功率电阻
词条创建时间:2021-07-14浏览次数:885
导体对电流的阻碍作用就叫该导体的电阻(Resistance)。在物理学中,用电阻来表示导体对电流阻碍作用的大小。导体的电阻越大,表示导体对电流的阻碍作用越大。不同的导体,电阻一般不同,电阻是导体本身的一种性质。
功率电阻功率
功率是指物体在单位时间内所做的功,即功率是描述做功快慢的物理量。
求功率的公式为功率=功/时间,写成公式就是
P=W/t =UI=(I^2)*R=U^2/R
P表示功率,单位是“瓦特”,简称“瓦”,符号是“w”。W表示功,单位是“焦耳”,简称“焦”,符号是“J”。t表示时间,单位是“秒”,符号是“s”。因为W=F(f 力)*s(s位移)(功的定义式),所以求功率的公式也可推导出
P=W/t=Fs/t=Fv
(当v表示平均速度时求出的功率为相应过程的平均功率,当v表示瞬时速度时求出的功率为相应状态的瞬时功率)。
功率电阻电阻率
物体电阻计算公式:R=ρL/S,其中,L为物体长度,S为物体的横截面积,比例系数ρ叫做物体的电阻系数或是电阻率,它与物体的材料有关,在数值上等于单位长度、单位面积的物体在20℃时所具有的电阻值。
常见导体的电阻率
材料20℃时的电阻率 (µΩ・ m)
银0.016
铜 0.0172
金0.022
铝 0.029
锌0.059
铁 0.0978
铅0.206
汞 0.958
碳25
康铜(54%铜,46%镍) 0.50
锰铜(86%铜,12%锰,2%镍)0.43
人的洗手间(干) 1000~5000
人的洗手间(湿) 200~800
照明灯泡(工作) 100~2000
功率电阻功率测量
测量功率有4种方法:
(1)二极管检测功率法
(2)等效热功耗检测法
(3)真有效值/直流(TRMS/DC)转换检测功率法
(4)对数放大检测功率法。
下面分别介绍这4种方法并对各自的优缺点加以比较。
1.1 利用二极管检测功率法
用二极管检测输入功率的电路如图l所示,图1(a)为简单的半波整流、滤波电路,该电路的总输入电阻为50Ω。D为整流管,C为滤波电容。射频输入功率PIN经过整流滤波后得到输出电压U0。但是当环境温度升高或降低时U0会显着变化。图1(b)为经过改进后的二极管检测输入功率的电路,该电路增加了温度补偿二极管D2,可对二极管D1的整流电压进行温度补偿。二极管具有负的温度系数,当温度升高时D1的压降会减小,但D2的压降也同样地减小,最终使输出电压仍保持稳定。
需要指出,二极管检测电路是以平均值为响应的,它并不能直接测量输入功率的有效值,而是根据正弦波有效值与平均值的关系来间接测量有效值功率的。显然,当被测波形不是正弦波时,波峰因数就不等于1.4142,此时会产生较大的测量误差。
1.2 等效热功耗检测法
等效热功耗检测法的电路如图2所示。它是把一个未知的交流信号的等效热量和一个直流参考电压的有效热量进行比较。当信号电阻(R1)与参考电阻(R2)的温度差为零时,这两个电阻的功耗是相等的,因此未知信号电压的有效值就等于直流参考电压的有效值。R1、R2为匹配电阻,均采用低温度系数的电阻,二者的电压降分别为KU1和KU0。为了测量温差,在R1、R2附近还分别接着电压输出式温度传感器A、B,亦可选用两支热电偶来测量温差。在R1和R2上还分别串联着过热保护电阻。
尽管等效热功耗检测法的原理非常简单,但在实际应用中很难实现,并且这种检测设备的价格非常昂贵。
1.3 真有效值/直流(TRMS/DC)转换检测功率法
真有效值/直流转换检测功率法的最大优点是测量结果与被测信号的波形无关,这就是“真正有效值”的含义。因此,它能准确测量任意波形的真有效值功率。测量真有效值功率的第一种方法是采用单片真有效值/直流转换器(例如AD636型),首先测量出真有效值电压电平,然后转换成其真有效值功率电平。
另一种测量真有效值功率的电路框图如图3所示,该电路所对应的典型产品为AD8361型单片射频真有效值功
率检测系统集成电路。U1 为射频信号输入端,U0为直流电压输出端。US端接2.7~5.5V电源,COM为公共地。IREF为基准工作方式选择端,PWDN为休眠模式控制端。FLTR为滤波器引出端,在该端与US端之间并联一只电容器,可降低滤波器的截止频率。SREF为电源基准控制端。
从U1端输入的射频有效值电压为U1,经过平片器1产生一个与U12成比例的脉动电流信号i,该电流信号通过由内部电阻R1和电容C构成的平方律检波器获得均方值电压U12,输入到误差放大器的同相输入端。利用平方器2与误差放大器可构成一个闭合的负反馈电路,将负反馈信号加到误差放大器的反相输入端进行温度补偿。当闭环电路达到稳定状态时,输出电压U0(DC)就与输入有效值功率PIN成正比。有关系式
式中:k为真有效值/直流转换器的输出电压灵敏度,AD8361的k=7.5 mV/dBm。
这种检测方法有以下优点:第一,由于两个平方器完全相同,因此在改变量程时不影响转换精度;第二,当环境温度发生变化时,两个平方器能互相补偿,使输出电压保持稳定;第三,所用平方器的频带非常宽,可从直流一直到微波频段。
1.4 对数放大检测功率法
对数放大检测器是由多级对数放大器构成的,其电路框图如图4所示。图4中共有5个对数放大器(A~E),每个对数放大器的增益为20dB(即电压放大系数为lO倍),最大输出电压被限制在为lV。因此,对数放大器的斜率ks=lV/20dB,即50mV/dB。5个对数放大器的输出电压分别经过检波器送至求和器(∑),再经过低通滤波器获得输出电压U0。对数放大器能对输入交流信号的包络进行对数运算,其输出电压与kS、PIN的关系式为:
式中:b为截距,即对应于输出电压为零时的输入功率电平值。
普通对数放大器的特性曲线仅适用于正弦波输入信号。当输入信号不是正弦波时,特性曲线上的截距会发生变化,从而影响到输出电压值。此时应对输出读数进行修正。需要指出,尽管ADI公司生产的AD8362型单片射频真有效值功率检测器也属于对数检测功率法,但它通过采用独特的专利技术能适用于任何输入信号波形,并且特性曲线上的截距不随输入信号而变化。
2 单片直流功率测量系统的设计
MAX42ll 属于低成本、低功耗、高端直流功率/电流测量系统,它是利用精密电流检测放大器来测量负载电流,再利用模拟乘法器来计算功率的,因此并不影响负载的接地通路,特别适合测量电池供电系统的功率及电流值。检测功率和电流的最大误差均低于±1.5%,频率带宽为220kHz。被测源电压的范嗣是4―28v。检测电流时的满量程电压为100mV或150mV。电源电压范嗣是2.7~5.5V,工作电流为670μA(典型值)。
MAX42ll A/B/C的简化电路如图5所示,
主要包括精密电流检测放大器,25:1的电阻分压器,模拟乘法器。外围电路包括被测的4~28V源电压,2.7~5.5V的芯片工作电压,电流检测电阻RSENSE和负载。其测量原理是利用精密电流检测放大器来检测负载电流,获得与该电流成正比的模拟电压,再将该电压加至模拟乘法器,将负载电流与源电压相乘后,从POUT端输出与负载功率成正比的电压。令功率检测放大器的增益为G,RSENSE上的电压为 USENSE,RS+引脚的源电压为URS+,则有MAX42l1A/B/C内部的分压器电阻,接到RS+端和模拟乘法器的输入端。这种设计可精确测量电源负载的功率并为电源(例如电池)提供保护。从POUT端、IOUT端输出的功率信号和电流信号,可分别经过A/D转换器送至单片机。理想情况下,最大负载电流在RSENSE两端产生满量程检测电压。选择合适的增益,使电流检测放大器既能获得最大输出电压,又不会出现饱和。在计算 RSENSE的最大值时,应使RS+端与RS一端之间的差分电压不超过满量程检测电压。适当增加RSENSE的电阻值,可提高USENSE,有助于减小输出误差。
3 单片真有效值射频功率测量系统的设计
对通信系统的要求是在发送端必须确保功率放大器能满足发射的需要,并且输出功率不超过规定指标,否则会导致设备过热损坏。因此,在发射机电路中必须增加射频功率测量和功率控制电路。同样,射频功率测量对接收机也是必不可少的。根据有效值定义所计算出的功率就称为“真有效值功率”(True Root Mean Square Power),简称“真功率”(True Power)。由于现代通信系统具有恒定的负载和阻抗源(通常为50Ω),因此只需知道有效值电压就能计算出功率,即可将功率测量转化为对有效值电压的测量。
传统的射频功率计或射频检测系统的电路复杂,集成度很低。最近,美国ADI公司相继推出AD8361、AD8362和AD8318型全集成化的单片射频真有效值功率测量系统,不仅能精确测量射频(RF)功率,还可测量中频(IF)、低频(LF)功率。
AD8318是采用将晶片绝缘硅与超高速互补双极型相结合的高速硅锗制造工艺而制成的单片射频功率测量系统。其内部解调式对数放大器的输出电压与被测功率成正比,能精确测量1MHz~8GHz的射频功率。适合测量于机和无线LAN基站的无线输出功率。AD8318不仅远优于传统的产品,而且比模块式测量系统具有更高的性价比,比采用二极管检测功率法的精度更高。AD8318集高精度、低噪声、宽动态范围等优点于一身。AD8318在高达5.8GHz的输入频率下,测量精度优于±ldB,动态范围是55dB;在8GHz时精度优于±3dB,动态范围超过58dB。而输出噪声仅为
它采用对数放大检测功率法,对数斜率的额定值为一25mV/dB,并可通过改变UOUT、USET引脚之间反馈电压的比例系数来进行凋整。在从IN+端输入信号时,截距功率电平为一25dB。AD8318的典型应用电路如图6所示。
AD8318是专为测量高达8 GHz的射频功率而设计的,因此保持IN+、IN一引脚之间及各功能单元电路的绝缘性至关重要。AD8318的正电源端UPSI、UPS0必须接相同的电压,由UPSI端为输入电路提供偏置电压,由UPSO端为UOUT端的低噪声输出驱动器提供偏置电压。AD8318内部还有一些独立的公共地。CMOP被用作输出驱动器的公共地。所有公共地应接到低阻抗的印制扳地线区。允许电源电压范围是4.5~5.5V。C3~C6为电源退耦电容,应尽量靠近电源引脚和地。
AD8318采用交流耦合、单端输入方式。当输入信号频率为lMHz~8GHz时,接在IN+、IN一端的耦合电容(C1、C2)可采用0402规格的 lnF表面封装式瓷片电容,耦合电容应靠近IN+、IN-引脚。外部分流电阻R1(52.3Ω)与IN+端相配合,可提供一个具有足够带宽的50Ω匹配阻抗。AD8318的输出电压可直接送给数字电压表(DVM),亦可送至带A/D转换器的单片机(μC)。
功率电阻命名方法
根据部颁标准(SJ-73)规定,电阻器、电位器的命名由下列四部分组成:第一部分(主称);第二部分:(材料);第三部分(分类特征);第四部分(序号)。它们的型号及意义见下表。
第一部分:主称 | 第二部分:材料 | 第三部分:特征 | 第四部分 | |||
符号 | 意义 | 符号 | 意义 | 符号 | 意义 | 序号 |
R | 电阻器 | T R U H J Y X S M G | 碳膜 硼碳膜 硅碳膜 合成膜 金属膜 氧化膜 线绕 实心 压敏 光敏 | 用数字1、2、3等表示,说明:对主称、材料、特征相同,仅尺寸、性能指标稍有差别,但不影响互换的产品,则标同一序号;若尺寸、性能指标的差别不影响互换时,则要标不同序号加以区别 | ||
R | 电阻器 | R | 热敏 | B C G P W Z | 温度补偿用 温度测量用 功率测量用 旁热式 稳压用 正温度系数 | |
W | 电位器 | H | 合成碳膜 | |||
J | 金属膜 | W | 微调 | |||
Y | 氧化膜 | |||||
X | 线绕 | W | 微调 | |||
S D | 实芯 导电塑料 |
并联等效电阻
电阻相并联的电路,两端外加电压,总电流为I,各支路电流分别为I1,I2....In.
根据KCL规律,I=I1+I2+....+In=U/R
R为并联电路的总电阻,称为并联等效电阻.
串联等效电阻
电阻相串联的电路,两端外加电压,各电阻上流过同一电流。
根据KVL规律,串联电阻的总电阻就称为串联等效电阻.
电路计算中,需把握电流相等这一原则。
功率电阻电阻标称
标称值系列
E24(误差±5%):1.0,1.1,1.2,1.3,1.5,1.6,1.8,2.0,2.2,2.4,2.7,3.0,3.3,3.6,3.9,4.3,4.7,5.1,5.6,6.2,6.8,7.5,8.2,9.1
E12(误差±10%):1.0,1.2,1.5,1.8,2.2,2.7,3.3,3.9,4.7,5.6,6.8,8.2
E6(误差±20%):1.0,1.5,2.2,3.3,4.7,6.8
标称额定功率:
线绕电阻系列:3W,4W,8W,10W,16W,25W,40W,50W,75W,100W,150W,250W,500W
非线绕电阻系列:0.05W,0.125W,0.25W,0.5W,1W,2W,5W
英语解释:
Resistance means the inhibition from conductor to current. The symbol of resistance is (R) and the unit of resistance is (?).
电阻计算公式:R=U/I=U方/P
接地电流:在大地或在接地极中流过的电流。
接地导体:指构成地的导体,该导体将设备、电气器件、布线系统、或其他导体(通常指中性线)与接地极连接。
接地极:构成地的一种导体。
接地连接:用来构成地的连接,系由接地导体、接地极和围绕接地极的大地(土壤)或代替大地的导电体组成。
接地网:由埋在地中的互相连接的裸导体构成的一组接地极,用以为电气设备和金属结构提供共同地。
接地系统:在规定区域内由所有互相连接的多个接地连接组成的系统。
接地极地电阻:接地极与电位为零的远方接地极之间的欧姆律电阻。(注:所谓远方是指一段距离,在此距离下,两个接地极互阻基本为零。)
接地极互阻:指以欧姆为单位表示的,一个接地极1A直流电流变量在另一接地极产生的电压变量。
电位:指某点与被认为具有零电位的某等电位面(通常是远方地表面)间的电位差。
接触电压:接地的金属结构和地面上相隔一定距离处一点间的电位差。此距离通常等于最大的水平伸臂距离,约为1m。
跨步电压:地面一步距离的两点间的电位差,此距离取最大电位梯度方向上1m的长度。(注:当工作人员站立在大地或某物之上,而有电流流过该大地或该物时,此电位差可能是危险的,在故障状态时尤其如此)
(架空线防雷保护用)接地极:指一个导体或一组导体,装设在输电线路下方,位于地面或地面上方,但绝大多数在地下,并与铁塔或电杆基础相连。
土壤电阻率:是指一个单位立方体的对立面之间的电阻,通常以Ω・m或Ω・cm为单位。
功率电阻选用常识
正确选有电阻器的阻值和误差
阻值选用:原则是所用电阻器的标称阻值与所需电阻器阻值差值越小越好。
误差选用:时间常数RC电路所需电阻器的误差尽量小。一般可选5%以内.对退耦电路,反馈电路滤波电路负载电路对误差要求不太高。可选10%-20%的电阻器。
注意电阻器的极限参数
额定电压:当实际电压超过额定电压时,即便满足功率要求,电阻器也会被击穿损坏。
额定功率:所选电阻器的额定功率应大于实际承受功率的两倍以上才能保证电阻器在电路中长期工作的可靠性。
要首选通用型电阻器
通用型电阻器种类较多、规格齐全、生产批量大,且阻值范围、外观形状、体积大小都有挑选的余地,便于采购、维修。
根据电路特点选用
高频电路:分布参数越小越好,应选用金属膜电阻、金属氧化膜电阻等高频电阻。
低频电路:绕线电阻、碳膜电阻都适用。
功率放大电路、偏置电路、取样电路:电路对稳定性要求比较高,应选温度系数小的电阻器。
退耦电路、滤波电路:对阻值变化没有严格要求,任何类电阻器都适用。
功率电阻用途
只有那些带有金属外壳的用电器(或者容易潮湿的用电器)功率电阻才会使用三脚插头。在三孔插座中,除了两个孔分别接火线和零线外,功率电阻另一个孔是跟大地连接的,也就是接地的,家用电器上的三脚插头,两个脚接用电部分(如电冰箱、洗衣机中的电动机)另外那个与接地插孔相应的脚,是跟家用电器的外壳接通的。功率电阻这样,把三脚插头插在三孔插座里,在把用电部分连入电路的同时,也把外壳与大地连接起来。为什么要这样做呢?家用电器的金属外壳功率电阻本来是跟火线绝缘的,是不带电的,人体接触外壳并没有危险。但如果内部火线绝缘皮破损或失去绝缘性能,致使火线与外壳接通,外壳带了电,功率电阻人体接触外壳等于接触火线,就会发生融电事故。如果把外壳用导线接地,即使外壳带了电,也会从接地导线流走、人体接触外壳就没有危险了。
测电笔是用来辨别火线和零线的:功率电阻用手接触笔尾的金属体,笔尖接触电线(或与电线连通的导体),如果氖管发光,表示接触的是火线:如果氖管不发光,表示接触的是零线。需要注意的是使用测电笔,功率电阻手一定要接触笔尾的金属体如果手没有接触笔尾的金属体,即使笔尖接触火线,氖管也不发光,测电笔就失去作用了。只有人的手接触了笔尾的金属体,功率电阻这时才会有电流流过氖管,通过人体进入大地,这时氖管才会发光。这时为什么人不会触电呢?因为在测电笔中有一个阻值很大的电阻,在一兆欧以上。功率电阻当用测电笔接触零线和地线时,由于零线和地线间没有电压,当然也就没有电流流过氖管,所以氖管不发光。使用测电笔时功率电阻,人的手千万不要接触笔尖金属体,这时就会有大的电流流过人体而造成触电事故。
安装家庭电路时,功率电阻各个用电器(包括两孔和三孔插座)是并联关系,在火线上要安装熔断器(保险盒)。两孔插座中左边接零线,右边接火线。接白炽电灯时,功率电阻开关一定要接在火线上,而且火线功率电阻要接螺丝口灯头上的锡点,零线接螺旋套。