您好,欢迎来到ICGOO,这里是国内领先的电子产业服务平台!

免责申明:本词条由ICGOO所有,如需转载请注明出处,谢谢您的关注!

准分子激光器

准分子激光器

词条创建时间:2022-07-29浏览次数:633

准分子激光器excimer laser,以准分子为工作物质的一类气体激光器件。常用相对论电子束(能量大于200千电子伏特)或横向快速脉冲放电来实现激励。当受激态准分子的不稳定分子键断裂而离解成基态原子时,受激态的能量以激光辐射的形式放出。

准分子激光器简介

所谓准分子激光,是指受激二聚体所产生的激光。之所以产生称为准分子,是因为它不是稳定的分子,是在激光混合气体受到外来能量的激发所引起的一系列物理及化学反应中曾经形成但转瞬即逝的分子,其寿命仅为几十毫微秒。 准分激光是一种气体脉冲激光,所产生的是波长为193nm的准分子激光,它是一种超紫外线光波,此波长的激光吸收范围窄,激光的能量几乎完全被角膜上皮细胞和基质吸收,超过这个范围的组织不会吸收到激光,每一个激光脉冲可以切削0.2到0.25um厚度的生物组织,所以周围的组织不会损伤。

准分子激光与生物组织作用时发生的不是热效应,而是光化反应,所谓光化反应,是指组织受到远紫外光激光作用时,会断裂分子之间的结合键,将组织直接分离成挥发性的碎片而消散无踪,对周围组织则没有影响,达到对角膜的重塑目的,能精确消融人眼角膜预计去除的部分空间精确度达细胞水平,不损伤周围组织。它的波长短,不会穿透人的眼角膜,因此对于眼球内部的组织没有任何不良的作用。

准分子激光在医学上主要用于屈光不正的治疗,如用PRK、LASIK、LASEK等方法进行屈光不正的治疗,是目前临床上应用比较普遍、安全、快捷、有效、稳定的屈光不正治疗方法。

准分子激光器特点

1、准分子以激发态形式存在,寿命很短,仅有10^(-8)S量级,基态为10^(-13)S量级,跃迁发生在低激发态和排斥的基态(或弱束缚)之间,其荧光谱为一连续带。

2、由于其荧光谱为一连续带,故可以实现波长可调谐运转。

3、由于激光跃迁的下能级(基态)的离子迅速离解,激光下能级基本为空的,极易实现粒子数反转,因此量子效率很高,接近100%,且可以高重复频率运转。

4、输出激光波长主要在紫外线到可见光段,波长短、频率高、能量大、焦斑小、加工分辨率高,更适合用于高质量的激光加工。

准分子激光器作用

屈光性角膜手术中通过激光的高能爆破效应(气化)来切削角膜层,只有万分之三毫米的厚度,目前,准分子激光由于角膜中心区域(直径大约60~80mm)大小的局限也受到了限制,而治疗过程中激光只切削了角膜厚度的5~10%(角膜切削厚度和图形是由术前检查和计算决定的),而这些数据通过眼科医生输入计算机系统中计算出切削的图形。

准分子激光器应用

准分子激光首先被应用在工业上:

美国IBM公司开始使用并且改进准分子激光技术,主要应用在计算机芯片的制造以及塑料物质上蚀刻精确的图形。

1980年IBM公司应用193nm准分子激光刨光钻石。

1982年IBM将准分子激光技术应用在半导体光刻工艺中.

1986年AT&T贝尔实验室研制出第一台准分子激光分步投影光刻机.

目前准分子激光已广泛应用在临床医学以及科学研究与工业应用方面,如:钻孔、标记表面处理、激光化学气相沉积,物理气相沉积,磁头与光学镜片和硅晶圆的清洁等方面,微机电系统相关的微制造技术.

准分子激光于90年代始在医学上得到运用:

眼科:使用193nm准分子激光进行LASIK手术,矫治屈光不正(近视、远视、散光)。

1983年,哥伦比亚大学的MD.Stephen Trokel以及IBM的Srinicasan首先提出用激光治疗近视的构思,并在动物角膜上开始实验。

1987年,Trokel等人将IBM公司发明用以切割芯片的准分子激光用于人眼角膜上,应用准确计量的准分子激光直接汽化角膜的部分组织,以达到改变眼角膜曲度的目的。

九十年代初,美国FDA开始准分子激光角膜表面切削术(Photorefractive keratectomy,PRK)的临床实验,开始了激光治疗近视。

1990年,Dr Pallikaris、Buratto,Galvis和 Dr Ruiz结合ALK的技术与先进激光仪结合而发明了准分子激光角膜原位磨镶术(Laser-Assisted in Situ Keratomileusis,LASIK)。经过几年的临床实验效果跟踪,1995年10月FDA最终正式批准PRK手术可以治疗600度以内的近视,400度以内的散光。

1995至1999年,FDA又相继批准了1200度以内的近视、600度以内散光和600度以内远视的LASIK治疗。

1993年中国卫生部首次批准引进的两台准分子激光治疗仪在北京同仁医院以及协和医院应用PRK技术,1995年开始应用LASIK技术。

1996年台湾通过人体实验而正式核准使用PRK技术.

1997年意大利Rovigo医院眼科中心Massino lamellion MD发明准分子激光角膜上皮磨镶术(laser epithelial keratomileusis,LASEK)

1999年,波前引导激光手术技术(Customized LASIK)被开发;

2001年,美国开始在临床应用此项技术。

2002年10月,FDA核准了此项技术,第二年5月开始正式普及。

皮肤:使用308nm准分子激光治疗白癜风、银屑病和过敏性皮炎。

心血管:准分子激光在心血管疾病中主要用于治疗冠心病、周围血管疾病、心脏瓣膜病、先天性心脏病和肥厚性心肌病等。

直接心肌血运重建术(direct myocardial revascularization,DMR),也称为经心肌血运重建术(transmyocardial revascularization,TMR)或激光心肌血运重建术(transmyocardial laser revascularization,TMLR),是近年来应用于心脏外科临床的新技术。

经皮直接心肌血运重建术(percutaneous direct myocardial revascularization,PDMR)是在TMR技术基础上发展起来的用于心脏内科临床的一种新型冠心病介入治疗技术,是冠心病治疗史上的一项新进展。这些都为过去常规内外科治疗不能有效的治疗的冠心病病人提供了一种新的方法。

准分子激光器安全性

准分子激光治疗近视眼最早是1985年美国医生开始在临床应用的,近年来发展迅速,九十年代初传入中国。准分子激光治疗高、中、低度近视的手术效果远远优于以往的屈光手术,因此,广为全世界的眼科医师所瞩目。但仍有很多人对它产生怀疑,怕眼睛被打穿、烧焦。

一般来说,准分子激光是波长很短的紫外光,它与生物组织发生的是光化学效应而不是热效应,因此,不会产生热损伤,更谈不上烧焦。

另外,还有人顾虑会打穿眼球,这种顾虑是多余的,准分子激光波长短,穿透力弱,每个脉冲只能切削0.25um的深度,是在细胞下水平切削,切削极精确,因此打穿眼球是不可能的。

有人担心会伤害眼睛的其他部位,这也是多虑,因为准分子激光器都有红外线跟踪系统,当你的眼球偏转超出正常范围,激光会自动停止击射,保证安全治疗。

激光治疗近视的原理是,近视眼是由于眼球的前后径太长或者眼球前表面太凸,外界光线不能准确会聚在眼底所致。准分子激光角膜屈光治疗技术(PRK和LASIK技术),是用电脑精确控制的准分子激光的光束使眼球前表面稍稍变平,从而使外界光线能够准确地在眼底会聚成像,达到矫正近视的目的。

准分子激光是氟氩气体混合后经激发产生的一种人眼看不见的紫外线光束,属冷激光,能精确消融人眼角膜预计去除的部分而不损伤周围组织和其他组织器官。

准分子激光器医学领域使用

在医学领域中使用的激光器种类非常多,常用于眼科治疗的主要有红宝石(rudy)激光、氩离子(Ar+)激光、氪离子(Kr+)、染料(dye)激光、掺钕钇铝石榴石(Nd:YAG)激光和氟化氩(ArF)准分子激光等固体、气体和液体的激光器,用连续的、脉冲的和调Q的方式,治疗眼底部色素膜和屈光间质等部位的数十种有关眼部疾病。

眼科使用的准分子激光, 是以氩气(Argon) 和氟气( Fluoride) 为工作气体产生的激光。所谓准分子激光,是指受激二聚体(惰性气体和卤素两种元素)所产生的激光,波长范围为157~353nm,所属紫外激光波段。用于临床的氟化氩(ArF)混合物产生的波长为193nm的超紫外冷激光.

波长为193nm的ArF准分子激光,进行屈光手术的机理就是光化学效应。准分子激光单个光子的能量大约是6.4eV,而角膜组织中肽键与碳分子键的结合能量仅为3.6eV。当其高能量的光子照射到角膜,直接将组织内的分子键打断,导致角膜组织碎裂而达到消融切割组织的目的,并且由于准分子激光脉宽短(10~20nm),又是光化学效应切除。因此,对切除周围组织的机械损伤和热损伤极小(﹤0.30μm)。

用这种刀施行光切术,其切割精度可达到μm级,其刀口损伤范围仅达nm级,而且由于无热效应而不会损伤邻近组织。所以现已运用于角膜手术,如角膜屈光手术、角膜疤痕去除等。

准分子激光器诞生及发展

第一台准分子激光器于1970年诞生,它利用强电子束激励液态氙,获得氙准分子的激射作用,激光波长为1720埃。随后,气相氙分子以及其它稀有气体准分子,稀有气体氧化物准分子(氧化氪、氧化氙、氧化氩等),金属蒸气-稀有气体准分子(氙化钠等);稀有气体单卤化物准分子(氟化氙、氟化氩、氟化氪、氯化氙、溴化氙、碘化氙、氯化氪等),金属卤化物准分子(氯化汞、溴化汞等)和金属准分子(钠准分子等)陆续诞生。准分子激光物质具有低能态的排斥性,可以把它有效地抽空,故无低态吸收与能量亏损,粒子数反转很容易,增益大,转换效率高,重复率高,辐射波长短,主要在紫外和真空紫外(少数延伸至可见光)区域振荡,调谐范围较宽。它在分离同位素,紫外光化学,激光光谱学,快速摄影,高分辨率全息术,激光武器,物质结构研究,光通信,遥感,集成光学,非线性光学,农业,医学,生物学以及泵浦可调谐染料激光器等方面已获得比较广泛的应用,而且可望发展成为用于核聚变的激光器件。

推荐型号

查看更多>
型号 库存 价格
560085-0101 80900 ¥0.093
BAT54XV2T1G 30000 ¥1.1
08-70-1039 20200 ¥0.083
43030-0001 10980 ¥0.083
SG2525AP013TR 7500 ¥3.46
M24LR64E-RMN6T/2 5000 ¥12.71
MAX5395LATA+T 3290 ¥6.64
MIC5504-3.3YM5-TR 3085 ¥0.78
BAT54XV2T1G 2740 ¥0.24
MMBD914LT1G 500 ¥0.072

元器件热榜