U22 NC W14 IO92RSB2 T9 GEA2/IO134RSB2 V1 NC W15 GDC2/IO82RSB2 T10 IO117RSB2 V2 NC W16 IO86RSB2 T11 IO111RSB2 V3 GND W17 GDA2/IO80RSB2 T12 IO99RSB2 V4 GEA1/IO135PDB3 W18 TMS T13 IO94RSB2 V5 GEA0/IO135NDB3 W19 GND T14 IO87RSB2 V6 IO127RSB2 W20 NC T15 GNDQ V7 GEC2/IO132RSB2 W21 NC T16 IO93RSB2 V8 IO123RSB2 W22 NC T17 VJTAG V9 IO118RSB2 Y1 VCCIB3 T18 GDC0/IO77VDB1 V10 IO112RSB2 Y2 NC T19 GDA1/IO79UDB1 V11 IO106RSB2 Y3 NC T20 NC V12 IO100RSB2 Y4 NC T21 NC V13 IO96RSB2 Y5 GND T22 NC V14 IO89RSB2 Y6 NC U1 NC V15 IO85RSB2 Y7 NC U2 NC V16 GDB2/IO81RSB2 Y8 VCC U3 NC V17 TDI Y9 VCC U4 GEB1/IO136PDB3 V18 NC Y10 NC U5 GEB0/IO136NDB3 V19 TDO Y11 NC U6 VMV2 V20 GND Y12 NC U7 IO129RSB2 V21 NC Y13 NC U8 IO128RSB2 V22 NC Y14 VCC Revision 18 4-69
Package Pin Assignments FG484 FG484 Pin Number A3P400 Function Pin Number A3P400 Function Y15 VCC AB7 IO119RSB2 Y16 NC AB8 IO114RSB2 Y17 NC AB9 IO109RSB2 Y18 GND AB10 NC Y19 NC AB11 NC Y20 NC AB12 IO104RSB2 Y21 NC AB13 IO103RSB2 Y22 VCCIB1 AB14 NC AA1 GND AB15 NC AA2 VCCIB3 AB16 IO91RSB2 AA3 NC AB17 IO90RSB2 AA4 NC AB18 NC AA5 NC AB19 NC AA6 NC AB20 VCCIB2 AA7 NC AB21 GND AA8 NC AB22 GND AA9 NC AA10 NC AA11 NC AA12 NC AA13 NC AA14 NC AA15 NC AA16 NC AA17 NC AA18 NC AA19 NC AA20 NC AA21 VCCIB1 AA22 GND AB1 GND AB2 GND AB3 VCCIB2 AB4 NC AB5 NC AB6 IO121RSB2 4-70 Revision 18
ProASIC3 Flash Family FPGAs FG484 FG484 FG484 Pin Number A3P600 Function Pin Number A3P600 Function Pin Number A3P600 Function A1 GND B15 NC D7 GAB0/IO02RSB0 A2 GND B16 IO47RSB0 D8 IO11RSB0 A3 VCCIB0 B17 IO49RSB0 D9 IO16RSB0 A4 NC B18 NC D10 IO18RSB0 A5 NC B19 NC D11 IO28RSB0 A6 IO09RSB0 B20 NC D12 IO34RSB0 A7 IO15RSB0 B21 VCCIB1 D13 IO37RSB0 A8 NC B22 GND D14 IO41RSB0 A9 NC C1 VCCIB3 D15 IO43RSB0 A10 IO22RSB0 C2 NC D16 GBB1/IO57RSB0 A11 IO23RSB0 C3 NC D17 GBA0/IO58RSB0 A12 IO29RSB0 C4 NC D18 GBA1/IO59RSB0 A13 IO35RSB0 C5 GND D19 GND A14 NC C6 NC D20 NC A15 NC C7 NC D21 NC A16 IO46RSB0 C8 VCC D22 NC A17 IO48RSB0 C9 VCC E1 NC A18 NC C10 NC E2 NC A19 NC C11 NC E3 GND A20 VCCIB0 C12 NC E4 GAB2/IO173PDB3 A21 GND C13 NC E5 GAA2/IO174PDB3 A22 GND C14 VCC E6 GNDQ B1 GND C15 VCC E7 GAB1/IO03RSB0 B2 VCCIB3 C16 NC E8 IO13RSB0 B3 NC C17 NC E9 IO14RSB0 B4 NC C18 GND E10 IO21RSB0 B5 NC C19 NC E11 IO27RSB0 B6 IO08RSB0 C20 NC E12 IO32RSB0 B7 IO12RSB0 C21 NC E13 IO38RSB0 B8 NC C22 VCCIB1 E14 IO42RSB0 B9 NC D1 NC E15 GBC1/IO55RSB0 B10 IO17RSB0 D2 NC E16 GBB0/IO56RSB0 B11 NC D3 NC E17 IO52RSB0 B12 NC D4 GND E18 GBA2/IO60PDB1 B13 IO36RSB0 D5 GAA0/IO00RSB0 E19 IO60NDB1 B14 NC D6 GAA1/IO01RSB0 E20 GND Revision 18 4-71
Package Pin Assignments FG484 FG484 FG484 Pin Number A3P600 Function Pin Number A3P600 Function Pin Number A3P600 Function E21 NC G13 IO40RSB0 J5 IO168NPB3 E22 NC G14 IO45RSB0 J6 IO167PPB3 F1 NC G15 GNDQ J7 IO169PDB3 F2 NC G16 IO50RSB0 J8 VCCIB3 F3 NC G17 GBB2/IO61PPB1 J9 GND F4 IO173NDB3 G18 IO53RSB0 J10 VCC F5 IO174NDB3 G19 IO63NDB1 J11 VCC F6 VMV3 G20 NC J12 VCC F7 IO07RSB0 G21 NC J13 VCC F8 GAC0/IO04RSB0 G22 NC J14 GND F9 GAC1/IO05RSB0 H1 NC J15 VCCIB1 F10 IO20RSB0 H2 NC J16 IO62NDB1 F11 IO24RSB0 H3 VCC J17 IO64NPB1 F12 IO33RSB0 H4 IO166PDB3 J18 IO65PPB1 F13 IO39RSB0 H5 IO167NPB3 J19 IO66NDB1 F14 IO44RSB0 H6 IO172NDB3 J20 NC F15 GBC0/IO54RSB0 H7 IO169NDB3 J21 IO68PDB1 F16 IO51RSB0 H8 VMV0 J22 IO68NDB1 F17 VMV0 H9 VCCIB0 K1 IO157PDB3 F18 IO61NPB1 H10 VCCIB0 K2 IO157NDB3 F19 IO63PDB1 H11 IO25RSB0 K3 NC F20 NC H12 IO31RSB0 K4 IO165NDB3 F21 NC H13 VCCIB0 K5 IO165PDB3 F22 NC H14 VCCIB0 K6 IO168PPB3 G1 IO170NDB3 H15 VMV1 K7 GFC1/IO164PPB3 G2 IO170PDB3 H16 GBC2/IO62PDB1 K8 VCCIB3 G3 NC H17 IO67PPB1 K9 VCC G4 IO171NDB3 H18 IO64PPB1 K10 GND G5 IO171PDB3 H19 IO66PDB1 K11 GND G6 GAC2/IO172PDB3 H20 VCC K12 GND G7 IO06RSB0 H21 NC K13 GND G8 GNDQ H22 NC K14 VCC G9 IO10RSB0 J1 NC K15 VCCIB1 G10 IO19RSB0 J2 NC K16 GCC1/IO69PPB1 G11 IO26RSB0 J3 NC K17 IO65NPB1 G12 IO30RSB0 J4 IO166NDB3 K18 IO75PDB1 4-72 Revision 18
ProASIC3 Flash Family FPGAs FG484 FG484 FG484 Pin Number A3P600 Function Pin Number A3P600 Function Pin Number A3P600 Function K19 IO75NDB1 M11 GND P3 IO153NDB3 K20 NC M12 GND P4 IO159NDB3 K21 IO76NDB1 M13 GND P5 IO156NPB3 K22 IO76PDB1 M14 VCC P6 IO151PPB3 L1 NC M15 GCB2/IO73PPB1 P7 IO158PPB3 L2 IO155PDB3 M16 GCA1/IO71PPB1 P8 VCCIB3 L3 NC M17 GCC2/IO74PPB1 P9 GND L4 GFB0/IO163NPB3 M18 IO80PPB1 P10 VCC L5 GFA0/IO162NDB3 M19 GCA2/IO72PDB1 P11 VCC L6 GFB1/IO163PPB3 M20 IO79PPB1 P12 VCC L7 VCOMPLF M21 IO78PPB1 P13 VCC L8 GFC0/IO164NPB3 M22 NC P14 GND L9 VCC N1 IO154NDB3 P15 VCCIB1 L10 GND N2 IO154PDB3 P16 GDB0/IO87NPB1 L11 GND N3 NC P17 IO85NDB1 L12 GND N4 GFC2/IO159PDB3 P18 IO85PDB1 L13 GND N5 IO161NPB3 P19 IO84PDB1 L14 VCC N6 IO156PPB3 P20 NC L15 GCC0/IO69NPB1 N7 IO129RSB2 P21 IO81PDB1 L16 GCB1/IO70PPB1 N8 VCCIB3 P22 NC L17 GCA0/IO71NPB1 N9 VCC R1 NC L18 IO67NPB1 N10 GND R2 NC L19 GCB0/IO70NPB1 N11 GND R3 VCC L20 IO77PDB1 N12 GND R4 IO150PDB3 L21 IO77NDB1 N13 GND R5 IO151NPB3 L22 IO78NPB1 N14 VCC R6 IO147NPB3 M1 NC N15 VCCIB1 R7 GEC0/IO146NPB3 M2 IO155NDB3 N16 IO73NPB1 R8 VMV3 M3 IO158NPB3 N17 IO80NPB1 R9 VCCIB2 M4 GFA2/IO161PPB3 N18 IO74NPB1 R10 VCCIB2 M5 GFA1/IO162PDB3 N19 IO72NDB1 R11 IO117RSB2 M6 VCCPLF N20 NC R12 IO110RSB2 M7 IO160NDB3 N21 IO79NPB1 R13 VCCIB2 M8 GFB2/IO160PDB3 N22 NC R14 VCCIB2 M9 VCC P1 NC R15 VMV2 M10 GND P2 IO153PDB3 R16 IO94RSB2 Revision 18 4-73
Package Pin Assignments FG484 FG484 FG484 Pin Number A3P600 Function Pin Number A3P600 Function Pin Number A3P600 Function R17 GDB1/IO87PPB1 U9 IO131RSB2 W1 NC R18 GDC1/IO86PDB1 U10 IO124RSB2 W2 IO148PDB3 R19 IO84NDB1 U11 IO119RSB2 W3 NC R20 VCC U12 IO107RSB2 W4 GND R21 IO81NDB1 U13 IO104RSB2 W5 IO137RSB2 R22 IO82PDB1 U14 IO97RSB2 W6 GEB2/IO142RSB2 T1 IO152PDB3 U15 VMV1 W7 IO134RSB2 T2 IO152NDB3 U16 TCK W8 IO125RSB2 T3 NC U17 VPUMP W9 IO123RSB2 T4 IO150NDB3 U18 TRST W10 IO118RSB2 T5 IO147PPB3 U19 GDA0/IO88NDB1 W11 IO115RSB2 T6 GEC1/IO146PPB3 U20 NC W12 IO111RSB2 T7 IO140RSB2 U21 IO83NDB1 W13 IO106RSB2 T8 GNDQ U22 NC W14 IO102RSB2 T9 GEA2/IO143RSB2 V1 NC W15 GDC2/IO91RSB2 T10 IO126RSB2 V2 NC W16 IO93RSB2 T11 IO120RSB2 V3 GND W17 GDA2/IO89RSB2 T12 IO108RSB2 V4 GEA1/IO144PDB3 W18 TMS T13 IO103RSB2 V5 GEA0/IO144NDB3 W19 GND T14 IO99RSB2 V6 IO139RSB2 W20 NC T15 GNDQ V7 GEC2/IO141RSB2 W21 NC T16 IO92RSB2 V8 IO132RSB2 W22 NC T17 VJTAG V9 IO127RSB2 Y1 VCCIB3 T18 GDC0/IO86NDB1 V10 IO121RSB2 Y2 IO148NDB3 T19 GDA1/IO88PDB1 V11 IO114RSB2 Y3 NC T20 NC V12 IO109RSB2 Y4 NC T21 IO83PDB1 V13 IO105RSB2 Y5 GND T22 IO82NDB1 V14 IO98RSB2 Y6 NC U1 IO149PDB3 V15 IO96RSB2 Y7 NC U2 IO149NDB3 V16 GDB2/IO90RSB2 Y8 VCC U3 NC V17 TDI Y9 VCC U4 GEB1/IO145PDB3 V18 GNDQ Y10 NC U5 GEB0/IO145NDB3 V19 TDO Y11 NC U6 VMV2 V20 GND Y12 NC U7 IO138RSB2 V21 NC Y13 NC U8 IO136RSB2 V22 NC Y14 VCC 4-74 Revision 18
ProASIC3 Flash Family FPGAs FG484 FG484 Pin Number A3P600 Function Pin Number A3P600 Function Y15 VCC AB7 IO128RSB2 Y16 NC AB8 IO122RSB2 Y17 NC AB9 IO116RSB2 Y18 GND AB10 NC Y19 NC AB11 NC Y20 NC AB12 IO113RSB2 Y21 NC AB13 IO112RSB2 Y22 VCCIB1 AB14 NC AA1 GND AB15 NC AA2 VCCIB3 AB16 IO100RSB2 AA3 NC AB17 IO95RSB2 AA4 NC AB18 NC AA5 NC AB19 NC AA6 IO135RSB2 AB20 VCCIB2 AA7 IO133RSB2 AB21 GND AA8 NC AB22 GND AA9 NC AA10 NC AA11 NC AA12 NC AA13 NC AA14 NC AA15 NC AA16 IO101RSB2 AA17 NC AA18 NC AA19 NC AA20 NC AA21 VCCIB1 AA22 GND AB1 GND AB2 GND AB3 VCCIB2 AB4 NC AB5 NC AB6 IO130RSB2 Revision 18 4-75
Package Pin Assignments FG484 FG484 FG484 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function A1 GND B15 IO63RSB0 D7 GAB0/IO02RSB0 A2 GND B16 IO66RSB0 D8 IO16RSB0 A3 VCCIB0 B17 IO68RSB0 D9 IO22RSB0 A4 IO07RSB0 B18 IO70RSB0 D10 IO28RSB0 A5 IO09RSB0 B19 NC D11 IO35RSB0 A6 IO13RSB0 B20 NC D12 IO45RSB0 A7 IO18RSB0 B21 VCCIB1 D13 IO50RSB0 A8 IO20RSB0 B22 GND D14 IO55RSB0 A9 IO26RSB0 C1 VCCIB3 D15 IO61RSB0 A10 IO32RSB0 C2 IO220PDB3 D16 GBB1/IO75RSB0 A11 IO40RSB0 C3 NC D17 GBA0/IO76RSB0 A12 IO41RSB0 C4 NC D18 GBA1/IO77RSB0 A13 IO53RSB0 C5 GND D19 GND A14 IO59RSB0 C6 IO10RSB0 D20 NC A15 IO64RSB0 C7 IO14RSB0 D21 NC A16 IO65RSB0 C8 VCC D22 NC A17 IO67RSB0 C9 VCC E1 IO219NDB3 A18 IO69RSB0 C10 IO30RSB0 E2 NC A19 NC C11 IO37RSB0 E3 GND A20 VCCIB0 C12 IO43RSB0 E4 GAB2/IO224PDB3 A21 GND C13 NC E5 GAA2/IO225PDB3 A22 GND C14 VCC E6 GNDQ B1 GND C15 VCC E7 GAB1/IO03RSB0 B2 VCCIB3 C16 NC E8 IO17RSB0 B3 NC C17 NC E9 IO21RSB0 B4 IO06RSB0 C18 GND E10 IO27RSB0 B5 IO08RSB0 C19 NC E11 IO34RSB0 B6 IO12RSB0 C20 NC E12 IO44RSB0 B7 IO15RSB0 C21 NC E13 IO51RSB0 B8 IO19RSB0 C22 VCCIB1 E14 IO57RSB0 B9 IO24RSB0 D1 IO219PDB3 E15 GBC1/IO73RSB0 B10 IO31RSB0 D2 IO220NDB3 E16 GBB0/IO74RSB0 B11 IO39RSB0 D3 NC E17 IO71RSB0 B12 IO48RSB0 D4 GND E18 GBA2/IO78PDB1 B13 IO54RSB0 D5 GAA0/IO00RSB0 E19 IO81PDB1 B14 IO58RSB0 D6 GAA1/IO01RSB0 E20 GND 4-76 Revision 18
ProASIC3 Flash Family FPGAs FG484 FG484 FG484 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function E21 NC G13 IO52RSB0 J5 IO218NDB3 E22 IO84PDB1 G14 IO60RSB0 J6 IO216PDB3 F1 NC G15 GNDQ J7 IO216NDB3 F2 IO215PDB3 G16 IO80NDB1 J8 VCCIB3 F3 IO215NDB3 G17 GBB2/IO79PDB1 J9 GND F4 IO224NDB3 G18 IO79NDB1 J10 VCC F5 IO225NDB3 G19 IO82NPB1 J11 VCC F6 VMV3 G20 IO85PDB1 J12 VCC F7 IO11RSB0 G21 IO85NDB1 J13 VCC F8 GAC0/IO04RSB0 G22 NC J14 GND F9 GAC1/IO05RSB0 H1 NC J15 VCCIB1 F10 IO25RSB0 H2 NC J16 IO83NPB1 F11 IO36RSB0 H3 VCC J17 IO86NPB1 F12 IO42RSB0 H4 IO217PDB3 J18 IO90PPB1 F13 IO49RSB0 H5 IO218PDB3 J19 IO87NDB1 F14 IO56RSB0 H6 IO221NDB3 J20 NC F15 GBC0/IO72RSB0 H7 IO221PDB3 J21 IO89PDB1 F16 IO62RSB0 H8 VMV0 J22 IO89NDB1 F17 VMV0 H9 VCCIB0 K1 IO211PDB3 F18 IO78NDB1 H10 VCCIB0 K2 IO211NDB3 F19 IO81NDB1 H11 IO38RSB0 K3 NC F20 IO82PPB1 H12 IO47RSB0 K4 IO210PPB3 F21 NC H13 VCCIB0 K5 IO213NDB3 F22 IO84NDB1 H14 VCCIB0 K6 IO213PDB3 G1 IO214NDB3 H15 VMV1 K7 GFC1/IO209PPB3 G2 IO214PDB3 H16 GBC2/IO80PDB1 K8 VCCIB3 G3 NC H17 IO83PPB1 K9 VCC G4 IO222NDB3 H18 IO86PPB1 K10 GND G5 IO222PDB3 H19 IO87PDB1 K11 GND G6 GAC2/IO223PDB3 H20 VCC K12 GND G7 IO223NDB3 H21 NC K13 GND G8 GNDQ H22 NC K14 VCC G9 IO23RSB0 J1 IO212NDB3 K15 VCCIB1 G10 IO29RSB0 J2 IO212PDB3 K16 GCC1/IO91PPB1 G11 IO33RSB0 J3 NC K17 IO90NPB1 G12 IO46RSB0 J4 IO217NDB3 K18 IO88PDB1 Revision 18 4-77
Package Pin Assignments FG484 FG484 FG484 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function K19 IO88NDB1 M11 GND P3 IO199NDB3 K20 IO94NPB1 M12 GND P4 IO202NDB3 K21 IO98NDB1 M13 GND P5 IO202PDB3 K22 IO98PDB1 M14 VCC P6 IO196PPB3 L1 NC M15 GCB2/IO95PPB1 P7 IO193PPB3 L2 IO200PDB3 M16 GCA1/IO93PPB1 P8 VCCIB3 L3 IO210NPB3 M17 GCC2/IO96PPB1 P9 GND L4 GFB0/IO208NPB3 M18 IO100PPB1 P10 VCC L5 GFA0/IO207NDB3 M19 GCA2/IO94PPB1 P11 VCC L6 GFB1/IO208PPB3 M20 IO101PPB1 P12 VCC L7 VCOMPLF M21 IO99PPB1 P13 VCC L8 GFC0/IO209NPB3 M22 NC P14 GND L9 VCC N1 IO201NDB3 P15 VCCIB1 L10 GND N2 IO201PDB3 P16 GDB0/IO112NPB1 L11 GND N3 NC P17 IO106NDB1 L12 GND N4 GFC2/IO204PDB3 P18 IO106PDB1 L13 GND N5 IO204NDB3 P19 IO107PDB1 L14 VCC N6 IO203NDB3 P20 NC L15 GCC0/IO91NPB1 N7 IO203PDB3 P21 IO104PDB1 L16 GCB1/IO92PPB1 N8 VCCIB3 P22 IO103NDB1 L17 GCA0/IO93NPB1 N9 VCC R1 NC L18 IO96NPB1 N10 GND R2 IO197PPB3 L19 GCB0/IO92NPB1 N11 GND R3 VCC L20 IO97PDB1 N12 GND R4 IO197NPB3 L21 IO97NDB1 N13 GND R5 IO196NPB3 L22 IO99NPB1 N14 VCC R6 IO193NPB3 M1 NC N15 VCCIB1 R7 GEC0/IO190NPB3 M2 IO200NDB3 N16 IO95NPB1 R8 VMV3 M3 IO206NDB3 N17 IO100NPB1 R9 VCCIB2 M4 GFA2/IO206PDB3 N18 IO102NDB1 R10 VCCIB2 M5 GFA1/IO207PDB3 N19 IO102PDB1 R11 IO147RSB2 M6 VCCPLF N20 NC R12 IO136RSB2 M7 IO205NDB3 N21 IO101NPB1 R13 VCCIB2 M8 GFB2/IO205PDB3 N22 IO103PDB1 R14 VCCIB2 M9 VCC P1 NC R15 VMV2 M10 GND P2 IO199PDB3 R16 IO110NDB1 4-78 Revision 18
ProASIC3 Flash Family FPGAs FG484 FG484 FG484 Pin Number A3P1000 Function Pin Number A3P1000 Function Pin Number A3P1000 Function R17 GDB1/IO112PPB1 U9 IO165RSB2 W1 NC R18 GDC1/IO111PDB1 U10 IO159RSB2 W2 IO191PDB3 R19 IO107NDB1 U11 IO151RSB2 W3 NC R20 VCC U12 IO137RSB2 W4 GND R21 IO104NDB1 U13 IO134RSB2 W5 IO183RSB2 R22 IO105PDB1 U14 IO128RSB2 W6 GEB2/IO186RSB2 T1 IO198PDB3 U15 VMV1 W7 IO172RSB2 T2 IO198NDB3 U16 TCK W8 IO170RSB2 T3 NC U17 VPUMP W9 IO164RSB2 T4 IO194PPB3 U18 TRST W10 IO158RSB2 T5 IO192PPB3 U19 GDA0/IO113NDB1 W11 IO153RSB2 T6 GEC1/IO190PPB3 U20 NC W12 IO142RSB2 T7 IO192NPB3 U21 IO108NDB1 W13 IO135RSB2 T8 GNDQ U22 IO109PDB1 W14 IO130RSB2 T9 GEA2/IO187RSB2 V1 NC W15 GDC2/IO116RSB2 T10 IO161RSB2 V2 NC W16 IO120RSB2 T11 IO155RSB2 V3 GND W17 GDA2/IO114RSB2 T12 IO141RSB2 V4 GEA1/IO188PDB3 W18 TMS T13 IO129RSB2 V5 GEA0/IO188NDB3 W19 GND T14 IO124RSB2 V6 IO184RSB2 W20 NC T15 GNDQ V7 GEC2/IO185RSB2 W21 NC T16 IO110PDB1 V8 IO168RSB2 W22 NC T17 VJTAG V9 IO163RSB2 Y1 VCCIB3 T18 GDC0/IO111NDB1 V10 IO157RSB2 Y2 IO191NDB3 T19 GDA1/IO113PDB1 V11 IO149RSB2 Y3 NC T20 NC V12 IO143RSB2 Y4 IO182RSB2 T21 IO108PDB1 V13 IO138RSB2 Y5 GND T22 IO105NDB1 V14 IO131RSB2 Y6 IO177RSB2 U1 IO195PDB3 V15 IO125RSB2 Y7 IO174RSB2 U2 IO195NDB3 V16 GDB2/IO115RSB2 Y8 VCC U3 IO194NPB3 V17 TDI Y9 VCC U4 GEB1/IO189PDB3 V18 GNDQ Y10 IO154RSB2 U5 GEB0/IO189NDB3 V19 TDO Y11 IO148RSB2 U6 VMV2 V20 GND Y12 IO140RSB2 U7 IO179RSB2 V21 NC Y13 NC U8 IO171RSB2 V22 IO109NDB1 Y14 VCC Revision 18 4-79
Package Pin Assignments FG484 FG484 Pin Number A3P1000 Function Pin Number A3P1000 Function Y15 VCC AB7 IO167RSB2 Y16 NC AB8 IO162RSB2 Y17 NC AB9 IO156RSB2 Y18 GND AB10 IO150RSB2 Y19 NC AB11 IO145RSB2 Y20 NC AB12 IO144RSB2 Y21 NC AB13 IO132RSB2 Y22 VCCIB1 AB14 IO127RSB2 AA1 GND AB15 IO126RSB2 AA2 VCCIB3 AB16 IO123RSB2 AA3 NC AB17 IO121RSB2 AA4 IO181RSB2 AB18 IO118RSB2 AA5 IO178RSB2 AB19 NC AA6 IO175RSB2 AB20 VCCIB2 AA7 IO169RSB2 AB21 GND AA8 IO166RSB2 AB22 GND AA9 IO160RSB2 AA10 IO152RSB2 AA11 IO146RSB2 AA12 IO139RSB2 AA13 IO133RSB2 AA14 NC AA15 NC AA16 IO122RSB2 AA17 IO119RSB2 AA18 IO117RSB2 AA19 NC AA20 NC AA21 VCCIB1 AA22 GND AB1 GND AB2 GND AB3 VCCIB2 AB4 IO180RSB2 AB5 IO176RSB2 AB6 IO173RSB2 4-80 Revision 18
5 – Datasheet Information List of Changes The following table lists critical changes that were made in each version of the ProASIC3 datasheet. Revision Changes Page Revision 18 Updated 3.3 V DC supply voltage's maximum Commercial and Industrial values 2-2 (March 2016) from 3.3 V to 3.6 V in Table2-2 (SAR 72693). Added reference of Package Mechanical Drawings document in all package pin NA assignment notes (76833). Revision 17 Removed PQFP embedded heat spreader info. from Table2-5 (SAR 52320). 2-6 (June 2015) Updated "VCCIBx I/O Supply Voltage" (SAR 43323). 3-1 Revision 16 Updated "ProASIC3 Ordering Information". Interchanged the positions of 1-IV (December 2014) Y- Security Feature and I- Application (Temperature Range) (SAR 61079). Added Note "Only devices with package size greater than or equal to 5x5 are supported". Updated Table Note (2) in Table2-3 • Flash Programming Limits – Retention, 2-3 Storage and Operating Temperature so that the Table Note is not applicable for Maximum Storage Temperature T (SAR 54297). STG Added values for Drive strength 2mA in Table2-41 • 3.3 V LVTTL / 3.3 V 2-34, 2-35, LVCMOS High Slew, Table2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew, 2-36, 2-37 Table2-43 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, and Table2-44 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew (SAR 57184). Added Figure 2-1 • High-Temperature Data Retention (HTR) (SAR 45466). 2-3 Updates made to maintain the style and consistency of the document. NA Revision 15 Added corner pad table note (3) to "QN132 – Bottom View" (SAR 47442). 4-6 (July 2014) Ambient temperature removed in Table2-2, table notes and "ProASIC3 2-2 Ordering Information" figure were modified (SAR 48343). 1-IV Other updates were made to maintain the style and consistency of the NA datasheet. Revision 14 Note added for the discontinuance of QN132 package to the following tables I, III, 4-6 (April 2014) and section: "ProASIC3 Devices", "I/Os Per Package1", "ProASIC3 FPGAs Package Sizes Dimensions" and "QN132 – Bottom View" section (SAR 55118). Revision 18 5-1
ProASIC3 Flash Family FPGAs Revision Changes Page Revision 13 The "ProASIC3 Ordering Information" section has been updated to mention "Y" 1-IV (January 2013) as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43104). Added a note to Table2-2 • Recommended Operating Conditions1 (SAR 2-2 43644): The programming temperature range supported is T = 0°C to ambient 85°C. The note in Table2-115 • ProASIC3 CCC/PLL Specification referring the reader 2-90 to SmartGen was revised to refer instead to the online help associated with the core (SAR 42569). Libero Integrated Design Environment (IDE) was changed to Libero System-on- NA Chip (SoC) throughout the document (SAR 40284). Live at Power-Up (LAPU) has been replaced with ’Instant On’. Revision 12 The Security section was modified to clarify that Microsemi does not support 1-1 (September 2012) read-back of programmed data. Added a Note stating "VMV pins must be connected to the corresponding VCCI 2-1 pins. See the "VMVx I/O Supply Voltage (quiet)" section on page3-1 for further 2-2 information" to Table2-1 • Absolute Maximum Ratings and Table2-2 • Recommended Operating Conditions1 (SAR 38321). Table2-35 • Duration of Short Circuit Event Before Failure was revised to 2-31 change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37933). In Table2-93 • Minimum and Maximum DC Input and Output Levels, VIL and 2-68 VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 28549). Figure 2-37 • FIFO Read and Figure 2-38 • FIFO Write are new (SAR 28371). 2-99 The following sentence was removed from the "VMVx I/O Supply Voltage 3-1 (quiet)" section in the "Pin Descriptions" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with “Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks” (SAR 38321). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement. Revision 18 5-2
Datasheet Information Revision Changes Page Revision 11 Note indicating that A3P015 is not recommended for new designs has been I to IV (March 2012) added. The "Devices Not Recommended For New Designs" section is new (SAR 36760). The following sentence was removed from the Advanced Architecture section: NA "In addition, extensive on-chip programming circuitry allows for rapid, single- voltage (3.3V) programming of IGLOO devices via an IEEE 1532 JTAG interface" (SAR 34687). The reference to guidelines for global spines and VersaTile rows, given in the 2-12 "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the ProASIC3 FPGA Fabric User's Guide (SAR 34734). Figure 2-4 • Input Buffer Timing Model and Delays (Example) has been modified 2-16 for the DIN waveform; the Rise and Fall time label has been changed to tDIN (35430). The AC Loading figures in the "Single-Ended I/O Characteristics" section were 2-32 updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34883). Added values for minimum pulse width and removed the FRMAX row from 2-85 Table2-107 through Table2-114 in the "Global Tree Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SARs 37279, 29269). 5-3 Revision 18
ProASIC3 Flash Family FPGAs Revision Changes Page Revision 10 The "In-System Programming (ISP) and Security" section and Security section I (September 2011) were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 32865). The value of 34 I/Os for the QN48 package in A3P030 was added to the "I/Os III Per Package1" section (SAR 33907). The Y security option and Licensed DPA Logo were added to the "ProASIC3 IV Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 32151). The "Specifying I/O States During Programming" section is new (SAR 21281). 1-7 In Table2-2 • Recommended Operating Conditions1, VPUMP programming 2-2 voltage in programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45" (SAR 30666). It was corrected in v2.0 of this datasheet in April 2007 but inadvertently changed back to “3.0 to 3.6 V” in v1.4 in August 2009. The following changes were made to Table2-2 • Recommended Operating Conditions1: VCCPLL analog power supply (PLL) was changed from "1.4 to 1.6" to "1.425 to 1.575" (SAR 33850). For VCCI and VMV, values for 3.3 V DC and 3.3 V DC Wide Range were corrected. The correct value for 3.3 V DC is "3.0 to 3.6 V" and the correct value for 3.3 V Wide Range is "2.7 to 3.6" (SAR 33848). Table2-25 • Summary of I/O Timing Characteristics—Software Default Settings 2-24 was update to restore values to the correct columns. Previously the Slew Rate column was missing and data were aligned incorrectly (SAR 34034). The notes regarding drive strength in the "Summary of I/O Timing 2-22, 2-39 Characteristics – Default I/O Software Settings" section and "3.3 V LVCMOS Wide Range" section tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is ±100µA. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700). Revision 18 5-4
Datasheet Information Revision Changes Page Revision 10 "TBD" for 3.3 V LVCMOS Wide Range in Table2-28 • I/O Output Buffer 2-26 to 2-28 (continued) Maximum Resistances1 through Table2-30 • I/O Output Buffer Maximum Resistances1 was replaced by "Same as regular 3.3 V" (SAR 33852). The equations in the notes for Table2-31 • I/O Weak Pull-Up/Pull-Down 2-28 Resistances were corrected (SAR 32470). "TBD" for 3.3 V LVCMOS Wide Range in Table2-32 • I/O Short Currents 2-29 to 2-31 IOSH/IOSL through Table2-34 • I/O Short Currents IOSH/IOSL was replaced by "Same as regular 3.3 V LVCMOS" (SAR 33852). In the "3.3 V LVCMOS Wide Range" section, values were added to Table2-47 2-39 to 2-40 through Table2-49 for IOSL and IOSH, replacing "TBD" (SAR 33852). The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 2-47 24916): "It uses a 5V–tolerant input buffer and push-pull output buffer." The table notes were revised for Table2-90 • LVDS Minimum and Maximum DC 2-66 Input and Output Levels (SAR 33859). Values were added for F and F in Table2-102 • Input DDR 2-78, 2-80 DDRIMAX DDOMAX Propagation Delays and Table2-104 • Output DDR Propagation Delays (SAR 23919). Table2-115 • ProASIC3 CCC/PLL Specification was updated. A note was 2-90 added to indicate that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 25705). The following figures were deleted (SAR 29991). Reference was made to a new application note, Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs, which covers these cases in detail (SAR 21770). 2-92, Figure 2-34 • Write Access after Write onto Same Address 2-94, Figure 2-35 • Read Access after Write onto Same Address 2-99 2-102 Figure 2-35 • Read Access after Write onto Same Address The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-39 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SARs 29991, 30510). The "Pin Descriptions" chapter has been added (SAR 21642). 3-1 Package names used in the "Package Pin Assignments" section were revised 4-1 to match standards given in Package Mechanical Drawings (SAR 27395). July 2010 The versioning system for datasheets has been changed. Datasheets are N/A assigned a revision number that increments each time the datasheet is revised. The "ProASIC3 Device Status" table on page IV indicates the status for each device in the device family. 5-5 Revision 18
ProASIC3 Flash Family FPGAs Revision Changes Page Revision 9 (Oct 2009) The CS121 package was added to table under "Features and Benefits" section, I – IV Product Brief v1.3 the "I/Os Per Package1" table, Table 1 • ProASIC3 FPGAs Package Sizes Dimensions, "ProASIC3 Ordering Information", and the "Temperature Grade Offerings" table. "ProASIC3 Ordering Information" was revised to include the fact that some RoHS IV compliant packages are halogen-free. Packaging v1.5 The "CS121 – Bottom View" figure and pin table for A3P060 are new. 4-15 Revision 8 (Aug 2009) All references to M7 devices (CoreMP7) and speed grade –F were removed from N/A Product Brief v1.2 this document. Table 1-1 I/O Standards supported is new. 1-7 The I/Os with Advanced I/O Standards section was revised to add definitions of 1-7 hot-swap and cold-sparing. DC and Switching 3.3 V LVCMOS and 1.2 V LVCMOS Wide Range support was added to the N/A Characteristics v1.4 datasheet. This affects all tables that contained 3.3 V LVCMOS and 1.2 V LVCMOS data. I and I input leakage current information was added to all "Minimum and N/A IL IH Maximum DC Input and Output Levels" tables. –F was removed from the datasheet. The speed grade is no longer supported. N/A The notes in Table2-2 • Recommended Operating Conditions1 were updated. 2-2 Table2-4 • Overshoot and Undershoot Limits1 was updated. 2-3 Table2-6 • Temperature and Voltage Derating Factors for Timing Delays was 2-6 updated. In Table2-116 • RAM4K9, the following specifications were removed: 2-96 t WRO t CCKH In Table2-117 • RAM512X18, the following specifications were removed: 2-97 t WRO t CCKH In the title of Table2-74 • 1.8 V LVCMOS High Slew, VCCI had a typo. It was 2-58 changed from 3.0 V to 1.7 V. Revision 7 (Feb 2009) The "Advanced I/O" section was revised to add a bullet regarding wide range I Product Brief v1.1 power supply voltage support. The table under "Features and Benefits" section, was updated to include a value I for typical equivalent macrocells for A3P250. The QN48 package was added to the following tables: the table under "Features N/A and Benefits" section, "I/Os Per Package1" "ProASIC3 FPGAs Package Sizes Dimensions", and "Temperature Grade Offerings". The number of singled-ended I/Os for QN68 was added to the "I/Os Per Package1" table. The Wide Range I/O Support section is new. 1-7 Revision 6 (Dec 2008) The "QN48 – Bottom View" section is new. 4-1 Packaging v1.4 The "QN68" pin table for A3P030 is new. 4-5 Revision 18 5-6
Datasheet Information Revision Changes Page Revision 5 (Aug 2008) TJ, Maximum Junction Temperature, was changed to 100° from 110º in the 2-6 DC and Switching "Thermal Characteristics" section and EQ1. The calculated result of Maximum Characteristics v1.3 Power Allowed has thus changed to 1.463 W from 1.951 W. Values for the A3P015 device were added to Table2-7 • Quiescent Supply 2-7 Current Characteristics. Values for the A3P015 device were added to Table2-14 • Different Components 2-11, 2-12 Contributing to Dynamic Power Consumption in ProASIC3 Devices. P was AC14 removed. Table2-15 • Different Components Contributing to the Static Power Consumption in ProASIC3 Devices is new. The "PLL Contribution—PPLL" section was updated to change the P formula 2-14 PLL from P + P * F to P + P * F . AC13 AC14 CLKOUT DC4 AC13 CLKOUT Both fall and rise values were included for t and t in Table2-102 • 2-78 DDRISUD DDRIHD Input DDR Propagation Delays. Table2-107 • A3P015 Global Resource is new. 2-86 The typical value for Delay Increments in Programmable Delay Blocks was 2-90 changed from 160 to 200 in Table2-115 • ProASIC3 CCC/PLL Specification. Revision 4 (Jun 2008) Table note references were added to Table2-2 • Recommended Operating 2-2 DC and Switching Conditions1, and the order of the table notes was changed. Characteristics v1.2 The title for Table2-4 • Overshoot and Undershoot Limits1 was modified to 2-3 remove "as measured on quiet I/Os." Table note 1 was revised to remove "estimated SSO density over cycles." Table note 2 was revised to remove "refers only to overshoot/undershoot limits for simultaneous switching I/Os." The "Power per I/O Pin" section was updated to include 3 additional tables 2-7 pertaining to input buffer power and output buffer power. Table2-29 • I/O Output Buffer Maximum Resistances1 was revised to include 2-27 values for 3.3 V PCI/PCI-X. Table2-90 • LVDS Minimum and Maximum DC Input and Output Levels was 2-66 updated. Revision 3 (Jun 2008) Pin numbers were added to the "QN68 – Bottom View" package diagram. Note 2 4-3 Packaging v1.3 was added below the diagram. The "QN132 – Bottom View" package diagram was updated to include D1 to D4. 4-6 In addition, note 1 was changed from top view to bottom view, and note 2 is new. Revision 2 (Feb 2008) This document was divided into two sections and given a version number, starting N/A Product Brief v1.0 at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview. This document was updated to include A3P015 device information. QN68 is a N/A new package that was added because it is offered in the A3P015. The following sections were updated: "Features and Benefits" "ProASIC3 Ordering Information" "Temperature Grade Offerings" "ProASIC3 Flash Family FPGAs" "A3P015 and A3P030" note Introduction and Overview (NA) 5-7 Revision 18
ProASIC3 Flash Family FPGAs Revision Changes Page Revision 2 (cont’d) The "ProASIC3 FPGAs Package Sizes Dimensions" table is new. III In the "ProASIC3 Ordering Information", the QN package measurements were IV updated to include both 0.4 mm and 0.5 mm. In the General Description section the number of I/Os was updated from 288 to 1-1 300. Packaging v1.2 The "QN68 – Bottom View" section is new. 4-3 Revision 1 (Feb 2008) In Table2-2 • Recommended Operating Conditions1, T was listed in the symbol 2-2 J DC and Switching column and was incorrect. It was corrected and changed to TA. Characteristics v1.1 In Table2-3 • Flash Programming Limits – Retention, Storage and Operating 2-3 Temperature, Maximum Operating Junction Temperature was changed from 110°C to 100°C for both commercial and industrial grades. The "PLL Behavior at Brownout Condition" section is new. 2-4 In the "PLL Contribution—PPLL" section, the following was deleted: 2-14 FCLKIN is the input clock frequency. In Table2-21 • Summary of Maximum and Minimum DC Input Levels, the note 2-21 was incorrect. It previously said T and it was corrected and changed to T . J A In Table2-115 • ProASIC3 CCC/PLL Specification, the SCLK parameter and note 2-90 1 are new. Table2-125 • JTAG 1532 was populated with the parameter data, which was not 2-108 in the previous version of the document. Packaging v1.1 In the "VQ100" A3P030 pin table, the function of pin 63 was incorrect and 4-19 changed from IO39RSB0 to GDB0/IO38RSB0. Revision 0 (Jan 2008) This document was previously in datasheet v2.2. As a result of moving to the N/A handbook format, Actel has restarted the version numbers. v2.2 The M7 and M1 device part numbers have been updated in Table 1 • ProASIC3 i, ii, iii, (July 2007) Product Family, "I/Os Per Package", "Automotive ProASIC3 Ordering iii, iv Information", "Temperature Grade Offerings", and "Speed Grade and Temperature Grade Matrix". The words "ambient temperature" were added to the temperature range in the iii, iv "Automotive ProASIC3 Ordering Information", "Temperature Grade Offerings", and "Speed Grade and Temperature Grade Matrix" sections. The T parameter in Table 3-2 • Recommended Operating Conditions was 3-2 J changed to T , ambient temperature, and table notes 4–6 were added. A v2.1 In the "Clock Conditioning Circuit (CCC) and PLL" section, the Wide Input i (May 2007) Frequency Range (1.5 MHz to 200 MHz) was changed to (1.5 MHz to 350 MHz). The "Clock Conditioning Circuit (CCC) and PLL" section was updated. i In the "I/Os Per Package" section, the A3P030, A3P060, A3P125, ACP250, and ii A3P600 device I/Os were updated. Table 3-5 • Package Thermal Resistivities was updated with A3P1000 3-5 information. The note below the table is also new. Revision 18 5-8
Datasheet Information Revision Changes Page v2.0 In the "Packaging Tables", Ambient was deleted. ii (April 2007) The timing characteristics tables were updated. N/A The "PLL Macro" section was updated to add information on the VCO and PLL 2-15 outputs during power-up. The "PLL Macro" section was updated to include power-up information. 2-15 Table 2-11 • ProASIC3 CCC/PLL Specification was updated. 2-29 Figure 2-19 • Peak-to-Peak Jitter Definition is new. 2-18 The "SRAM and FIFO" section was updated with operation and timing 2-21 requirement information. The "RESET" section was updated with read and write information. 2-25 The "RESET" section was updated with read and write information. 2-25 The "Introduction" in the "Advanced I/Os" section was updated to include 2-28 information on input and output buffers being disabled. PCI-X 3.3 V was added to Table 2-11 • VCCI Voltages and Compatible 2-29 Standards. In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance 2-34 descriptions were updated for levels 3 and 4. Table 2-43 • I/O Hot-Swap and 5V Input Tolerance Capabilities in ProASIC3 2-64 Devices was updated. Notes 3, 4, and 5 were added to Table 2-17 • Comparison Table for 5V– 2-40 Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7. The "VCCPLF PLL Supply Voltage" section was updated. 2-50 The "VPUMP Programming Supply Voltage" section was updated. 2-50 The "GL Globals" section was updated to include information about direct input 2-51 into quadrant clocks. V was deleted from the "TCK Test Clock" section. 2-51 JTAG In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK 2-51 was changed to TCK in note 2. Note 3 was also updated. Ambient was deleted from Table 3-2 • Recommended Operating Conditions. 3-2 VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45". Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on 3-2 quiet I/Os)1. In EQ3-2, 150 was changed to 110 and the result changed from 3.9 to 1.951. 3-5 Table 3-6 • Temperature and Voltage Derating Factors for Timing Delays was 3-6 updated. Table 3-5 • Package Thermal Resistivities was updated. 3-5 Table 3-14 • Summary of Maximum and Minimum DC Input and Output Levels 3-17 to 3- Applicable to Commercial and Industrial Conditions—Software Default Settings 17 (Advanced) and Table 3-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions (Standard Plus) were updated. 5-9 Revision 18
ProASIC3 Flash Family FPGAs Revision Changes Page v2.0 Table 3-20 • Summary of I/O Timing Characteristics—Software Default Settings 3-20 to (continued) (Advanced) and Table 3-21 • Summary of I/O Timing Characteristics—Software 3-20 Default Settings (Standard Plus) were updated. Table 3-11 • Different Components Contributing to Dynamic Power Consumption 3-9 in ProASIC3 Devices was updated. Table 3-24 • I/O Output Buffer Maximum Resistances1 (Advanced) and Table 3- 3-22 to 25 • I/O Output Buffer Maximum Resistances1 (Standard Plus) were updated. 3-22 Table 3-17 • Summary of Maximum and Minimum DC Input Levels Applicable to 3-18 Commercial and Industrial Conditions was updated. Table 3-28 • I/O Short Currents IOSH/IOSL (Advanced) and Table 3-29 • I/O 3-24 to Short Currents IOSH/IOSL (Standard Plus) were updated. 3-26 The note in Table 3-32 • I/O Input Rise Time, Fall Time, and Related I/O 3-27 Reliability was updated. Figure 3-33 • Write Access After Write onto Same Address, Figure 3-34 • Read 3-82 to Access After Write onto Same Address, and Figure 3-35 • Write Access After 3-84 Read onto Same Address are new. Figure 3-43 • Timing Diagram was updated. 3-96 Ambient was deleted from the "Speed Grade and Temperature Grade Matrix". iv Notes were added to the package diagrams identifying if they were top or bottom N/A view. The A3P030 "132-Pin QFN" table is new. 4-2 The A3P060 "132-Pin QFN" table is new. 4-4 The A3P125 "132-Pin QFN" table is new. 4-6 The A3P250 "132-Pin QFN" table is new. 4-8 The A3P030 "100-Pin VQFP" table is new. 4-11 Advance v0.7 In the "I/Os Per Package" table, the I/O numbers were added for A3P060, ii (January 2007) A3P125, and A3P250. The A3P030-VQ100 I/O was changed from 79 to 77. Advance v0.6 The term flow-through was changed to pass-through. N/A (April 2006) Table1 was updated to include the QN132. ii The "I/Os Per Package" table was updated with the QN132. The footnotes were ii also updated. The A3P400-FG144 I/O count was updated. "Automotive ProASIC3 Ordering Information" was updated with the QN132. iii "Temperature Grade Offerings" was updated with the QN132. iii B-LVDS and M-LDVS are new I/O standards added to the datasheet. N/A The term flow-through was changed to pass-through. N/A Figure 2-7 • Efficient Long-Line Resources was updated. 2-7 The footnotes in Figure 2-15 • Clock Input Sources Including CLKBUF, 2-16 CLKBUF_LVDS/LVPECL, and CLKINT were updated. The Delay Increments in the Programmable Delay Blocks specification in Figure 2-24 2-24 • ProASIC3E CCC Options. The "SRAM and FIFO" section was updated. 2-21 Revision 18 5-10
Datasheet Information Revision Changes Page Advance v0.6 The "RESET" section was updated. 2-25 (continued) The "WCLK and RCLK" section was updated. 2-25 The "RESET" section was updated. 2-25 The "RESET" section was updated. 2-27 The "Introduction" of the "Advanced I/Os" section was updated. 2-28 The "I/O Banks" section is new. This section explains the following types of I/Os: 2-29 Advanced Standard+ Standard Table 2-12 • Automotive ProASIC3 Bank Types Definition and Differences is new. This table describes the standards listed above. PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 2- 2-29 11 • VCCI Voltages and Compatible Standards Table 2-13 • ProASIC3 I/O Features was updated. 2-30 The "Double Data Rate (DDR) Support" section was updated to include 2-32 information concerning implementation of the feature. The "Electrostatic Discharge (ESD) Protection" section was updated to include 2-35 testing information. Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5V 2-64 Input Tolerance Capabilities in ProASIC3 Devices. The notes in Table 2-43 • I/O Hot-Swap and 5V Input Tolerance Capabilities in 2-64 ProASIC3 Devices were updated. The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" 2-41 section is new. A footnote was added to Table 2-14 • Maximum I/O Frequency for Single-Ended 2-30 and Differential I/Os in All Banks in Automotive ProASIC3 Devices (maximum drive strength and high slew selected). Table 2-18 • Automotive ProASIC3 I/O Attributes vs. I/O Standard Applications 2-45 Table 2-50 • ProASIC3 Output Drive (OUT_DRIVE) for Standard I/O Bank Type 2-83 (A3P030 device) Table 2-51 • ProASIC3 Output Drive for Standard+ I/O Bank Type was updated. 2-84 Table 2-54 • ProASIC3 Output Drive for Advanced I/O Bank Type was updated. 2-84 The "x" was updated in the "User I/O Naming Convention" section. 2-48 The "VCC Core Supply Voltage" pin description was updated. 2-50 The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include 2-50 information concerning leaving the pin unconnected. The "VJTAG JTAG Supply Voltage" pin description was updated. 2-50 The "VPUMP Programming Supply Voltage" pin description was updated to 2-50 include information on what happens when the pin is tied to ground. The "I/O User Input/Output" pin description was updated to include information on 2-50 what happens when the pin is unused. The "JTAG Pins" section was updated to include information on what happens 2-51 when the pin is unused. 5-11 Revision 18
ProASIC3 Flash Family FPGAs Revision Changes Page Advance v0.6 The "Programming" section was updated to include information concerning 2-53 (continued) serialization. The "JTAG 1532" section was updated to include SAMPLE/PRELOAD 2-54 information. "DC and Switching Characteristics" chapter was updated with new information. 3-1 The A3P060 "100-Pin VQFP" pin table was updated. 4-13 The A3P125 "100-Pin VQFP" pin table was updated. 4-13 The A3P060 "144-Pin TQFP" pin table was updated. 4-16 The A3P125 "144-Pin TQFP" pin table was updated. 4-18 The A3P125 "208-Pin PQFP" pin table was updated. 4-21 The A3P400 "208-Pin PQFP" pin table was updated. 4-25 The A3P060 "144-Pin FBGA" pin table was updated. 4-32 The A3P125 "144-Pin FBGA" pin table is new. 4-34 The A3P400 "144-Pin FBGA" is new. 4-38 The A3P400 "256-Pin FBGA" was updated. 4-48 The A3P1000 "256-Pin FBGA" was updated. 4-54 The A3P400 "484-Pin FBGA" was updated. 4-58 The A3P1000 "484-Pin FBGA" was updated. 4-68 The A3P250 "100-Pin VQFP*" pin table was updated. 4-14 The A3P250 "208-Pin PQFP*" pin table was updated. 4-23 The A3P1000 "208-Pin PQFP*" pin table was updated. 4-29 The A3P250 "144-Pin FBGA*" pin table was updated. 4-36 The A3P1000 "144-Pin FBGA*" pin table was updated. 4-32 The A3P250 "256-Pin FBGA*" pin table was updated. 4-45 The A3P1000 "256-Pin FBGA*" pin table was updated. 4-54 The A3P1000 "484-Pin FBGA*" pin table was updated. 4-68 Advance v0.5 The "I/Os Per Package" table was updated for the following devices and ii (November 2005) packages: Device Package A3P250/M7ACP250 VQ100 A3P250/M7ACP250 FG144 A3P1000 FG256 Advance v0.4 M7 device information is new. N/A The I/O counts in the "I/Os Per Package" table were updated. ii Advance v0.3 The "I/Os Per Package" table was updated. ii M7 device information is new. N/A Table 2-4 • ProASIC3 Globals/Spines/Rows by Device was updated to include 2-16 the number or rows in each top or bottom spine. EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options. 2-24 Revision 18 5-12
Datasheet Information Revision Changes Page Advance v0.3 The "PLL Macro" section was updated. EXTFB information was removed from 2-15 this section. The CCC Output Peak-to-Peak Period Jitter F was updated in Table 2- 2-29 CCC_OUT 11 • ProASIC3 CCC/PLL Specification EXTFB was removed from Figure 2-27 • CCC/PLL Macro. 2-28 Table 2-13 • ProASIC3 I/O Features was updated. 2-30 The "Hot-Swap Support" section was updated. 2-33 The "Cold-Sparing Support" section was updated. 2-34 "Electrostatic Discharge (ESD) Protection" section was updated. 2-35 The LVPECL specification in Table 2-43 • I/O Hot-Swap and 5V Input Tolerance 2-64 Capabilities in ProASIC3 Devices was updated. In the Bank 1 area of Figure2-72, VMV2 was changed to VMV1 and VCCIB2 was 2-97 changed to VCCB1. I The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" 2-50 section. The "JTAG Pins" section was updated. 2-51 "128-Bit AES Decryption" section was updated to include M7 device information. 2-53 Table3-6 was updated. 3-6 Table3-7 was updated. 3-6 In Table3-11, PAC4 was updated. 3-93-8 Table3-20 was updated. 3-20 The note in Table3-32 was updated. 3-27 All Timing Characteristics tables were updated from LVTTL to Register Delays 3-31 to 3- 73 The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated. 3-85 to 3-90 F was updated in Table3-110. 3-97 TCKMAX Advance v0.2 Figure2-11 was updated. 2-9 The "Clock Resources (VersaNets)" section was updated. 2-9 The "VersaNet Global Networks and Spine Access" section was updated. 2-9 The "PLL Macro" section was updated. 2-15 Figure2-27 was updated. 2-28 Figure2-20 was updated. 2-19 Table2-5 was updated. 2-25 Table2-6 was updated. 2-25 The "FIFO Flag Usage Considerations" section was updated. 2-27 Table2-13 was updated. 2-30 Figure2-24 was updated. 2-31 The "Cold-Sparing Support" section is new. 2-34 5-13 Revision 18
ProASIC3 Flash Family FPGAs Revision Changes Page Advance v0.2, Table2-43 was updated. 2-64 (continued) Table2-18 was updated. 2-45 Pin descriptions in the "JTAG Pins" section were updated. 2-51 The "User I/O Naming Convention" section was updated. 2-48 Table3-7 was updated. 3-6 The "Methodology" section was updated. 3-10 Table3-40 and Table3-39 were updated. 3-33,3-32 The A3P250 "100-Pin VQFP*" pin table was updated. 4-14 The A3P250 "208-Pin PQFP*" pin table was updated. 4-23 The A3P1000 "208-Pin PQFP*" pin table was updated. 4-29 The A3P250 "144-Pin FBGA*" pin table was updated. 4-36 The A3P1000 "144-Pin FBGA*" pin table was updated. 4-32 The A3P250 "256-Pin FBGA*" pin table was updated. 4-45 The A3P1000 "256-Pin FBGA*" pin table was updated. 4-54 The A3P1000 "484-Pin FBGA*" pin table was updated. 4-68 Revision 18 5-14
Datasheet Information Datasheet Categories Categories In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3 Device Status" table on page IV, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows: Product Brief The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information. Advance This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized. Preliminary The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible. Unmarked (production) This version contains information that is considered to be final. Export Administration Regulations (EAR) The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States. Safety Critical, Life Support, and High-Reliability Applications Policy The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group’s products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information. 5-15 Revision 18
Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet Solutions; Power-over- Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800 employees globally. Learn more at www.microsemi.com. Microsemi Corporate Headquarters Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or One Enterprise, Aliso Viejo, the suitability of its products and services for any particular purpose, nor does Microsemi assume any CA 92656 USA liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 used in conjunction with mission-critical equipment or applications. Any performance specifications are Sales: +1 (949) 380-6136 believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other Fax: +1 (949) 215-4996 testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's E-mail: sales.support@microsemi.com responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or © 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such are trademarks of Microsemi Corporation. All information itself or anything described by such information. Information provided in this document is other trademarks and service marks are the proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this property of their respective owners. document or to any products and services at any time without notice. 51700097-18/0316