您好,欢迎来到ICGOO,这里是国内领先的电子产业服务平台!

免责申明:本词条由ICGOO所有,如需转载请注明出处,谢谢您的关注!

半导体

半导体

词条创建时间:2021-06-24浏览次数:1429

半导体指常温下导电性能介于导体与绝缘体之间的材料。半导体在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域都有应用,如二极管就是采用半导体制作的器件。

半导体简介

半导体指常温下导电性能介于导体与绝缘体之间的材料。

半导体在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域都有应用,如二极管就是采用半导体制作的器件。

无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关联。

常见的半导体材料有硅、锗、砷化镓等,硅是各种半导体材料应用中最具有影响力的一种。

半导体分类及性能

①.元素半导体。元素半导体是指单一元素构成的半导体,其中对硅、硒的研究比较早。它是由相同元素组成的具有半导体特性的固体材料,容易受到微量杂质和外界条件的影响而发生变化。目前, 只有硅、锗性能好,运用的比较广,硒在电子照明和光电领域中应用。硅在半导体工业中运用的多,这主要受到二氧化硅的影响,能够在器件制作上形成掩膜,能够提高半导体器件的稳定性,利于自动化工业生产。

②.无机合成物半导体。无机合成物主要是通过单一元素构成半导体材料,当然也有多种元素构成的半导体材料,主要的半导体性质有I族与V、VI、VII族;II族与IV、V、VI、VII族;III族与V、VI族;IV族与IV、VI族;V族与VI族;VI族与VI族的结合化合物,但受到元素的特性和制作方式的影响,不是所有的化合物都能够符合半导体材料的要求。这一半导体主要运用到高速器件中,InP制造的晶体管的速度比其他材料都高,主要运用到光电集成电路、抗核辐射器件中。 对于导电率高的材料,主要用于LED等方面。

③.有机合成物半导体。有机化合物是指含分子中含有碳键的化合物,把有机化合物和碳键垂直,叠加的方式能够形成导带,通过化学的添加,能够让其进入到能带,这样可以发生电导率,从而形成有机化合物半导体。这一半导体和以往的半导体相比,具有成本低、溶解性好、材料轻加工容易的特点。可以通过控制分子的方式来控制导电性能,应用的范围比较广,主要用于有机薄膜、有机照明等方面。

④.非晶态半导体。它又被叫做无定形半导体或玻璃半导体,属于半导电性的一类材料。非晶半导体和其他非晶材料一样,都是短程有序、长程无序结构。它主要是通过改变原子相对位置,改变原有的周期性排列,形成非晶硅。晶态和非晶态主要区别于原子排列是否具有长程序。非晶态半导体的性能控制难,随着技术的发明,非晶态半导体开始使用。这一制作工序简单,主要用于工程类,在光吸收方面有很好的效果,主要运用到太阳能电池和液晶显示屏中。

⑤.本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带,受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。空穴导电并不是实际运动,而是一种等效。电子导电时等电量的空穴会沿其反方向运动。

它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子-空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子-空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。

半导体特性

①.热敏特性半导体的电阻率随温度变化会发生明显地改变。例如纯锗,湿度每升高10度,它的电阻率就要减小到原来的1/2。温度的细微变化,能从半导体电阻率的明显变化上反映出来。利用半导体的热敏特性,可以制作感温元件——热敏电阻,用于温度测量和控制系统中。值得注意的是,各种半导体器件都因存在着热敏特性,在环境温度变化时影响其工作的稳定性。

②.光敏特性半导体的电阻率对光的变化十分敏感。有光照时、电阻率很小;无光照时,电阻率很大。例如,常用的硫化镉光敏电阻,在没有光照时,电阻高达几十兆欧姆,受到光照时.电阻一下子降到几十千欧姆,电阻值改变了上千倍。利用半导体的光敏特性,制作出多种类型的光电器件,如光电二极管、光电三极管及硅光电池等.广泛应用在自动控制和无线电技术中。

③.掺杂特性在纯净的半导体中,掺入极微量的杂质元素,就会使它的电阻率发生极大的变化。例如.在纯硅中掺入。百万分之—的硼元素,其电阻率就会从214000Ω·cm一下于减小到0.4Ω·cm.也就是硅的导电能为提高了50多万倍。人们正是通过掺入某些特定的杂质元素,人为地精确地控制半导体的导电能力,制造成不同类型的半导体器件。可以毫不夸张地说,几乎所有的半导体器件,都是用掺有特定杂质的半导体材料制成的。

半导体价值

目前广泛应用的半导体材料有锗、硅、硒、砷化镓、磷化镓、锑化铟等.其中以锗、硅材料的生产技术较成熟,用的也较多。用半导体材料制成的部件、集成电路等是电子工业的重要基础产品,在电子技术的各个方面已大量使用。半导体材料、器件、集成电路的生产和科研已成为电子工业的重要组成部分。

另外无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关联。常见的半导体材料有硅、锗、砷化镓等,硅是各种半导体材料应用中最具有影响力的一种。

半导体应用领域

①.光伏应用半导体材料光生伏特效应是太阳能电池运行的基本原理。现阶段半导体材料的光伏应用已经成为一大热门 ,是目前世界上增长最快、发展最好的清洁能源市场。太阳能电池的主要制作材料是半导体材料,判断太阳能电池的优劣主要的标准是光电转化率 ,光电转化率越高 ,说明太阳能电池的工作效率越高。根据应用的半导体材料的不同 ,太阳能电池分为晶体硅太阳能电池、薄膜电池以及III-V族化合物电池。

②.照明应用LED是建立在半导体晶体管上的半导体发光二极管 ,采用LED技术半导体光源体积小,可以实现平面封装,工作时发热量低、节能高效,产品寿命长、反应速度快,而且绿色环保无污染,还能开发成轻薄短小的产品 ,一经问世 ,就迅速普及,成为新一代的优质照明光源,目前已经广泛的运用在我们的生活中。如交通指示灯、电子产品的背光源、城市夜景美化光源、室内照明等各个领域 ,都有应用。

③.大功率电源转换交流电和直流电的相互转换对于电器的使用十分重要 ,是对电器的必要保护。这就要用到等电源转换装置。碳化硅击穿电压强度高 ,禁带宽度宽,热导性高,因此SiC半导体器件十分适合应用在功率密度和开关频率高的场合,电源装换装置就是其中之一。碳化硅元件在高温、高压、高频的又一表现使得现在被广泛使用到深井钻探,发电装置中的逆变器,电气混动汽车的能量转化器,轻轨列车牵引动力转换等领域。由于SiC本身的优势以及现阶段行业对于轻量化、高转换效率的半导体材料需要,SiC将会取代Si,成为应用最广泛的半导体材料。