晶体振荡器
词条创建时间:2021-06-24浏览次数:869
有一些电子设备需要频率高度稳定的交流信号,而LC振荡器稳定性较差,频率容易漂移(即产生的交流信号频率容易变化)。在振荡器中采用一个特殊的元件——石英晶体,可以产生高度稳定的信号,这种采用石英晶体的振荡器称为晶体振荡器。
晶体振荡器简介
晶振是石英晶体谐振器(quartz crystal oscillator)的简称,也称有源晶振,它能够产生中央处理器(CPU)执行指令所必须的时钟频率信号,CPU一切指令的执行都是建立在这个基础上的,时钟信号频率越高,通常CPU的运行速度也就越快。
只要是包含CPU的电子产品,都至少包含一个时钟源,就算外面看不到实际的振荡电路,也是在芯片内部被集成,它被称为电路系统的心脏。
晶体振荡器工作原理
晶振具有压电效应,即在晶片两极外加电压后晶体会产生变形,反过来如外力使晶片变形,则两极上金属片又会产生电压。如果给晶片加上适当的交变电压,晶片就会产生谐振(谐振频率与石英斜面倾角等有关系,且频率一定)。晶振利用一种能把电能和机械能相互转化的晶体,在共振的状态下工作可以提供稳定、精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。利用该特性,晶振可以提供较稳定的脉冲,广泛应用于微芯片的时钟电路里。晶片多为石英半导体材料,外壳用金属封装。
晶振常与主板、南桥、声卡等电路连接使用。晶振可比喻为各板卡的“心跳”发生器,如果主卡的“心跳”出现问题,必定会使其他各电路出现故障。
晶体振荡器作用
晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。
晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。
晶体振荡器特性分类
按制作材料分类:可分为石英晶振和陶瓷晶振。
按应用特性分类:可分为串联谐振型晶振和并联谐振型晶振。
按负载电容特性分类:可分为低负载电容型晶振和高负载电容型晶振。
按晶振的功能和实现技术分类:可以将晶振分为温度补偿晶体振荡器(TCXO)、压控晶体振荡器(VCXO)、普通晶体振荡器(SPXO)、恒温晶体振荡器(OCXO)。
按封装形式分类:可分为玻璃真空密封型晶振、金属壳封装型晶振、陶瓷封装型及塑料壳封装型晶振。
按外形分类:可分为长方形晶振、圆柱形晶振、椭圆形晶振。
按谐振频率精度分类:可分为高精度型晶振、中精度型晶振及普通型晶振。
晶振的分类
根据晶振的功能和实现技术的不同,可以将晶振分为以下四类:
1)恒温晶体振荡器(以下简称OCXO)
这类型晶振对温度稳定性的解决方案采用了恒温槽技术,将晶体置于恒温槽内,通过设置恒温工作点,使槽体保持恒温状态,在一定范围内不受外界温度影响,达到稳定输出频率的效果。这类晶振主要用于各种类型的通信设备,包括交换机、SDH传输设备、移动通信直放机、GPS接收机、电台、数字电视及军工设备等领域。根据用户需要,该类型晶振可以带压控引脚。OCXO的工作原理如下图3所示:
OCXO的主要优点是,由于采用了恒温槽技术,频率温度特性在所有类型晶振中是最好的,由于电路设计精密,其短稳和相位噪声都较好。主要缺点是功耗大、体积大,需要5分钟左右的加热时间才能正常工作等。
2)温度补偿晶体振荡器(以下简称TCXO)。
其对温度稳定性的解决方案采用了一些温度补偿手段,主要原理是通过感应环境温度,将温度信息做适当变换后控制晶振的输出频率,达到稳定输出频率的效果。传统的TCXO是采用模拟器件进行补偿,随着补偿技术的发展,很多数字化补偿大TCXO开始出现,这种数字化补偿的TCXO又叫DTCXO,用单片机进行补偿时我们称之为MCXO,由于采用了数字化技术,这一类型的晶振再温度特性上达到了很高的精度,并且能够适应更宽的工作温度范围,主要应用于军工领域和使用环境恶劣的场合。在广大研发人员的共同努力下,我公司自主开发出了高精度的MCXO,其设计原理和在世界范围都是领先的,配以高度自动化的生产测试系统,其月产可以达到5000只,其设计原理如图4。
3)普通晶体振荡器(SPXO)。
这是一种简单的晶体振荡器,通常称为钟振,其工作原理为图3中去除“压控”、“温度补偿”和“AGC”部分,完全是由晶体的自由振荡完成。这类晶振主要应用于稳定度要求不高的场合。
4)压控晶体振荡器(VCXO)。
这是根据晶振是否带压控功能来分类,带压控输入引脚的一类晶振叫VCXO,以上三种类型的晶振都可以带压控端口。
晶体振荡器主要参数
1、频率准确度:
在标称电源电压、标称负载阻抗、基准温度(25℃)以及其他条件保持不变,晶体振荡器的频率相对与其规定标称值的最大允许偏差,即(fmax-fmin)/f0;
2、温度稳定度:
其他条件保持不变,在规定温度范围内晶体振荡器输出频率的最大变化量相对于温度范围内输出频率极值之和的允许频偏值,即(fmax-fmin)/(fmax+fmin);
3、频率调节范围:
通过调节晶振的某可变元件改变输出频率的范围。
4、调频(压控)特性:
包括调频频偏、调频灵敏度、调频线性度。
①调频频偏:压控晶体振荡器控制电压由标称的最大值变化到最小值时输出频率差。
②调频灵敏度:压控晶体振荡器变化单位外加控制电压所引起的输出频率的变化量。
③调频线性度:是一种与理想直线(最小二乘法)相比较的调制系统传输特性的量度。
5、负载特性:
其他条件保持不变,负载在规定变化范围内晶体振荡器输出频率相对于标称负载下的输出频率的最大允许频偏。
6、电压特性:
其他条件保持不变,电源电压在规定变化范围内晶体振荡器输出频率相对于标称电源电压下的输出频率的最大允许频偏。
7、杂波:
输出信号中与主频无谐波(副谐波除外)关系的离散频谱分量与主频的功率比,用dBc表示。
8、谐波:
谐波分量功率Pi与载波功率P0之比,用dBc表示。
9、频率老化:
在规定的环境条件下,由于元件(主要是石英谐振器)老化而引起的输出频率随时间的系统漂移过程。通常用某一时间间隔内的频差来量度。对于高稳定晶振,由于输出频率在较长的工作时间内呈近似线性的单方向漂移,往往用老化率(单位时间内的相对频率变化)来量度。
10、日波动:
指振荡器经过规定的预热时间后,每隔一小时测量一次,连续测量24小时,将测试数据按S=(fmax-fmin)/f0式计算,得到日波动。
11、开机特性:
在规定的预热时间内,振荡器频率值的最大变化,用V=(fmax-fmin)/f0表示。
12、相位噪声:
短期稳定度的频域量度。用单边带噪声与载波噪声之比£(f)表示,£;(f)与噪声起伏的频谱密度Sφ(f)和频率起伏的频谱密度Sy(f)直接相关,由下式表示:
f2S(f)=f02Sy(f)=2f2£;(f)
f—傅立叶频率或偏离载波频率;f0—载波频率。
晶体振荡器应用
晶振的常见应用
1.通用晶体振荡器,用于各种电路中,产生振荡频率。
2.时钟脉冲用石英晶体谐振器,与其它元件配合产生标准脉冲信号,广泛用于数字电路中。
3.微处理器用石英晶体谐振器。
4.CTVVTR用石英晶体谐振器。
5.钟表用石英晶体振荡器。
晶振的应用领域
晶体振荡器的被广泛应用到军、民用通信电台,微波通信设备,程控电话交换机,无线电综合测试仪, 移动电话发射台,高档频率计数器、GPS、卫星通信、遥控移动设备等等,90%的电子设备中都有用到晶振。
一.移动手机设备:最常见的移动手机设备是智能手机,除此之外,典型的还包括ipad,手持游戏机,手持POS机等
二.消费电子:通常包括手提电脑,照相机,摄像机,耳机,音响,平板电脑等
三.网路:在通信网络中通常分有有线通信和无线通信。有线通信涵盖的技术领域包括:光传输网络,数据处理,连接功能等。无线网络涵盖的技术领域通常包括基带,连接接口,无线电等。
四.医疗电子:常见的医疗电子设备包括X射线成像,磁共振成像,超声波系统,内窥镜等
晶体振荡器常见故障处理
晶振不起振问题归纳
1、 物料参数选型错误导致晶振不起振
例如:某MCU需要匹配6PF的32.768KHz,结果选用12.5PF的,导致不起振。
解决办法:更换符合要求的规格型号。必要时请与MCU原厂或者我们确认。
2、 内部水晶片破裂或损坏导致不起振
运输过程中损坏、或者使用过程中跌落、撞击等因素造成晶振内部水晶片损坏,从而导致晶振不起振。
解决办法:更换好的晶振。平时需要注意的是:运输过程中要用泡沫包厚一些,避免中途损坏;制程过程中避免跌落、重压、撞击等,一旦有以上情况发生禁止再使用。
3、 振荡电路不匹配导致晶振不起振
影响振荡电路的三个指标:频率误差、负性阻抗、激励电平。
频率误差太大,导致实际频率偏移标称频率从而引起晶振不起振。
解决办法:选择合适的PPM值的产品。
负性阻抗过大太小都会导致晶振不起振。
解决办法:负性阻抗过大,可以将晶振外接电容Cd和Cg的值调大来降低负性阻抗;负性阻抗太小,则可以将晶振外接电容Cd和Cg的值调小来增大负性阻抗。一般而言,负性阻抗值应满足不少于晶振标称最大阻抗3-5倍。
激励电平过大或者过小也将会导致晶振不起振
解决办法:通过调整电路中的Rd的大小来调节振荡电路对晶振输出的激励电平。一般而言,激励电平越小越好,处理功耗低之外,还跟振荡电路的稳定性和晶振的使用寿命有关。
4、 晶振内部水晶片上附有杂质或者尘埃等也会导致晶振不起振
晶振的制程之一是水晶片镀电极,即在水晶片上镀上一次层金或者银电极,这要求在万级无尘车间作业完成。如果空气中的尘埃颗粒附在电极上,或者有金渣银渣残留在电极上,则也会导致晶振不起振。
解决办法:更换新的晶振。在选择晶振供应商的时候需要对厂商的设备、车间环境、工艺及制程能力予以考量,这关系到产品的品质问题。
5、 晶振出现漏气导致不起振
晶振在制程过程中要求将内部抽真空后充满氮气,如果出现压封不良,导致晶振气密性不好出现漏气;或者晶振在焊接过程中因为剪脚等过程中产品的机械应力导致晶振出现气密性不良;均会导致晶振出现不起振的现象。
解决办法:更换好的晶振。在制程和焊接过程中一定要规范作业,避免误操作导致产品损坏。
6、 焊接时温度过高或时间过长,导致晶振内部电性能指标出现异常而引起晶振不起振
以32.768KHz直插型为例,要求使用178°C熔点的焊锡,晶振内部的温度超过150°C,会引起晶振特性的恶化或者不起振。焊接引脚时,280°C下5秒以内或者260°C以下10秒以内。
不要在引脚的根部直接焊接,这样也会导致晶振特性的恶化或者不起振。
解决办法:焊接制程过程中一定要规范操作,对焊接时间和温度的设定要符合晶振的要求。如有疑问可与我们联系确认。
7、 储存环境不当导致晶振电性能恶化而引起不起振
在高温或者低温或者高湿度等条件下长时间使用或者保存,会引起晶振的电性能恶化,可能导致不起振。
解决办法:尽可能在常温常湿的条件下使用、保存,避免晶振或者电路板受潮。
8、 MCU质量问题、软件问题等导致晶振不起振
解决办法:目前市场上面MCU散新货、翻新货、拆机货、贴牌货等鱼龙混杂,如果没有一定的行业经验或者选择正规的供货商,则极易买到非正品。这样电路容易出现问题,导致振荡电路不能工作。另外即便是正品MCU,如果烧录程序出现问题,也可能导致晶振不能起振。
9、 EMC问题导致晶振不起振
解决办法:一般而言,金属封装的制品在抗电磁干扰上优于陶瓷封装制品,如果电路上EMC较大,则尽量选用金属封装制品。另外晶振下面不要走信号线,避免带来干扰。
10、其他问题导致晶振不起振
晶振其他不良问题归纳
1、频率偏移超出正常值。
解决办法:当电路中心频率正偏时,说明CL偏小,可以增加晶振外接电容Cd和Cg的值。当电路中心频率负偏时,说明CL偏大,可以减少晶振外接电容Cd和Cg的值。
2、晶振在工作中出现发烫,逐渐出现停振现象。
排除工作环境温度对其的影响,最可能出现的情况是激励电平过大。
解决办法:将激励电平DL降低,可增加Rd来调节DL。
3、晶振在工作逐渐出现停振现象,用手碰触或者用电烙铁加热晶振引脚又开始工作。
解决办法:出现这种情况是因为振荡电路中的负性阻抗值太小,需要调整晶振外接电容Cd和Cg的值来达到满足振荡电路的回路增益。
4、晶振虚焊或者引脚、焊盘不吃锡。
出现这种情况一般来说引脚出现氧化现象,或者引脚镀层脱落导致。
解决办法:晶振的储存环境相当重要,常温、常湿下保存,避免受潮。另外晶振引脚镀层脱落,可能跟晶振厂商或者SMT厂商的制程工艺有关,需要进一步确认。
5、同一个产品试用两家不同晶振厂商的产品,结果不一样。
出现这种情况很好理解,不同厂商的材料、制程工艺等都不一样,会导致在规格参数上有些许差异。例如同样是+/-10ppm的频偏,A的可能大部分是正偏,B的可能大部分是负偏。
解决办法:一般来说在这种情况下,如果是射频类产品最好让晶振厂商帮忙做一些电路匹配测试,这样确保电路匹配的最好。如果是非射频类产品则一般在指标相同的情况下可以兼容。
6、晶振外壳脱落。
有时晶振在过回流焊后会出现晶振外壳掉落的现象;有些是因为晶振受到外力撞击等原因导致外壳脱落。
解决办法:SMT厂在晶振过回流焊之前,请充分确认炉温曲线是否满足晶振的过炉要求,一般来说正规的晶振厂商提供的datasheet中都会提供参考值。
如果是外力因素导致的脱落则尽量避免这种情况发生。